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Aim of the Work

The aim of the work is...

To introduce memory in the Theory of Quantum Measurements in
Continuous Time based on SDEs .

IThe studied case is the diffusive one (no jumps!)J
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Pattern of the presentation

I Formulation of the Theory in the Hilbert space.

I Formulation of the Theory for statistical operators acting on the
Hilbert space.

I Short discussion of a physical model for the heterodyne detection.
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THE THEORY IN THE HILBERT SPACE
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Linear Stochastic Schrödinger Equation

Fundamental tools

A finite dimensional complex Hilbert space ! H := Cn .

A fixed stochastic basis in u.c. ! F := (Ω,F , {Ft}t≥0,Q) .

A standard d-dimensional Wiener process ! W = (W1, . . . ,Wd) in
F.

Linear Stochasic Schrödinger Equation F
Assumption. The wave function of the system satisfies a linear SDE, the
Linear Stochasic Schrödinger Equation:

dψ(t) = −i

H(t) +
1

2

d∑
j=1

R∗j (t)Rj(t)

ψ(t)dt +
d∑

j=1

Rj(t)ψ(t)dWj(t)

ψ(0) = ψ0 , ψ0 ∈ L2
(
Ω,F0,Q; H

)
,

(1)
where {Rj}dj=1 and H are progressive-Mn(C)-valued processes in F. H is
the effective Hamiltonian of the system.
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Existence and Pathwise Uniqueness of the Solution

There are very general results...but we decide to extend those ones for
Classical SDEs

Proposed conditions

sup
ω∈Ω

sup
t∈[0,T ]

∥∥∥∥∥∥
d∑

j=1

R∗j (t, ω)Rj(t, ω)

∥∥∥∥∥∥ ≤ L(T ) <∞ , ∀T > 0 ;

sup
ω∈Ω

sup
t∈[0,T ]

‖H(t, ω)‖ ≤ M(T ) <∞ , ∀T > 0 .

Although these are strong conditions they allow to study very interesting
physical models. Furthermore, we are able to obtain Lp-estimates of the
solution.
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Square Norm of the Solution and Physical Probabilities

It is possible to prove that the process {‖ψ(t)‖2}t≥0 is a probability
density process (it is an exponential mean one martingale),
so, it can be used to introduce the physical probabilities of the system:

PT
ψ0

(F ) := EQ[1F‖ψ(T )‖2] , F ∈ FT .

IUnder the physical pb.−→ Wiener Ŵ obtained by a Girsanov
transformation.

Non Linear Equation

The process ψ is a.s. non zero if the initial state is a.s. non zero: we can
define the normalised states ψ̂(t) := ψ(t)/‖ψ(t)‖

⇓

Under the physical probabilities ψ̂(t) satisfies a non linear equation.
The two equations are equivalent because it is possible to obtain one
from the other, in both the senses.
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THEORY IN THE SPACE OF LINEAR
OPERATORS
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Extension of the theory to statistical operators

The theory formulated in the Hilbert space can be generalised to
statistical operators (here hermitian, positive defined and trace one
matrices).
This formulation allow us to model either a possible uncertainty on the
initial state of the system, due for example to a preparation procedure
carried out on the system itself, or to introduce dissipative phenomena,
due to the interaction of the system.

Let ρ0 be a statistical operator and assume that it is the initial state of
the system.

Define the process σ as

σ(t) :=
∑
β

ψβ(t)ψβ(t)∗ .

Where ψβ(t) is the solution of (1) if ψβ0 ∈H is the initial condition
when t = 0.
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Linear Stochastic Master Equation

The Mn(C)-valued process σ satisfies a linear SDE with unique solution
which can be interpreted as a “Stochastic Master Equation”:

Linear Stochastic Master Equation
dσ(t) = L(t)

[
σ(t)

]
dt +

d∑
j=1

Rj(t)[σ(t)]dWj(t) .

σ(0) = ρ0 .

(2)

L and {Rj}dj=1 are F-progressive processes whose sate space is the space

of linear maps on Mn(C): they depend on H and {Rj}dj=1.
L is called Liouville operator or Liouvillian of the system. It contains the
dynamics.
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Non Linear Equation

The process Tr{σ(t)}
This is a probability density process (mean one and exponential
martingale): we can introduce the physical probabilities also in this
formulation, in a similar way as we did in the Hilbert space.

We normalise σ with respect to its trace, which is a.s. non zero, and we
obtain the “a posteriri states” of the system

%(t) :=
σ(t)

Tr{σ(t)}
, ∀t ∈ [0,T ].

The process % satisfies a non linear SDE under the physical probabilities.
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Mean States

Let η(t) be the mean state of the system at times t:

η(t) := EQ
[
σ(t)

]
, ∀t ∈ [0,T ] .

Because of the randomness of the Liouvillian operator...

η(t) = ρ0 +

∫ t

0

EQ [L(s)[σ(s)]]ds .

Thus, if we take the mean of the state of the system, the mean state
does not satisfies a closed equation.
...If L(t) were deterministic...

Master Equation for Mean States

d

dt
η(t) = L(t)[η(t)] , η0 = ρ0 .
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Physical interpretation

I The output of the system is W (or its linear functional).
By mean of a Girsanov transformation obtained using Tr{σ}, we
obtain the following decomposition of the output under the physical
probabilities

W (t) = Ŵ (t) +

∫ t

0

v(s)ds ,

thus, a noise (Ŵ ) and a signal (
∫ t

0
v(s)ds). Signal and noise are

correlated and not independent.

I The process σ has the interpretation of the non normalised state
process for the quantum system .

I The normalised states are given by the process %: they have the
interpretation of a posteriori state, thus %(t) is the state of the
system once the measuring experiment has been carried out and the
trajectory {W (s) , 0 ≤ s ≤ t} is observed.
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Moments

It is possible to obtain expressions for the moments of the output under
the physical probabilities:

I ET
ρ0

[
Ẇj(t)

]
= EQ [Tr {Rj(t)[σ(t)]}] ,

I ET
ρ0

[
Ẇj(t)Ẇi (s)

]
= δijδ(t − s)

+ 1(0,+∞)(t − s)EQ [Tr {Rj(t) ◦ Λ(t, s) ◦ Ri (s)[σ(s)]}]
+ 1(0,+∞)(s − t)EQ [Tr {Ri (s) ◦ Λ(s, t) ◦ Rj(t)[σ(t)]}] .

The two time-maps valued process Λ(t, s) is the propagator of the Linear
Stochastic Master Equation

Important

The process Λ stisfies the tipical composition law of an evolution,

Λ(t, r) = Λ(t, s) ◦ Λ(s, r) , 0 ≤ r ≤ s ≤ t
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The Reduced Observation: “Non Markov” Effects

Assume m ≤ d (d dimension of W ). Let us set to zero the coefficients
{Rj}dj=m+1.

I The first m components of W represent the observed output.

I The components of W from j = m + 1 to d are used to introduce
memory or other kind of randomness in the system.

The filtration generated by the output {W1, . . . ,Wm} is

Et := σ
{

Wj(s) , j = 1, . . . ,m , s ∈ [0, t]
}
∨N .

I We do not require that {Rj}mj=1 and H are adapted with respect to this
filtration.
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THE PHYSICAL MODEL
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Introduction to the the physical model

We present a physical model as an application of the built theory.

We have studied both the homodyne and the heterodyne revelation
for a two level atom... but we present here only the heterodyne case.

The choice of the two level atom fixes the Hilbert space: H := C2.

The atom is stimulated by a laser and it emits fluorescence light

The fluorescence light is observed by means of photon counters...
after an interference with a reference laser light (local oscillator).

New aspects

Thank to the theoretical set up with stochastic coefficients in the
involved equations we can consider not perfectly monochromatic and not
perfectly coherent lasers...thus, a more realistic model.
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Heterodyne Revelation

Phase-Diffusion Models for the Lasers

The stimulating laser is characterised by a phase diffusion model with
carrier frequency ω > 0. Its effects enter in the Hamiltonian part of
the Liouville operator L(t). The model for the stimulating laser is

H −→ f (t) = λ exp
{
−iωt + i

ε3

2
B3(t)

}
.

We assume the same model for the local oscillators in the revelators.

Rk −→ hk(t) = exp
{
iνt − i

εk
2

Bk(t)
}
, k = 1, 2 ν > 0 carr. freq.

Bks are components of W and εk are real and arbitrary parameters. We
study the case ε2

1 + ε2
2 + ε2

3 > 0 (the case =0 is the perfect case, already
studied in the literature).

If ε1 = ε2 = ε3 ≡ ε, B1 = B2 = B3 ≡ B and ν ≡ ω we speak of
homodyne revelation.
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Heterodyne Spectrum

In the heterodyne case we study the spectrum of the mean observed
power (under the physical pb.) for long time.

The output of the measurement is a regular functional of the Wiener
process W and, so, a stochastic process .

Spectrum

The definition of the spectrum of the output is the classical notion of
spectrum for a stochastic process and not one given ad hoc.
WE CAN COMPUTE THE SPECTRUM USING THE MOMENTS
FORMULA.

I The presence of stochastic phases in the involved laser
(ε1 6= 0 6= ε3) introduce some asymmetries and “smoothing”
in the spectrum. J
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A Graphical Example
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Figura: Spectrum of the observed mean power under the physical probabilities
for long time. The continuous line represent the ideal case: ε2

1 = ε2
3 = 0 the

dotted line represent the case ε2
1 = ε2

3 = 0.2.
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Grazie per l’attenzione...
(...Thank you for your kind attention)



Theory in a finite dimensional Hilbert space Statistical operators The Physical Model

Essential Bibliography

P. Baldi. Equazioni differenziali stocastiche e applicazioni, Quaderno
UMI 28 (Pitagora, Bologna, 2000).
A. Barchielli, M. Gregoratti. Quantum Trajectories and Mesurements
in Continuous Time, Lecture Notes in Physics 782 (Springer, Berlin,
2009).
A. Barchielli, A. S. Holevo. Constructing quantum measurement
processes via classical stochastic calculus, Stochastic Processes and
their Applications 58 (1995) 293-317.
A. Barchielli, N. Pero. A quantum stochastic approach to the
spectrum of a two-level atom, J. Opt. B: Quantum Semiclass. Opt.
4 (2002) 272-282.
G. Lindblad. On the Generators of Quantum Dynamical Semigroups,
Communications in Mathematical Physics 48 (1976) 119-130.
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