Topics in Computational Finance a view from the trenches

P. Hénaff

Télécom-Bretagne

20 March 2010

Fat Tails Fitting a Density to Sample Returns Dependence Volatility Surface

Fat Tails Fitting a Density to Sample Returns Dependence Volatility Surface

Model Risk and Model Calibration

Price and Value Calibration Issues with Complex Models

Fat Tails Fitting a Density to Sample Returns Dependence Volatility Surface

Model Risk and Model Calibration

Price and Value Calibration Issues with Complex Models

Numerical Challenges in Monte-Carlo Simulations

Division of Labour Practical Advantages of MC Frameworks Open Topics for Research

Fat Tails Fitting a Density to Sample Returns Dependence Volatility Surface

Model Risk and Model Calibration

Price and Value Calibration Issues with Complex Models

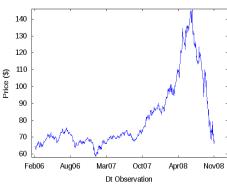
Numerical Challenges in Monte-Carlo Simulations

Division of Labour Practical Advantages of MC Frameworks Open Topics for Research

Conclusion

Fat Tails

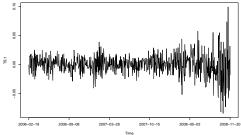
Closing price of December 2009 WTI contract.



WTI forward price Dec-09 contract

Fat Tails

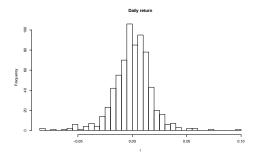
Time Series of Daily Return



ヘロト 人間 とくほとくほ

Fat Tails

Histogram of Daily Return



Fitting a density to observed returns

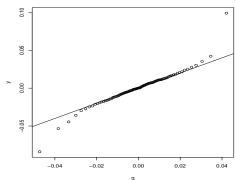
The Johnson family of distributions. X : observed Z : N(0, 1)

$$Z = \gamma + \delta \ln(g(\frac{x-\xi}{\lambda})) \tag{1}$$

where :

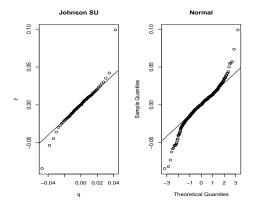
$$g(u)=\left\{egin{array}{ccc} u&SL\ u+\sqrt{1+u^2}&SU\ rac{u}{1-u}&SB\ e^u&SN \end{array}
ight.$$

Johnson SU Distribution - December 2009 WTI contract.



Johnson SU distribution

Johnson SU vs. Normal



The Generalized Lambda Distribution

Tukey's Lambda distribution :

$$Q(u) = \lambda + \frac{u^{\lambda} - (1 - u)^{\lambda}}{\lambda}$$
(2)

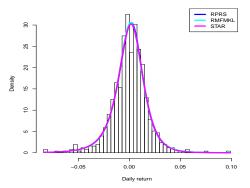
Generalized Lambda distribution :

$$Q(u) = \lambda_1 + \frac{u^{\lambda_3} - (1-u)^{\lambda_4}}{\lambda_2}$$
(3)

where :

Pr(X < Q(u)) = u

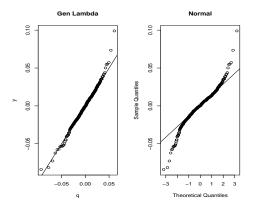
Density of daily return fitted with Generalized Lambda density



λ₁: 1.10e-03 λ₂: 1.31e+02 λ₃: -1.76e-01 λ₄: -5.32e-02

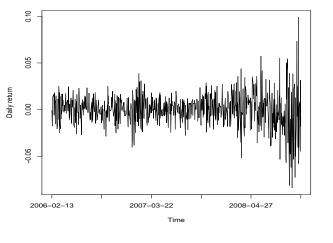
メロト メポト メヨト メヨト 二日

Gen. Lambda vs. Normal



Dependence

Volatility Clustering

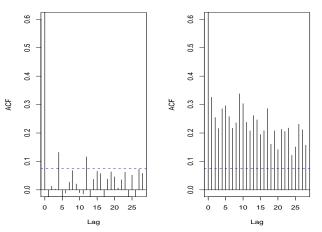


WTI Dec-09 return

FIGURE: Series of daily returns

ELECOM Bretagne Dependence

Autocorrelation of return



autocorrelation of r(t)

FIGURE: ACF of r_t and $|r_t| \rightarrow \langle B \rangle \langle E \rangle \langle E \rangle \langle E \rangle$

ELECOM Bretagne

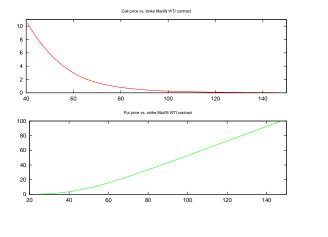
autocorrelation of |r(t)|

Summary - Price Process

- No evidence of linear autocorrelation of return
- Large excess kurtosis, incompatible with normal density
- Distribution of return is well approximated by a Johnson SU, to a lesser extend by a Generalized Lambda distribution
- Observable autocorrelation of |r_t| and r²_t, suggesting autocorrelation in the volatility of return.

└─ Volatility Surface

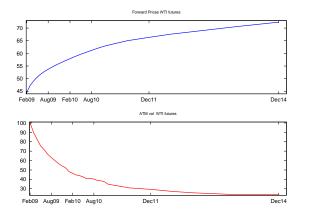
Quoted option prices - March 2009 WTI contract



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣…

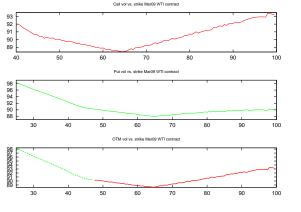
ELECOM Bretagne └- Volatility Surface

Volatility term structure - NYMEX WTI options



-Volatility Surface

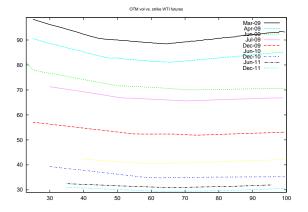
Implied Volatility - March 2009 WTI contract



TELECOM

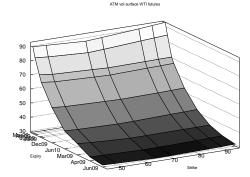
-Volatility Surface

Implied Volatility Cross-sections - NYMEX WTI options



TELECOM Bretagne └─ Volatility Surface

Implied Volatility Surface - NYMEX WTI options



Volatility Surface

Summary - Volatility Surface

- Mean-reverting process for volatility
- Smile slope decreases as a function of $\frac{1}{\sqrt{T}}$
- Smile convexity decreases as a function of ¹/_T
- Assymetry between call and put smile

Volatility Surface

The Perfect Model

- Multi-factor to capture the dynamic of the term structure
- Returns with fat tails : GL, VG, stochastic volatility
- Jumps (with up/down assymetry)
- mean reverting stochastic volatility for volatility clustering

Fat Tails Fitting a Density to Sample Returns Dependence Volatility Surface

Model Risk and Model Calibration

Price and Value Calibration Issues with Complex Models

Numerical Challenges in Monte-Carlo Simulations

Division of Labour Practical Advantages of MC Frameworks Open Topics for Research

Conclusion

Price and Value

The One and Only Commandment of Quantitative Finance

If you want to know the value of a security, use the price of another security that's as similar to it as possible. All the rest is modeling.

Emanuel Derman, "The Boy's Guide to Pricing and Hedging"

Valuation by Replication

Replication can be :

- static : useful even if only partial
- dynamic : model are needed to describe possible outcome Objective :
 - To minimize the impact of modeling assumptions.
 - Holy Grail : A model-free dynamic hedge

Conclusion

- Pricing and hedging by replication
- Mesure of market risk :
 - Not in terms of model parameters
 - but in terms of simple hedge instruments
- The reasons for the longevity of Black-Scholes
 - "The wrong volatility in the wrong model to obtain the right price"
 - Black-Scholes as a formula to be solved for volatility : a normalization of price.
- Choose the model in function of the payoff pattern.

Calibration Issues with Complex Models

Calibration Isues

- Market data is insufficient and of poor quality
- Model estimation is an ill-posed problem

Calibration Issues with Complex Models

Option data : Settlement prices of options on the Feb09 futures contract

NEW YORK MERCANTILE EXCHANGE NYMEX OPTIONS CONTRACT LISTING FOR 12/29/2008

	CONTR	ACT		TODAY'S SETTLE	PREVIOUS SETTLE	ESTIMATED VOLUME	DAILY HIGH	DAILY LOW
LC	02 09	Ρ	30.00	.53	.85	0	.00	.00
LC	02 09	Ρ	35.00	1.58	2.28	0	.00	.00
LC	02 09	Ρ	37.50	2.44	3.45	0	.00	.00
LC	02 09	С	40.00	3.65	2.61	10	.00	.00
LC	02 09	P	40.00	3.63	4.90	0	.00	.00
LC	02 09	Ρ	42.00	4.78	6.23	0	.00	.00
LC	02 09	С	42.50	2.61	1.80	0	.00	.00
LC	02 09	С	43.00	2.43	1.66	0	.00	.00
LC	02 09	Ρ	43.00	5.41	6.95	100	.00	.00

-Calibration Issues with Complex Models

Calibration of term structure model

Let F(t, T) be the value at time *t* of a futures contract expiring at *T*. Assume a two factor model for the dynamic of the futures prices :

$$\frac{dF(t,T)}{F(t,T)} = B(t,T)\sigma_S dW_S + (1 - B(t,T))\sigma_L dW_L$$

with

$$B(t, T) = e^{-\beta(T-t)}$$

$$dW_S, dW_L > = \rho$$

- Calibration Issues with Complex Models

First approach : non-linear least-square on implied volatility

Given the implied volatility per futures contract $\widehat{\sigma(T_i)}$, find the parameters σ_L , σ_S , ρ , β that solve :

min

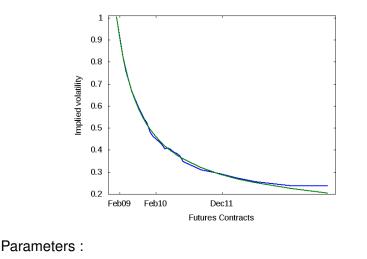
$$\sum_{i=1}^{N} [\widehat{\sigma}(T_i) - \sqrt{V(T_i, \sigma_{\mathcal{S}}, \sigma_L, \rho, \beta)}]^2$$

such that

$$\begin{array}{l} \rho^{-} \leq \rho \leq \rho^{+} \\ \sigma_{L}^{-} \leq \sigma_{L} \leq \sigma_{L}^{+} \\ \sigma_{S}^{-} \leq \sigma_{S} \leq \sigma_{S}^{+} \\ \beta^{-} \leq \beta \leq \beta^{+} \end{array}$$

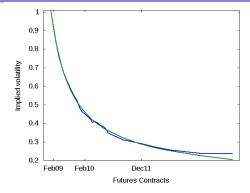
Calibration Issues with Complex Models

Calibration results



 $\sigma_{S} = 1.07, \sigma_{L} = .05, \rho = 1.0, \beta = 2.57$

- Calibration Issues with Complex Models



Calibration results, varying ρ

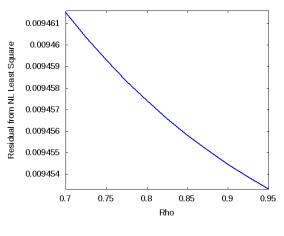
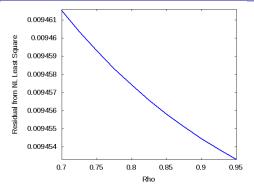


FIGURE: Mean error for various ρ fixed

-Calibration Issues with Complex Models



Optimal parameters, ρ fixed

ρ	mean error	σ_{S}	σ_L	β
0.70	0.0026	1.07	0.0603	2.5
0.72	0.0026	1.07	0.0598	2.51
0.75	0.00259	1.07	0.0593	2.52
0.77	0.00259	1.07	0.0588	2.52
0.80	0.00259	1.07	0.0583	2.53
0.82	0.00259	1.07	0.0578	2.54
0.85	0.00259	1.07	0.0573	2.54
0.88	0.00259	1.07	0.0568	2.55
0.90	0.00259	1.07	0.0564	2.55
0.92	0.00259	1.07	0.0559	2.56
0.95	0.00259	1.07	0.0554	2.57

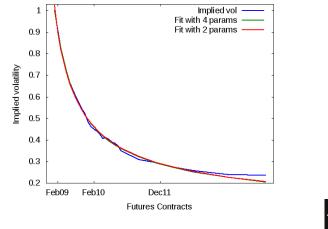
- Calibration Issues with Complex Models

Parameter relationships to historical data

$$\frac{dF(t,T)}{F(t,T)} = B(t,T)\sigma_{S}dW_{S} + (1 - B(t,T))\sigma_{L}dW_{L}$$
$$\frac{dF(t,T)}{F(t,T)} \rightarrow \sigma_{L}dW_{L}, \quad T \rightarrow \infty$$
$$\frac{dF(t,T)}{F(t,T)} \rightarrow \sigma_{S}dW_{S}, \quad T \rightarrow 0$$
$$\rho \approx < \frac{dF(t,T_{\infty})}{F(t,T_{\infty})}, \frac{dF(t,T_{0})}{F(t,T_{0})} >$$

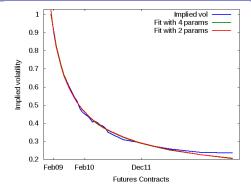
Calibration Issues with Complex Models

Hybrid Calibration - Version 1



Estimate ρ and σ_L historically ($\rho = .87, \sigma_L = .12$), calibrate σ_{α} and β to implied ATM volatility.

Calibration Issues with Complex Models



Hybrid Calibration - Version 2

Estimate ρ and σ_L historically, calibrate all parameters to implied ATM volatility, with a penalty on ρ and σ_L for deviation from historical values.

New objective function :

$$\min \sum_{i=1}^{N} [\widehat{\sigma(T_i)} - \sqrt{V(T_i, \sigma_{\mathcal{S}}, \sigma_L, \rho, \beta)}]^2 + w_\rho \phi(\rho - \overline{\rho}) + w_{\sigma_L} \phi(\sigma_L - \overline{\sigma_L})$$

Penalty functions :

$$\begin{aligned} \phi(x) &= x^2 \\ \phi(x) &= \begin{cases} 0 & \text{if } |x| < \epsilon \\ (|x| - \epsilon)^2 & \text{otherwise} \end{cases} \end{aligned}$$

Fat Tails Fitting a Density to Sample Returns Dependence Volatility Surface

Model Risk and Model Calibration

Price and Value Calibration Issues with Complex Models

Numerical Challenges in Monte-Carlo Simulations

Division of Labour Practical Advantages of MC Frameworks Open Topics for Research

Conclusion

Division of Labour

Division of Labour

Models used to price and hedge the portfolio of a typical exotic derivatives desk :

	Nb Trades	Model	Reprice	EOD
Hedge	10 ⁶	BS	< 1 min	< 10 min
Exotic	10 ³	Monte Carlo +	< 30 min	2-6 hours
Assets		StoVol, Local		
		Vol, Jumps		
		etc.		

Practical Advantages of MC Frameworks

Practical Advantages of MC pricing

- Flexibility (with pay-off language)
- Consistent pricing of Exotics and Hedge
- Easy to switch model to assess model risk
- Only feasible solution for large dimension risk models

- Open Topics for Research

Open research topics :

- Stability of Greeks in MC framework
- Robust variance reduction methods
- Modeling the contract rather than the payoff

Conclusion

- With a model comes model risk : minimize this risk by :
 - looking first for replicating instruments (even partial)
 - using a model to price
 - the residual payoff
 - the non-standard payoffs
 - Express risk in terms of simple hedge instruments rather than model risk factors
- MC simulation is the workhorse of exotic pricing, but the method suffers from many practical limitations.

