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I. Utility maximization

The financial market consists of one bond with interest rate zero and d ≤ m
stocks. In case d < m we face an incomplete market. The price process of
stock i evolves according to the equation

dS i
t

S i
t

= bi
tdt + σi

tdBt , i = 1, . . . , d, (1)

where bi (resp. σi) is a R– valued (resp. R1×m–valued) stochastic process.
The lines of the d ×m–matrix σ are given by the vector σi

t , i = 1, . . . , d. The
volatility matrix σ = (σi)i=1,...,d has full rank ( i.e. σσtr is invertible P-a.s. )
The predictable Rm–valued process ( called the risk premium ) is defined by:

θt = σtr
t (σtσ

tr
t )−1bt , t ∈ [0, T ].

A d–dimensional Ft–predictable process π = (πt)0≤t≤T is called trading
strategy if

∫
π dS

S is well defined, e.g.
∫ T

0 ‖πtσt‖2dt < ∞ P–a.s. For 1 ≤ i ≤ d,
the process πi

t describes the amount of money invested in stock i at time t.
The number of shares is πi

t
Si

t
.
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The wealth process Xπ of a trading strategy π with initial capital x satisfies
the equation

Xπ
t = x +

d∑
i=1

∫ t

0

πi,u

Si,u
dSi,u = x +

∫ t

0
πuσu(dBu + θudu).

Suppose our investor has a liability F at time T .

Let us recall that for α > 0 the exponential utility function is defined as

U (x) = − exp(−αx), x ∈ R.

We allow constraints on the trading strategies. Formally, they are supposed to
take their values in a closed set, i.e. πt(ω) ∈ C, with C ⊆ R1×d , and 0 ∈ C.
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Definition

[Admissible Strategies with constraints ] Let C be a closed set in R1×d

and 0 ∈ C. The set of admissible trading strategies AD consists of all
d–dimensional predictable processes π = (πt)0≤t≤T which satisfy∫ T

0 |πtσt |2dt < ∞ and πt ∈ C P-a.s., as well as

{exp(−αXπ
τ ) : τ stopping time with values in [0, T ]}

is a uniformly integrable family.

So the investor wants to solve the maximization problem

V (x) := sup
π∈AD

E
[
− exp

(
−α

(
x +

∫ T

0
πt

dSt

St
− F

))]
, (2)

where x is the initial wealth. V is called value function.
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This problem has been studied by many authors, but they suppose that the
constraint is convex in order to apply convex duality. Our starting point of the
work is the paper [Hu-Imkeller-Muller, AAP 2005] where both the risk
premium θ and the liability F are bounded. The main method can be
described as follows.

In order to find the value function and an optimal strategy one constructs a
family of stochastic processes R(π) with the following properties:

• R(π)
T = − exp(−α(Xπ

T − F)) for all π ∈ AD;
• R(π)

0 = R0 is constant for all π ∈ AD;
• R(π) is a supermartingale for all π ∈ AD and there exists a π∗ ∈ AD such

that R(π∗) is a martingale.

The process R(π) and its initial value R0 depend of course on the initial
capital x.
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Given processes possessing these properties we can compare the expected
utilities of the strategies π ∈ AD and π∗ ∈ AD by

E [− exp(−α(Xπ
T − F))] ≤ R0(x) = E [− exp(−α(Xπ∗

T − F))] = V (x), (3)

whence π∗ is the desired optimal strategy.

Construction of R(π):

R(π)
t := − exp(−α(X (π)

t −Yt)), t ∈ [0, T ], π ∈ AD,

where (Y , Z ) is a solution of the BSDE

Yt = F −
∫ T

t
ZsdBs +

∫ T

t
f (s, Zs)ds, t ∈ [0, T ].

In these terms one is bound to choose a function f for which R(π) is a
supermartingale for all π ∈ AD and there exists a π∗ ∈ AD such that R(π∗) is
a martingale. This function f also depends on the constraint set (C) where
(πt) takes its values. One gets then

V (x) = R(π,x)
0 = − exp(−α(x −Y0)), for all π ∈ AD.
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In order to satisfy the supermartingale and the martingale properties, one
finds

f (t, z) =
α

2
min
π∈C

|πσ − (z +
1
α

θt)|2 − zθt −
1

2α
|θt |2.

The function f is well defined because it only depends on the distance between
a point and a closed set.

Important: the generator f is of quadratic growth with respect to z!
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Lemma

Suppose that both the risk premium θ and the liability F are bounded. Then,
the value function of the optimization problem (2) is given by

V (x) = − exp(−α(x −Y0)),

where Y0 is defined by the unique solution (Y , Z ) of the BSDE

Yt = F −
∫ T

t
ZsdBs +

∫ T

t
f (s, Zs)ds, t ∈ [0, T ], (4)

with
f (·, z) =

α

2
min
π∈C

|πσ − (z +
1
α

θ)|2 − zθ − 1
2α
|θ|2.

There exists an optimal trading strategy π∗ ∈ AD with

π∗t ∈ argmin{|πσ − (Zt +
1
α

θt)|, π ∈ C}, t ∈ [0, T ], P − a.s. (5)
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II. Dynamic g Risk Measures (Barrieu-El Karoui, arXiv 2007)

Definition

Assume that (ξT , g) satisfies: (1) g is a P × B(R)× B(Rd)-measurable
generator satisfying z → g(t, z) is convex, and

|g(t, z)| ≤ |g(t, 0)|+ k
2
|z|2, |g(t, 0)| 1

2 ∈ M ;

(2) ξT is an FT -measurable bounded random variable.

Define Rg(ξT ) as the unique solution of the BSDE (−ξT , g).

Proposition

(Barrieu-El Karoui) Rg is a dynamic risk measure.
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Inf-convolution

In the case of bounded ξ, B-E established

Proposition

RgA�gB
(ξT )t = RgA

�RgB
(ξT )t .
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Backward Stochastic Differential Equation

Yt = ξ +
∫ T

t
f (s, Ys, Zs) ds −

∫ T

t
Zs dBs (Eξ,f )

• ξ is the terminal value : FT–measurable
• f is the generator

• (Y , Z ) is the unknown
• (Y , Z ) has to be adapted to F

Pardoux–Peng, ’90

If f is Lipschitz w.r.t. (y, z) and

E

[
|ξ|2 +

∫ T

0
|f (s, 0, 0)|2ds

]
< +∞

(Eξ,f ) has a unique square integrable solution.
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Nonlinear Feynman-Kac Formula

Semilinear PDE (P)

∂tu(t, x) + Lu(t, x) + f (t, x, u(t, x), (∇xu)trσ(t, x)) = 0, u(T , .) = g,

Lu(t, x) =
1
2

trace(σσ∗∇2
xu(t, x)) + b(t, x) · ∇xu(t, x).

Linear part =⇒ SDE

X t0,x0
t = x0 +

∫ t

t0

b
(
s, X t0,x0

s
)

ds +
∫ t

t0

σ
(
s, X t0,x0

s
)

dBs

Nonlinear part =⇒ BSDE (B)

Y t0,x0
t = g

(
X t0,x0

T

)
+
∫ T

t
f
(
s, X t0,x0

s , Y t0,x0
s , Z t0,x0

s
)

ds −
∫ T

t
Z t0,x0

s dBs
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Nonlinear Feynman-Kac Formula

If u is smooth solution to (P)

(
u
(

t, X t0,x0
t

)
, (∇xu)trσ

(
t, X t0,x0

t

))
solves the BSDE (B)

Feynman-Kac’s Formula

u(t, x) := Y t,x
t is a (viscosity) solution to (P).
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Quadratic BSDEs

A real valued BSDE

Yt = ξ +
∫ T

t
f (s, Ys, Zs) ds −

∫ T

t
Zs dBs (Eξ,f )

• B is a Brownian motion in Rd ;
• ξ is FT–measurable;
• the generator f : [0, T ]× Ω×R ×Rd −→ R is measurable and

• (y, z) 7−→ f (t, y, z) is continuous
• f is quadratic with respect to z:

|f (t, y, z)| ≤ α(t) + β|y|+ γ

2 |z|
2

where β ≥ 0, γ > 0 and α is a nonnegative process.
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The bounded case

If ξ and α – or more generally |α|1 :=
∫ T

0
α(s) ds – are bounded

• Existence
• Uniqueness, Comparison Theorem
• Stability

References:

• M. Kobylanski (AP 2000);
• M.-A. Morlais (non Brownian setting, Ph. D 2007)

These results yield
The Nonlinear Feynman-Kac Formula

Ying Hu, Univ. Rennes 1 Quadratic and Superquadratic BSDEs Roscoff, March 2010 15/43



Applications of bounded case

• Utility maximization: El Karoui & Rouge (MF 2000), Hu, Imkeller &
Muller (AAP 2005) (with closed constraint), Mania & Schweizer (AAP
2005), Becherer (AAP 2006), Morlais (Ph D 2007)

• Stochastic linear quadratic control: Bismut (1970-1979), Peng, Kohlman
& Tang, Hu & Zhou (with cone constraint SICON 2005), Schweizer et al.

• Quadratic g risk measure: Barrieu & El Karoui
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The unbounded case

• Boundedness of ξ and α is not necessary to construct a solution;
• Exponential moment is enough !

Theorem

Existence of Solution [Briand & Hu, PTRF 2006] Let ζ := |ξ|+
∫ T

0
α(s) ds and let

us assume that E
[
exp

(
γeβT ζ

)]
< +∞.

Then, (Eξ,f ) has at least a solution such that

|Yt | ≤
1
γ

log E
(

exp
(
γeβTζ

) ∣∣ Ft

)
. (6)

Ying Hu, Univ. Rennes 1 Quadratic and Superquadratic BSDEs Roscoff, March 2010 17/43



Construction : f ≥ 0, ξ ≥ 0

(Y n, Zn) minimal solution

Y n
t = ξ ∧ n +

∫ T

t
1s≤σn f (s, Y n

s , Zn
s ) ds −

∫ T

t
Zn

s dBs

σn = inf
{

t ≥ 0 :
∫ t

0
α(s) ds ≥ n

}

Step 1: a priori estimate

0 ≤ Y n
t ≤ 1

γ
E

(
exp

[
γeβT

(
ξ +

∫ T

0
α(s) ds

)] ∣∣∣∣ Ft

)

Step 2: taking the limit in n: Difficult step: Localization procedure
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The localization procedure

Main Idea: Work on the interval [0, τk ] where

τk = inf

{
t ≥ 0 :

1
γ

E

(
exp

[
γeβT

(
ξ +

∫ T

0
α(s) ds

)] ∣∣∣∣ Ft

)
≥ k

}
∧ T

Set Y n
k (t) = Y n

t∧τk
, Zn

k (t) = 1t≤τk Zn
t

Y n
k (t) = Y n

τk
+
∫ τk

t∧τk

1s≤σn f (s, Y n
k (s), Zn

k (s)) ds −
∫ τk

t∧τk

Zn
k (t) dBs

For fixed k, (Y n
k )n∈N is nondecreasing, 0 ≤ Y n

k (t) ≤ k
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The localization procedure

k fixed, limn→+∞

Yk(t) = ξk +
∫ τk

t∧τk

f (s, Yk(s), Zk(s)) ds −
∫ τk

t∧τk

Zk(s) dBs, ξk = sup
n≥1

Y n
τk

• By construction

Yk(t) = Yk+1(t ∧ τk), Zk(t) = 1t≤τk Zk+1(t)

• Define (Y , Z ) by

Yt = Yk(t), Zt = Zk(t) if t ≤ τk

Yt = ξk +
∫ τk

t∧τk

f (s, Ys, Zs) ds −
∫ τk

t∧τk

Zs dBs

• k −→ +∞ gives a solution
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Remarks

Questions
Uniqueness ? Stability ? Feynman-Kac formula ?

Answer
When f is convex (or concave) w.r.t. z

Ying Hu, Univ. Rennes 1 Quadratic and Superquadratic BSDEs Roscoff, March 2010 21/43



Motivation: Stochastic Control Problem (Fuhrman, Hu &
Tessitore SICON 2006)

Controlled diffusion process

Xt = x +
∫ t

0
b(s, Xs) ds +

∫ t

0
σ(s, Xs)[dWs + r(us) ds]

where u takes its values in a nonempty closed set C .

Minimize the cost functional

J (u) = E

[
g(XT ) +

∫ T

0
G(t, Xt , ut) dt

]
over all the admissible controls u.
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Motivation

Associated BSDE

Yt = g(XT ) +
∫ T

t
f (s, Xs, Zs) ds −

∫ T

t
Zs dBs

Xt = x +
∫ t

0
b(s, Xs) ds +

∫ t

0
σ(s, Xs) dBs

f (t, x, z) = inf {G(t, x, u) + r(u)z : u ∈ C}

Important feature of the generator

z 7−→ f (t, x, z) is concave
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Assumptions (H)

There exist β ≥ 0, γ ≥ 0 and a nonnegative process α s.t. P–a.s.

• f is Lipschitz w.r.t. y: for any t, z,

|f (t, y, z)− f (t, y′, z)| ≤ β |y − y′|;

• quadratic growth in z:

|f (t, y, z)| ≤ α(t) + β|y|+ γ

2
|z|2;

• for any t, y, z 7−→ f (t, y, z) is a convex function;
• ξ is FT–measurable and

∀λ > 0, E

[
exp

(
λ

[
|ξ|+

∫ T

0
α(s) ds

])]
< +∞.
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Some estimates

Proposition

(Eξ,f ) has a solution (Y , Z ) s.t.

∀p ≥ 1, E

[
supt∈[0,T] ep|Yt | +

(∫ T

0
|Zs|2 ds

)p/2
]
≤ C

where C depends only on p, T and the exponential moments of |ξ|+ |α|1.

• The estimate for Y comes directly from

|Yt | ≤
1
γ

log E
(
exp

(
γeβT (|ξ|+ |α|1)

) ∣∣ Ft
)

• For Z , standard computation starting from Itô’s formula to

1
γ2

(
eγ|Yt | − 1− γ|Yt |

)
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Comparison theorem

Theorem

Uniqueness of Solution [Briand & Hu, PTRF 2008] Let (Y , Z) and (Y ′, Z ′) be
solution to (Eξ,f ) and (Eξ′,f ′) where (ξ, f ) satisfies (H) and Y , Y ′ belongs to E (E :=
exponential moment of all order).

If ξ ≤ ξ′ and f ≤ f ′ then
∀t ∈ [0, T ], Yt ≤ Y ′

t

If moreover, Yt = Y ′
t then

P
(

ξ = ξ′,

∫ T

t
f (s, Y ′

s , Z ′
s) ds =

∫ T

t
f ′(s, Y ′

s , Z ′
s) ds

)
> 0.

In particular, (Eξ,f ) has a unique solution in the class E.

Main idea: Estimate of Yt − µY ′
t for µ ∈ (0, 1).
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Proof: f independent of y

Set, for µ ∈ (0, 1), Ut = Yt − µY ′
t , Vt = Zt − µZ ′t .

Ut = UT +
∫ T

t
Fs ds −

∫ T

t
Vs dBs, Fs = f (s, Zs)− µf ′ (s, Z ′s)

Ft = [f (t, Zt)− µf (t, Z ′t )] + µ [f (t, Z ′t )− f ′ (t, Z ′t )]

and δf (t) := f (t, Z ′t )− f ′ (t, Z ′t ) ≤ 0.

Zt = µZ ′t + (1− µ)
Zt − µZ ′t

1− µ

f (t, Zt) = f
(

t, µZ ′t + (1− µ)
Zt − µZ ′t

1− µ

)
Convexity ≤ µf (t, Z ′t ) + (1− µ)f

(
t, Zt − µZ ′t

1− µ

)
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f (t, Zt)− µf (t, Z ′t ) ≤ (1− µ)f
(

t, Vt

1− µ

)
≤ (1− µ)α(t) +

γ

2(1− µ)
|Vt |2

Ft ≤ µδf (t) + (1− µ)α(t) +
γ

2(1− µ)
|Vt |2 (7)

Second step

An exponential change of variable to remove the quadratic term

Pt = ecUt , Qt = cPtVt , c ≥ 0

Pt = PT + c
∫ T

t
Ps

(
Fs −

c
2
|Vs|2

)
ds −

∫ T

t
Qs dBs

c = γ
1−µ yields
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Pt ≤ E

(
exp

[
γ

∫ T

t

(
α(s) + (1− µ)−1µδf (s)

)
ds
]

PT

∣∣∣ Ft

)

PT = exp
(

γ

1− µ
(ξ − µξ′)

)
= exp

(
γ

(
ξ +

µ

1− µ
δξ

))

Pt ≤ E

(
exp

[
γ

(
ξ +

∫ T

0
α(s) ds

)
+ γ

µ

1− µ

(
δξ +

∫ T

t
δf (s) ds

)] ∣∣∣ Ft

)

In particular,

Yt − µY ′
t ≤

1− µ

γ
log E

(
exp

[
γ

(
ξ +

∫ T

0
α(s) ds

)] ∣∣∣ Ft

)

and sending µ to 1, we get
Yt −Y ′

t ≤ 0.
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Strict Comparison

If Yt = Y ′
t , then Pt = eγYt and

0 < E[Pt ] ≤ E

[
exp

(
γ

(
ξ +

∫ T

0
α(s) ds

)
+ γ

µ

1− µ

(
δξ +

∫ T

t
δf (s) ds

)])

Sending µ to 1,

0 < E

[
exp

(
γ

[
ξ +

∫ T

0
α(s) ds

])
1δξ+

∫ T
t δf (s) ds=0

]

Press if late
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The general case

Ft = f (t, Yt , Zt)− µf ′(t, Y ′
t , Z ′t ) = f (t, Yt , Zt)− µf (t, Y ′

t , Z ′t ) + µδf (t)

f (t, Yt , Zt)− µf (t, Y ′
t , Z ′t )

= f (t, Yt , Zt)− µf (t, Yt , Z ′t ) + µ (f (t, Yt , Z ′t )− f (t, Y ′
t , Z ′t )) .

Convexity

f (t, Yt , Zt)− µf (t, Yt , Z ′t ) ≤ (1− µ)(α(t) + β|Yt |) +
γ

2(1− µ)
|Vt |2

Linearization: a(t) = (Yt −Y ′
t )
−1 (f (t, Yt , Z ′t )− f (t, Y ′

t , Z ′t )) 1Yt−Y ′
t 6=0

µ (f (t, Yt , Z ′t )− f (t, Y ′
t , Z ′t )) = µa(t) (Yt −Y ′

t ) ≤ a(t)Ut + (1− µ)β|Yt |

Ft ≤ µδf (t) + (1− µ)(α(t) + 2β|Yt |) +
γ

2(1− µ)
|Vt |2 + a(t)Ut .
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The general case

Set Et = exp
(∫ t

0
a(s) ds

)
, Ũt = Et Ut and Ṽt = Et Vt . Then,

Ũt = ŨT +
∫ T

t
F̃s ds −

∫ T

t
Ṽs dBs

with, since |a(t)| ≤ β,

F̃t ≤ µEt δf (t) + (1− µ)Et(α(t) + 2β|Yt |) +
γeβT

2(1− µ)

∣∣∣Ṽt

∣∣∣2

This is the same inequality as before.
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Stability

Assume that (ξn, fn) satisfies (H) with αn, β, γ and
∀λ > 0, supn≥1 E [exp {λ (|ξn|+ |αn|1)}] < +∞.

Theorem

If ξn −→ ξ P–p.s. and dt ⊗ dP–a.e., ∀(y, z), fn(t, y, z) −→ f (t, y, z), then

∀p ≥ 1, E

[
supt∈[0,T] |Yt −Y n

t |p +
(∫ T

0
|Zs − Zn

s |2 ds
)p/2

]
−→ 0.

Proof.

Same method as in the proof of comparison theorem to

Yt − µY n
t , Y n

t − µYt
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Application to PDEs

• Probabilistic representation for

∂tu(t, x) + Lu(t, x) + f (t, x, u(t, x), (∇xu)trσ(t, x)) = 0, u(T , .) = g,

Lu(t, x) =
1
2

trace(σσ∗∇2
xu(t, x)) + b(t, x) · ∇xu(t, x).

• The SDE: X t0,x0 solution to

Xt = x0 +
∫ t

t0

b(s, Xs) ds +
∫ t

t0

σ(s, Xs) dBs

• The BSDE: (Y t0,x0 , Z t0,x0) solution to

Yt = g
(

X t0,x0
T

)
+
∫ T

t
f
(
s, X t0,x0

s , Ys, Zs
)

ds −
∫ T

t
Zs dBs

• Nonlinear Feynman-Kac formula: u(t, x) := Y t,x
t is a viscosity solution
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Assumptions

• b, σ, f and g are continuous;
• b, σ Lipschitz w.r.t. x

|b(t, x)− b(t, x ′)|+ |σ(t, x)− σ(t, x ′)| ≤ β|x − x ′|;

• restriction: σ is bounded;
• f is Lipschitz w.r.t. y

|f (t, x, y, z)− f (t, x, y′, z)| ≤ β|y − y′|;

• z 7−→ f (t, x, y, z) is convex;
• ∃p < 2 s.t.

|g(x)|+ |f (t, x, y, z)| ≤ C
(
1 + |x|p + |y|+ |z|2

)
.
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First properties

Proposition

u(t, x) := Y t,x
t is continuous and

|u(t, x)| ≤ C (1 + |x|p) .

Proof.

• Since σ is bounded,

∀λ > 0, E
[
exp

(
λ supt∈[0,T] |X

t0,x0
t |p

)]
≤ eC(1+|x|p)

•
a priori estimate |u(t, x)| ≤ C (1 + |x|p)

• Stability =⇒ Continuity
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u is a viscosity solution

Definition

A continuous function u s.t. u(T , ·) = g is a viscosity subsolution
(supersolution) if, whenever u − ϕ has a local maximum (minimum) at
(t0, x0) where ϕ is C1,2,

∂tϕ(t0, x0) + Lϕ(t0, x0) + f (t0, x0, u(t0, x0), (∇xu)trσ(t0, x0)) ≥ 0, (≤ 0)

Solution = Subsolution + Supersolution

Proposition

u(t, x) := Y t,x
t is a viscosity solution to the PDE.

Proof.

Markov property : u(t, X t0,x0
t ) = Y t0,x0

t , and Comparison theorem
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Extension and Open Questions

• Weaken the integrability assumptions Delbaen, Hu and Richou (Arxiv
2009): Uniqueness holds among solutions which admit some given
exponential moments. These exponential moments are natural as they are
given by the existence theorem.

• Open Question 1: Prove uniqueness and stability without convexity

|f (t, y, z)− f (t, y, z ′)| ≤ C |z − z ′| (1 + |z|+ |z ′|)

• Open Question 2: Multi-dimensional quadratic BSDEs and system of
quadratic PDEs.
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Superquadratic BSDEs (joint work with Delbaen and Bao)

(Arxiv 2009, to appear in PTRF).

Let us consider the following BSDE:

Yt = ξ −
∫ T

t
g(Zs)ds +

∫ T

t
ZsdBs, (8)

where g is convex with g(0) = 0, and is superquadratic, i.e.

lim sup
z→∞

g(z)
|z|2 = ∞;

and ξ is a bounded FT -measurable random variable.

The goal here is to look for a solution (Y , Z ) such that Y is a bounded
process.
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Non-existence of solution

Different from BSDEs with quadratic growth, the bounded solution to the
BSDE with superquadratic growth does not always exist.

Theorem

(Non-existence) There exists η ∈ L∞(FT ) such that BSDE (8) with
sup-quadratic growth has no bounded solution.
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Non-uniqueness of solution

Even if the BSDE has a bounded solution, the solutions are not unique. The
main reason is that the generator g is superquadratic which makes

∫ t
0 g(Zr)dr

grow much faster that
∫ t

0 ZrdBr with respect to Z . Following this observation,
we can construct other solutions.

Theorem

(Non-uniqueness) If the BSDE (g, ξ) with superquadratic growth has a
bounded solution Y for some ξ ∈ L∞(FT ), then for each y < Y0, there are
infinitely many bounded solutions X with X0 = y.
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Existence of solution to BSDE in Markovian case

The BSDE with superquadratic growth is ill-posed. However, in the particular
Markovian case, solutions to BSDE exist.

Define the diffusion process X t,x be the solution to the SDE:

Xs = x +
∫ s

t
b(r , Xr)dr +

∫ s

t
σdBr , t ≤ s ≤ T , (9)

where b is Lipschitz with respect to x, and σ is a constant (matrix).

Let us consider the BSDE (8) with ξ = Φ(X t,x
T ):

Ys = Φ(X t,x
T )−

∫ T

s
g(Zr)dr +

∫ T

s
ZrdBr .
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Existence of Solution

Theorem

Let us suppose that Φ is bounded and continuous. Then there exists a solution
(Y , Z ) to Markovian BSDE.

Main tool: if Φ is smooth, we can get an estimate in the spirit of Gilding et al.
by use of some martingale method:

|Zt | ≤ C ||Φ||∞(T − t)− 1
2 .

Finally, we can prove that u(t, x) = Y t,x
t is a viscosity solution of the

corresponding PDE.

Remark: Cheridito and Stadje (Arxiv 2010): No discrete convergence for
quadratic BSDEs.

Richou (Ph D 2010): numerical simulation applying the above estimate.
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