On strong invariance for semilinear differential inclusions

Ovidiu Cârjă

"Al. I. Cuza" University, Iaşi and "Octav Mayer" Mathematics Institute, Romanian Academy, Iaşi Romania

Roscoff, 2010

Let *X* be a real separable Banach space, $A : D(A) \subseteq X \mapsto X$ the infinitesimal generator of a C_0 -semigroup of contractions, $\{S(t) : X \mapsto X | t \ge 0\}$, *D* a nonempty subset in *X* and $F : D \rightsquigarrow X$ a given multi-function.

Definition 1. By a *mild solution* to the autonomous multi-valued semilinear Cauchy problem

$$\begin{cases} u'(t) \in Au(t) + F(u(t)) \\ u(0) = \xi, \end{cases}$$

on [0, T], we mean a continuous function $u : [0, T] \mapsto D$, such that $\exists g \in L^1(0, T; X), g(s) \in F(u(s)) a.e. s \in [0, T]$ and

$$u(t)=S(t)\xi+\int_0^tS(t-s)g(s)ds, \hspace{1em} orall t\in [0,T].$$

Definition 2. Let *D* an open set in *X*. The subset $K \subset D$ is *strong invariant* with respect to A + F if for each $\xi \in K$ and each mild solution $u : [0, T] \mapsto D$, there exists $T^0 \in (0, T]$ such that $u(t) \in K$ for each $t \in [0, T^0]$.

Definition The subset $K \subset D$ is *weak invariant, or viable* with respect to A + F if for each $\xi \in K$, there exists a mild solution $u : [0, T] \mapsto K$.

Previous results

Case A = 0. *F* is Lipschitz, has convex compact values, *X*-Hilbert space, *K* closed.

Theorem

The following are equivalent

(i)
$$F(x) \subseteq T_{\mathcal{K}}(x), \forall x \in \mathcal{K};$$

(ii) K is strong invariant.

Clarke, Ledyaev, Rădulescu (1997)[2].

About tangency

 $v \in T_{\mathcal{K}}(x) \Leftrightarrow \liminf_{h \downarrow 0} \frac{1}{h} \operatorname{dist}(x + hv, \mathcal{K}) = 0$. Equivalently, $\exists h_n \downarrow 0, p_n \to 0, x + h_n v + h_n p_n \in \mathcal{K}$. Since *F* has compact convex values, (i) $F(x) \subseteq T_{\mathcal{K}}(x)$ is equivalent to:

$$orall f \in L^1_{loc}(R_+, X), f(s) \in F(x) ext{ a.e. we have } \exists h_n \downarrow 0, p_n \to 0,$$

 $x + \int_0^{h_n} f(s) ds + h_n p_n \in K.$ (1)

Denote $\mathcal{E} = \{f \in L^1_{loc}; f(s) \in E.a.e.\}$ and $\mathcal{T}_{\mathcal{K}}(x) = \{f(\cdot) \in L^1_{loc}; (1) \text{ holds}\}.$ So, the following are equivalent

(i)
$$F(x) \subseteq T_{\mathcal{K}}(x), \forall x \in \mathcal{K}.$$

(ii) $\mathcal{F}(x) \subseteq \mathcal{T}_{\mathcal{K}}(x), \forall x \in \mathcal{K}.$

The semilinear case

Define $T_{K}^{A}(x)$ as follows: $v \in T_{K}^{A}(x)$ iff $\liminf_{h \downarrow 0} \frac{1}{h} \operatorname{dist}(S(h)x + hv; K) = 0$. Equivalently, $\liminf_{h \downarrow 0} \frac{1}{h} \operatorname{dist}(S(h)x + \int_{0}^{h} S(h - s)v ds; K) = 0$. Again, when F(x) has compact convex values, the following are equivalent:

(a)
$$F(x) \subseteq T_{K}^{A}(x), \forall x \in K.$$

(b) $\mathcal{F}(x) \subseteq \mathcal{T}_{K}^{A}(x), \forall x \in K$

where $\mathcal{T}_{K}^{A}(x)$ is defined as follows: $f(\cdot) \in \mathcal{T}_{K}^{A}(x)$ iff $\exists h_{n} \downarrow 0, p_{n} \rightarrow 0$ such that $S(h_{n})x + \int_{0}^{h_{n}} S(h_{n} - s)f(s)ds + h_{n}p_{n} \in K.$

Recall that $\mathcal{F}(x) = \{f \in L^1_{loc}; f(s) \in F(x).a.e.\}$

Uniqueness function

Definition 4. A function $\omega : \mathbb{R}_+ \mapsto \mathbb{R}_+$ which is continuous, nondecreasing and the only C^1 -solution to the Cauchy problem

$$\begin{cases} x'(t) = \omega(x(t)) \\ x(0) = 0, \end{cases}$$

is $x \equiv 0$ is called a *uniqueness function*.

Lemma 2. [1] Let $\omega : \mathbb{R}_+ \mapsto \mathbb{R}_+$ be a uniqueness function and let $(\gamma_k)_k$ be strictly decreasing to 0. Let $(x_k)_k$ be a bounded sequence of measurable functions, from [0, T] to \mathbb{R}_+ , such that

$$x_k(t) \leq \gamma_k + \int_0^t \omega(x_k(s)) ds$$

for k = 1, 2, ... and for each $t \in [0, T]$. Then there exists $\tilde{T} \in (0, T]$ such that $\lim_k x_k(t) = 0$ uniformly for $t \in [0, \tilde{T}]$.

Main results

Theorem

Let X be a separable Banach space, D an open subset in X, K a nonempty and closed subset of D and F : $D \rightsquigarrow X$ a nonempty, closed and bounded valued multi-function. Assume that

(a) there exist an open neighborhood $V \subseteq D$ of K and one uniqueness function $\omega : \mathbb{R}_+ \mapsto \mathbb{R}_+$, $\omega(0) = 0$, such that

 $F(x) \subset F(y) + \omega(||x - y||)B(0, 1), \quad \forall x \in V \setminus K, \ \forall y \in K;$

(b) for every $x \in K$ we have $\mathcal{F}(x) \subseteq \mathcal{T}_{K}^{\mathcal{A}}(x)$.

Then K is strong invariant with respect to A + F.

Theorem

Let X be a separable Banach space, D an open subset in X, K a nonempty and locally closed subset of D and $F : D \rightsquigarrow X$ a nonempty, closed and bounded valued multi-function. Assume that:

(a) $\exists L > 0$ such that $F(x) \subset F(y) + L ||x - y|| B(0, 1), \forall x, y \in D$;

(b) K is strong invariant with respect to A + F.

Then for every $x \in K$ we have $\mathcal{F}(x) \subseteq \mathcal{T}_{K}^{\mathcal{A}}(x)$.

- O. Cârjă, M. Necula, I. I. Vrabie, Viability, Invariance and Applications, North-Holland Mathematics Studies, 2007.
- F.H. Clarke, Yu. Ledyaev, M. Radulescu, Aproximate invariance and differential inclusions, J. Dynam. Control Systems, 3 (1997), 493–518.
- F.H. Clarke, Yu. Ledyaev, R. Stern, P. Wolenski, Nonsmooth Analysis and Control Theory, in: Graduate Texts in Mathematics, Vol. 178, Springer-Verlag, New York, 1998.
- H. Frankowska, H., A priori estimates for operational differential inclusions, *J. Differential Equations* 84 (1990), no. 1, 100–128.