Switching problems and related BSDE approximation

Romuald ELIE

CEREMADE, Université Paris-Dauphine

Joint work with J.-F. Chassagneux \& I. Kharroubi

Outline of the talk

- Starting and stopping problem ($\mathrm{d}=2$)
- Numerical resolution of BSDE
- Numerical resolution of BSDE with oblique reflections
- An alternative approach : Constrained BSDEs with jumps

Starting and Stopping problem

Hamadene \& Jeanblanc 05:

- Consider e.g. a power station producing electricity whose price is given by a diffusion process $X: d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}$
- Two modes for the power station : mode 1 : operating, with running profit $f_{1}\left(X_{t}\right) d t$ and terminal one $g_{1}\left(X_{T}\right)$ mode 0 : closed, with running profit $f_{0}\left(X_{t}\right) d t$ and terminal one $g_{0}\left(X_{T}\right)$
\hookrightarrow switching from one mode to another has a cost : c>0
- Management decides to produce electricity only when it is profitable enough.
- The management strategy is $\left(\theta_{j}, \alpha_{j}\right): \theta_{j}$ is a sequence of stopping times representing switching times from mode α_{j-1} to α_{j}.
$\left(a_{t}\right)_{0 \leq t \leq T}$ is the state process, i.e. the management strategy.

Value processes

- Following a strategy a from t up to T, gives

$$
J(a, t)=g_{a T}\left(X_{T}\right)+\int_{t}^{T} f_{a_{s}}\left(X_{s}\right) d s-\sum_{j \geq 0} c \mathbf{1}_{\left\{t \leq \theta_{j} \leq T\right\}}
$$

- The value processes starting respectively at time 0 in mode 1 and 2 are

$$
Y_{0}^{0}:=\sup _{\left\{a \in \mathcal{A} \text { s.t. } a_{0}=0\right\}} \mathbb{E}[J(a, 0)] \quad \text { and } \quad Y_{0}^{1}:=\sup _{\left\{a \in \mathcal{A} \text { s.t. } a_{0}=1\right\}} \mathbb{E}[J(a, 0)]
$$

- Y is solution of a coupled optimal stopping problem

$$
\begin{aligned}
& Y_{t}^{0}=\underset{t \leq \tau \leq T}{\operatorname{ess} \sup _{t \leq T} \mathbb{E}\left[\int_{t}^{\tau} f_{0}\left(X_{s}\right) d s+\left(Y_{\tau}^{1}-c\right) \mathbf{1}_{\{\tau<\tau\}} \mid \mathcal{F}_{t}\right]} \\
& Y_{t}^{1}=\operatorname{ess} \sup _{t \leq \tau \leq T} \mathbb{E}\left[\int_{t}^{\tau} f_{1}\left(X_{s}\right) d s+\left(Y_{\tau}^{0}-c\right) \mathbf{1}_{\{\tau<\tau\}} \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

with terminal conditions: $Y_{T}^{0}=g_{0}\left(X_{T}\right)$ and $Y_{T}^{1}=g_{1}\left(X_{T}\right)$

- The optimal strategy $\left(\theta_{j}^{*}, \alpha_{j}^{*}\right)$ is given by

$$
\alpha_{j+1}^{*}:=1-\alpha_{j}^{*} \quad \text { and } \quad \theta_{j+1}^{*}:=\inf \left\{s \geq \theta_{j}^{*} \mid Y_{s}^{\alpha_{j}^{*}}=Y_{s}^{\alpha_{j+1}^{*}}-c\right\}
$$

System of reflected BSDEs

Y is the solution of the following system of reflected BSDEs :

$$
Y_{t}^{i}=g_{i}\left(X_{T}\right)+\int_{t}^{T} f_{i}\left(X_{s}\right) d s-\int_{t}^{T} Z_{s}^{i} \cdot d W_{s}+\int_{t}^{T} d K_{s}^{i}, i \in\{0,1\}
$$

with (the coupling...)

$$
Y_{t}^{1} \geq Y_{t}^{0}-c \text { and } Y_{t}^{0} \geq Y_{t}^{1}-c, \forall t \in[0, T]
$$

and ('optimality' of K)

$$
\int_{0}^{T}\left(Y_{s}^{1}-\left(Y_{s}^{0}-c\right)\right) d K_{s}^{1}=0 \text { and } \int_{0}^{T}\left(Y_{s}^{0}-\left(Y_{s}^{1}-c\right)\right) d K_{s}^{0}=0
$$

- Problem: Oblique reflections.
- Idea : Interpret $Y^{1}-Y^{0}$ as the solution of a doubly reflected BSDE.

Related PDE

Associated coupled system of PDE

- on $\mathbb{R} \times[0, T)$

$$
\begin{gathered}
\min \left(-\partial_{t} u_{0}-\mathcal{L} u_{0}-f_{0}, u_{0}-u_{1}+c\right)=0 \\
\min \left(-\partial_{t} u_{1}-\mathcal{L} u_{1}-f_{1}, u_{1}-u_{0}+c\right)=0 \\
\text { with } \mathcal{L}: u \mapsto \frac{\sigma^{2}}{2} \partial_{x \times u} u+b \partial_{\times} u
\end{gathered}
$$

- Terminal conditions

$$
u_{0}(T, .)=g_{0}(.) \quad \text { and } \quad u_{1}(T, .)=g_{1}(.)
$$

- Link via

$$
Y_{t}^{0}=u_{0}\left(t, X_{t}\right) \quad \text { and } \quad Y_{t}^{1}=u_{1}\left(t, X_{t}\right)
$$

Non exhaustive Literature

Literature on optimal switching :

- Hamadène \& Jeanblanc 05 : starting and stopping problem $(d=2)$.
- Djehiche, Hamadène \& Popier 07 : studied the multidimentional case.
- Carmona \& Ludkovski 06 or Porchet, Touzi \& Warin 07 : Additional constraints and numerical results.

Link with non linear Backward SDE:

- Hu \& Tang 07 "multi-dimentional BSDEs with oblique reflection" BSDE representation for optimal switching in the case where X uncontrolled or at most partially controlled : $d X_{t}^{a}=\sigma\left(X_{t}^{a}\right)\left[\mu_{a}\left(X_{t}^{a}\right) d t+d W_{t}\right]$.
- Hamadène \& Zhang 08 Generalization of Hu \& Tang's BSDEs but still with an uncontrolled underlying diffusion.

Literature on control :

- Bouchard 09 : Relation with stochastic target problems with jumps.

Multi-dimensional reflected BSDE

- Multi-dimensional reflected BSDE (see Hamadène \& Zhang 08) : Find m triplets $\left(Y^{i}, Z^{i}, K^{i}\right)_{i \in \mathcal{I}} \in\left(\mathcal{S}^{2} \times \mathbf{L}^{2}(\mathbf{W}) \times \mathbf{A}^{2}\right)^{\mathcal{I}}$ satisfying

$$
\left\{\begin{array}{l}
Y_{t}^{i}=g_{i}\left(X_{T}\right)+\int_{t}^{T} f_{i}\left(s, X_{s}, Y_{s}^{1}, \ldots, Y_{s}^{m}, Z_{s}^{i}\right) d s-\int_{t}^{T} Z_{s}^{i} d W_{s}+K_{T}^{i}-K_{t}^{i} \\
Y_{t}^{i} \geq h_{i, j}\left(t, Y_{t}^{j}\right) \\
\int_{0}^{T}\left[Y_{t}^{i}-\max _{j \in \mathcal{I}}\left\{h_{i, j}\left(t, Y_{t}^{j}\right)\right\}\right] d K_{t}^{i}=0
\end{array}\right.
$$

- Conditions on the constraint h in order to avoid instantaneous gain via circle switching.
- For any $i \neq j, h_{i, j}$ and f_{i} are increasing in y_{j}.
\Longrightarrow 'Interpretation' in terms of cooperative game options
- The reflections are oblique with respect to the domain of definition of Y.

FBSDE system

- FSDE
- BSDE

$$
\left\{\begin{array}{l}
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s} \\
Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{array}\right.
$$

- Solution and link with PDE (Pardoux \& Peng, 90 \& 92);

$$
\|\mathbf{Y}\|_{\mathcal{S}^{2}}:=\mathbb{E}\left[\sup _{0 \leq r \leq 1}\left|Y_{r}\right|^{2}\right]^{\frac{1}{2}}<\infty, \quad\|\mathbf{Z}\|_{\mathcal{L}^{2}}:=\mathbb{E}\left[\int_{0}^{1}\left|Z_{r}\right|^{2} d r\right]^{\frac{1}{2}}<\infty
$$

- PDE

$$
\mathcal{L}^{x}[y]+f(., y, \sigma \nabla y)=0 \quad y(T, .)=g(.)
$$

- Approximation of the BM (Chevance 97, Briand 01, Ma 02);
- Discrete time scheme based on the path regularity of Z (Zhang);

Discrete time scheme (Zhang 02)

- FSDE
- BSDE $\quad \mathrm{Y}_{\mathrm{t}}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, \mathrm{Y}_{\mathrm{s}}, \mathrm{Z}_{\mathrm{s}}\right) d s-\int_{t}^{T} \mathrm{Z}_{\mathrm{s}} d W_{s}$
- Regular time grid $\pi:=\left(t_{i}\right)_{i \leq n}$ on $[0, T]$
- Forward Euler approximation X^{π} of X

Initial value:

$$
\mathbf{X}_{0}^{\pi}:=x
$$

From t_{i} to $t_{i+1}: \quad \mathbf{X}_{t_{i}+1}^{\pi}:=X_{t_{i}}^{\pi}+\frac{1}{n} b\left(t_{i}, X_{t_{i}}^{\pi}\right)+\sigma\left(t_{i}, X_{t_{i}}^{\pi}\right)\left(W_{t_{i+1}}-W_{t_{i}}\right)$

- Backward approximation $\left(\mathbf{Y}^{\pi}, \mathbf{Z}^{\pi}\right)$ of (Y, Z)

Terminal value :

$$
\mathrm{Y}_{\mathbb{T}}^{\pi}:=g\left(X_{T}^{\pi}\right)
$$

From t_{i+1} to $t_{i}: \quad \begin{cases}\mathbf{Z}_{t_{\mathrm{i}}}^{\pi} & :=n \mathbb{E}\left[Y_{t_{i+1}}^{\pi}\left(W_{t_{i+1}}-W_{t_{\boldsymbol{i}}}\right) \mid \mathcal{F}_{t_{i}}\right] \\ \mathbf{Y}_{\mathrm{t}_{\mathrm{i}}}^{\pi}:=\mathbb{E}\left[Y_{t_{\boldsymbol{t}_{+1}}}^{\pi} \mid \mathcal{F}_{t_{i}}\right]+\frac{1}{n} f\left(t_{i}, X_{t_{i}}^{\pi}, \mathbf{Y}_{\mathrm{t}_{\mathrm{i}}}^{\pi}, \mathbf{Z}_{\mathrm{t}_{\mathrm{i}}}^{\pi}\right)\end{cases}$

Intuition of the scheme

$$
Y_{t_{i}}=Y_{t_{i+1}}+\int_{t_{i}}^{t_{i+1}} f\left(r, X_{r}, Y_{r}, Z_{r}\right) d r-\int_{t_{i}}^{t_{i+1}} Z_{r} \cdot d W_{r}
$$

Step 1: Constant step driver (\widetilde{Z}^{π} given by the representation of $Y_{t_{i+1}}^{\pi}$)

$$
\mathbf{Y}_{\mathrm{t}_{\mathrm{i}}}^{\pi}=\mathbf{Y}_{\mathrm{t}_{\mathrm{i}+1}}^{\pi}+\frac{1}{n} f\left(t_{i}, X_{t_{i}}^{\pi}, \mathbf{Y}_{\mathrm{t}_{\mathrm{i}}}^{\pi}, \mathbf{Z}_{\mathrm{t}_{\mathrm{i}}}^{\pi}\right)-\int_{t_{i}}^{t_{i+1}} \widetilde{Z}_{r}^{\pi} \cdot d W_{r}
$$

Step 2 : Best $\mathcal{L}^{2}\left(\Omega \times\left[t_{i}, t_{i+1}\right]\right)$ approximation of \widetilde{Z}^{π} by $\mathcal{F}_{t_{i} \text {-meas. }}$ r.v.

$$
\mathbf{Z}_{\mathrm{t}_{\mathrm{i}}}^{\pi}:=n \mathbb{E}\left[\int_{t_{i}}^{t_{i+1}} \tilde{Z}_{r}^{\pi} d r \mid \mathcal{F}_{t_{i}}\right]=\mathbf{n} \mathbb{E}\left[\mathbf{Y}_{\mathrm{t}_{\mathrm{i}+1}}^{\pi}\left(\mathrm{W}_{\mathrm{t}_{\mathrm{i}+1}}-\mathrm{W}_{\mathrm{t}_{\mathrm{i}}}\right) \mid \mathcal{F}_{\mathrm{t}_{\mathrm{i}}}\right]
$$

Step 3 : Conditioning the first expression

$$
\mathbf{Y}_{\mathrm{t}_{\mathrm{i}}}^{\pi}=\mathbb{E}\left[\mathbf{Y}_{\mathrm{t}_{\mathrm{i}+1}}^{\pi} \mid \mathcal{F}_{\mathbf{t}_{\mathrm{i}}}\right]+\frac{1}{\mathbf{n}} \mathbf{f}\left(\mathbf{t}_{\mathrm{i}}, \mathbf{X}_{\mathbf{t}_{\mathrm{i}}}^{\pi}, \mathbf{Y}_{\mathrm{t}_{\mathrm{i}}}^{\pi}, \mathbf{Z}_{\mathbf{t}_{\mathrm{i}}}^{\pi}\right) .
$$

Approximation Error (Zhang 02)

- PDE

$$
\mathcal{L}^{x}[y]+f(., y, \sigma \nabla y)=0 \quad y(1, .)=g(.)
$$

- Forward Euler approximation X^{π} of X

$$
\mathbf{X}_{0}^{\pi}:=x \quad \text { and } \quad \mathbf{X}_{t_{i}+1}^{\pi}:=X_{t_{i}}^{\pi}+\frac{1}{n} b\left(t_{i}, X_{t_{i}}^{\pi}\right)+\sigma\left(t_{i}, X_{t_{i}}^{\pi}\right)\left(W_{t_{i+1}}-W_{t_{i}}\right)
$$

- Backward approximation $\left(\mathbf{Y}^{\pi}, \mathbf{Z}^{\pi}\right)$ of (Y, Z)

$$
\mathbf{Y}_{\mathrm{T}}^{\pi}:=g\left(X_{T}^{\pi}\right) \& \quad\left\{\begin{array}{l}
\mathbf{Z}_{\mathrm{t}_{\mathrm{i}}}^{\pi}:=n \mathbb{E}\left[Y_{t_{i+1}}^{\pi}\left(W_{t_{i+1}}-W_{t_{i}}\right) \mid \mathcal{F}_{t_{i}}\right] \\
\mathbf{Y}_{\mathrm{t}_{\mathrm{i}}}^{\pi}:=\mathbb{E}\left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_{i}}\right]+\frac{1}{n} f\left(t_{i}, X_{t_{i}}^{\pi}, \mathbf{Y}_{\mathrm{t}_{\mathrm{i}}}^{\pi}, Z_{t_{i}}^{\pi}\right)
\end{array}\right.
$$

- Approximation Error

$$
\begin{gathered}
\mathcal{E r r}\left(\mathbf{Y}, \mathbf{Y}^{\pi}\right):=\sup _{t_{i}} \mathbb{E}\left[\left|Y_{t_{i}}-Y_{t_{i}}^{\pi}\right|^{2}\right] \quad \operatorname{Err}\left(\mathbf{Z}, \mathbf{Z}^{\pi}\right):=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left|Z_{t_{i}}-Z_{t_{i}}^{\pi}\right|^{2}\right] \\
\operatorname{Err}\left(Y, Y^{\pi}\right)+\mathcal{E r r}\left(Z, Z^{\pi}\right) \leq C|\pi|
\end{gathered}
$$

Approximation Error (Gobet 05)

$$
\mathcal{L}^{x}[y]+f(., y, \sigma \nabla y)=0 \quad y(1, .)=g(.)
$$

- Forward Euler approximation X^{π} of X

$$
\mathbf{X}_{0}^{\pi}:=x \quad \text { and } \quad \mathbf{X}_{t_{i}+1}^{\pi}:=X_{t_{i}}^{\pi}+\frac{1}{n} b\left(t_{i}, X_{t_{i}}^{\pi}\right)+\sigma\left(t_{i}, X_{t_{i}}^{\pi}\right)\left(W_{t_{i+1}}-W_{t_{i}}\right)
$$

- Backward approximation $\left(\mathbf{Y}^{\pi}, \mathbf{Z}^{\pi}\right)$ of (Y, Z)

$$
\mathbf{Y}_{1}^{\pi}:=g\left(X_{1}^{\pi}\right) \&\left\{\begin{array}{l}
\mathbf{Z}_{\mathrm{t}_{\mathrm{i}}}^{\pi}:=n \mathbb{E}\left[Y_{t_{i+1}}^{\pi}\left(W_{t_{i+1}}-W_{t_{i}}\right) \mid \mathcal{F}_{t_{i}}\right] \\
\mathbf{Y}_{t_{\mathrm{i}}}^{\pi}:=\mathbb{E}\left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_{i}}\right]+\frac{1}{n} \mathbb{E}\left[f\left(t_{i}, X_{t_{i}}^{\pi}, Y_{\mathrm{t}_{i+1}}^{\pi}, Z_{t_{i}}^{\pi}\right) \mid \mathcal{F}_{\mathrm{t}_{\mathrm{i}}}\right]
\end{array}\right.
$$

- Approximation Error

$$
\begin{gathered}
\mathcal{E r r}\left(\mathbf{Y}, \mathbf{Y}^{\pi}\right):=\sup _{t_{i}} \mathbb{E}\left[\left|Y_{t_{i}}-Y_{t_{i}}^{\pi}\right|^{2}\right] \quad \operatorname{Err}\left(\mathbf{Z}, \mathbf{Z}^{\pi}\right):=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left|Z_{t_{i}}-Z_{t_{i}}^{\pi}\right|^{2}\right] \\
\mathcal{E r r}\left(Y, Y^{\pi}\right)+\mathcal{E r r}\left(Z, Z^{\pi}\right) \leq C|\pi|
\end{gathered}
$$

Addition of normal reflections (Bouchard Chassagneux 08)

- Reflected BSDE on a boundary $\ell\left(X_{t}\right)$

$$
\begin{aligned}
& Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(t, X_{t}, Y_{t}, Z_{t}\right) \mathrm{d} t-\int_{t}^{T}\left(Z_{t}\right)^{\prime} \mathrm{d} W_{t}+\int_{t}^{T} \mathrm{~d} K_{t} \\
& Y_{t} \geq \ell\left(X_{t}\right) \text { and } \int_{0}^{T}\left(Y_{t}-\ell\left(X_{t}\right)\right) \mathrm{d} K_{t}=0
\end{aligned}
$$

- Forward Euler approximation X^{π} of X
- Backward approximation $\left(\mathbf{Y}^{\pi}, \mathbf{Z}^{\pi}\right)$ of (Y, Z)

$$
\mathbf{Y}_{\mathrm{T}}^{\pi}:=g\left(X_{1}^{\pi}\right) \& \quad\left\{\begin{array}{l}
\mathbf{Z}_{\mathrm{t}_{\mathrm{i}}}^{\pi}:=n \mathbb{E}\left[Y_{t_{i+1}}^{\pi}\left(W_{t_{i+1}}-W_{t_{i}}\right) \mid \mathcal{F}_{t_{i}}\right] \\
\widetilde{\mathbf{Y}}_{\mathrm{t}_{\mathrm{i}}}^{\pi}:=\mathbb{E}\left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_{i}}\right]+\frac{1}{n} f\left(t_{i}, X_{t_{i}}^{\pi}, \mathrm{Y}_{\mathrm{t}_{\mathrm{i}}}^{\pi}, Z_{t_{i}}^{\pi}\right) \\
\mathrm{Y}_{\mathrm{t}_{\mathrm{i}}}^{\pi}:=\max \left[\widetilde{Y}_{t_{i}}^{\pi} ; \ell\left(X_{t_{i}}^{\pi}\right)\right] \mathbf{1}_{\left\{t_{i} \in \Re\right\}}
\end{array}\right.
$$

with $\Re \subset \pi$ the reflection grid to be chosen properly.

- Approximation Error

$$
\mathcal{E r r}\left(Y, Y^{\pi}\right)+\mathcal{E} r r\left(Z, Z^{\pi}\right) \leq C|\pi|^{1 / 2}
$$

Obliquely reflected BSDEs

- Multidimensional system of reflected BSDEs

$$
\begin{aligned}
& Y_{t}^{i}=g_{i}\left(X_{T}\right)+\int_{t}^{T} f_{i}\left(u, X_{u}, Y_{\mathrm{u}}^{i}, Z_{u}^{i}\right) \mathrm{d} u-\int_{t}^{T} Z_{u}^{i} \cdot \mathrm{~d} W_{u}+\mathrm{K}_{\mathrm{T}}^{\mathrm{i}}-\mathrm{K}_{\mathrm{t}}^{i} \\
& Y_{t} \in \mathcal{C}\left(X_{t}\right)(\text { constrained by } K) \int_{0}^{T}\left(Y_{t}^{i}-\mathcal{P}^{\mathrm{i}}\left(\mathrm{X}_{\mathrm{t}}, Y_{\mathrm{t}}\right)\right) \mathrm{d} K_{t}^{i}=0
\end{aligned}
$$

- The domain $\mathcal{C}(x)$ is given by $(m \geq 2)$

$$
\mathcal{C}(x):=\left\{y \in \mathbb{R}^{m} \mid y^{i} \geq \mathcal{P}^{\mathrm{i}}(\mathrm{x}, \mathrm{y}):=\max _{\mathrm{j}}\left(\mathrm{y}_{\mathrm{j}}-\mathrm{c}_{\mathrm{ij}}(\mathrm{x})\right)\right\}
$$

$\Longrightarrow \mathcal{P}(x,$.$) is an oblique projection$

- Non linear switching problems with cost matrix $c\left(X_{t}\right)$ at time t

Goal and method

Goal : Approximation scheme for Continuously Obliquely Reflected BSDE (COR) and convergence results...

Method :
(i) Discretize the reflections along a grid \Re
\Longrightarrow Discretely Obliquely Reflected BSDE (DOR) $\left(\widetilde{Y}^{d \Re}, Z^{d \Re}, \tilde{K}^{d \Re}\right)$
(ii) Approximation scheme for the DOR along a grid $\pi \supset \Re$
\Longrightarrow Convergence of the scheme, via regularity of the DOR
(iii) Convergence of the DOR to the COR when \Re is refined.
\Longrightarrow The scheme converges to the COR (\Re and π well chosen)

Discretely obliquely reflected BSDEs

- Grid $\Re:=\left\{0=r_{0}<\ldots<r_{k}<\ldots<r_{\kappa}=T\right\}$ given.
- A DOR is a triplet $\left(\widetilde{Y}^{d \Re}, Z^{d \Re}, \tilde{K}^{d \Re}\right)$ satisfying $\widetilde{Y}_{T}^{d \Re}:=g\left(X_{T}\right)$ and

$$
\begin{aligned}
& \widetilde{Y}_{t}^{d \Re}=g\left(X_{T}\right)+\int_{t}^{T} f\left(X_{s}, \widetilde{Y}_{s}^{d \Re}, Z_{s}^{d \Re}\right) \mathrm{d} s-\int_{t}^{T} Z_{s}^{d \Re} \cdot \mathrm{~d} W_{s}+\tilde{\mathrm{K}}_{\mathrm{T}}^{\mathrm{d} \Re}-\tilde{\mathrm{K}}_{\mathrm{T}}^{\mathrm{d} \Re} \\
& \tilde{K}_{t}^{d \Re}=\sum_{r \in \Re \backslash\{0\}} \Delta \tilde{K}_{r}^{d \Re} 1_{t \geq r}, \quad \Delta \tilde{K}_{r}^{d \Re}=\mathcal{P}\left(X_{r}^{\pi}, \widetilde{Y}_{r}^{d \Re}\right)-\widetilde{Y}_{r}^{d \Re}
\end{aligned}
$$

- To any strategy a and related cumulative cost process A^{a}, we associate the one-dimensional 'switched BSDE'

$$
U_{t}^{a}=g_{a_{T}}\left(X_{T}\right)+\int_{t}^{T} f_{a_{s}}\left(s, X_{s}, U_{s}^{a}, V_{s}^{a}\right) \mathrm{d} s-\int_{t}^{T} V_{s}^{a} \mathrm{~d} W_{s}-A_{T}^{a}+A_{t}^{a}
$$

- Same representation property as COR with switching times restricted to \Re

$$
\left(Y_{t}^{d \Re}\right)^{i}=\mathrm{ess} \sup _{\left\{a / a_{t}=i\right\}} U_{t}^{a}=: U_{t}^{a *}
$$

Regularity results for the DOR

$$
\begin{aligned}
& \widetilde{Y}_{t}^{d \Re}=g\left(X_{T}\right)+\int_{t}^{T} f\left(X_{s}, \widetilde{Y}_{s}^{d \Re}, Z_{s}^{d \Re}\right) \mathrm{d} s-\int_{t}^{T} Z_{s}^{d \Re} \cdot \mathrm{~d} W_{s}+\tilde{K}_{T}^{d \Re}-\tilde{K}_{T}^{d \Re} \\
& \tilde{K}_{t}^{d \Re}=\sum_{r \in \Re \backslash\{0\}} \Delta \tilde{K}_{r}^{d \Re} 1_{t \geq r}, \quad \Delta \tilde{K}_{r}^{d \Re}=\mathcal{P}\left(X_{r}^{\pi}, \widetilde{Y}_{r}^{d \Re}\right)-\widetilde{Y}_{r}^{d \Re}
\end{aligned}
$$

- Stability with respect to parameters $f, b, \sigma \ldots$ allows for regularization.
- Switching representation allows to work with one-dimensional BSDE.

$$
\operatorname{Reg}\left(\widetilde{Y}^{d \Re}\right):=\sup _{i \leq n} \sup _{t_{i} \leq t \leq t_{i+1}} \mathbb{E}\left[\left|\widetilde{Y}_{s}^{d \Re}-\widetilde{Y}_{t_{i}}^{d \Re}\right|^{2}\right] \leq \frac{C}{n}
$$

- $Z^{d \Re}$ representation using the optimal strategy a^{*} (here $f=f(x)$)

$$
\begin{aligned}
& \left(Z_{t}^{d \Re}\right)^{i}=\mathbb{E}\left[\nabla g^{a_{T}^{*}}\left(X_{T}\right) D_{t} X_{T}+\int_{t}^{T} \nabla f^{a_{s}^{*}}\left(X_{s}\right) D_{t} X_{s} \mathrm{~d} s \mid \mathcal{F}_{t}\right] \\
\Longrightarrow & \operatorname{Reg}\left(Z^{d \Re}\right):=\sum_{i=1}^{n} \mathbb{E}\left[\int_{t_{i}}^{t_{i+1}}\left|Z_{s}^{d \Re}-Z_{t_{i}}^{d \Re}\right|^{2} d s\right] \leq C\left(\frac{\kappa}{n}+n^{-\frac{1}{2}}\right)
\end{aligned}
$$

Approximation Scheme

- Discretization grid $\pi \supset \Re$
- Start from the terminal condition $Y_{T}^{\pi}:=g\left(X_{T}^{\pi}\right) \in \mathcal{C}\left(X_{T}^{\pi}\right)$
- Compute at each step

$$
\left\{\begin{aligned}
\bar{Z}_{t_{i}}^{\pi} & =\left(t_{i+1}-t_{i}\right)^{-1} \mathbb{E}\left[\left(W_{t_{i+1}}-W_{t_{i}}\right) \cdot Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_{i}}\right] \\
\widetilde{Y}_{t_{i}}^{\pi} & =\mathbb{E}\left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_{i}}\right]+\left(t_{i+1}-t_{i}\right) f\left(t_{i}, X_{t_{i}}^{\pi}, \widetilde{Y}_{t_{i}}^{\pi}, \bar{Z}_{t_{i}}^{\pi}\right) \\
Y_{t_{i}}^{\pi} & =\widetilde{Y}_{t_{i}}^{\pi} 1_{\left\{t_{i} \notin \Re\right\}}+\mathcal{P}\left(X_{t_{i}}^{\pi}, \widetilde{Y}_{t_{i}}^{\pi}\right) 1_{\left\{t_{i} \in \Re\right\}}
\end{aligned}\right.
$$

- Problem : The projection operator is L-lipschitz with $L>1$

$$
\mathcal{E r r}\left(\widetilde{Y}^{d \Re}, \widetilde{Y}^{\pi}\right)+\mathcal{E r r}\left(Z^{d \Re}, \bar{Z}^{\pi}\right) \leq L^{\kappa}\left[\operatorname{Err}\left(X, X^{\pi}\right)+\operatorname{Reg}\left(\widetilde{Y}^{d \Re}\right)+\operatorname{Reg}\left(Z^{d \Re}\right)\right]
$$

- Idea : Monotonicity arguments and well chosen dominating BSDE
- Drawback: Requires f independent of z

Sketch of proof

1. Observe that $\left(Y^{\pi}, \widetilde{Y}^{\pi}, \bar{Z}^{\pi}\right)$ interprets as a DOR
\Longrightarrow Representation in terms of 'switched BSDEs' $\left(U^{\pi, a}\right)_{a}$
2. Introduce another $\operatorname{DOR}(\check{Y}, \check{Z}, \check{K})$ with terminal value $g\left(X_{T}\right) \vee g\left(X_{T}^{\pi}\right)$, driver $f\left(t, X_{t}, \widetilde{Y}_{t}\right) \vee f\left(t_{i}, X_{t_{i}}^{\pi}, \widetilde{Y}_{t_{i}}^{\pi}\right) \quad$ and costs $c\left(X_{t}\right) \wedge c\left(X_{t_{i}}^{\pi}\right), \quad t_{i} \leq t<t_{i+1}$.
\Longrightarrow Representation in terms of 'switched BSDEs' $\left(\check{U}^{a}\right)_{a}$

3. Via comparison arguments, $\quad\left(\widetilde{Y}_{t}^{d \Re}\right)^{i} \leq \check{Y}_{t}^{i} \quad$ and $\quad\left(\widetilde{Y}_{t}^{\pi}\right)^{i} \leq \check{Y}_{t}^{i}$.
4. From the switched representations,

$$
U_{t}^{\breve{a}} \leq\left(\widetilde{Y}_{t}^{d \Re}\right)^{i} \leq \check{U}_{t}^{\text {a }} \quad \text { and } \quad U_{t}^{\pi, \check{a}} \leq\left(\widetilde{Y}_{t}^{\pi}\right)^{i} \leq \check{U}_{t}^{\text {号 }}
$$

5. We deduce

$$
\left|\left(\widetilde{Y}_{t}^{d \Re}\right)^{i}-\left(\widetilde{Y}_{t}^{\pi}\right)^{i}\right|^{2} \leq 2\left(\left|\breve{U}_{t}^{\text {号 }}-U_{t}^{\pi, \check{a}}\right|^{2}+\left|\check{U}_{t}^{\breve{ }}-U_{t}^{\check{a}}\right|^{2}\right)
$$

\Longrightarrow Work with one-dimensional BSDEs switching simultaneously

Convergence results

- Always convergence of the scheme
- Distance between the scheme to the DOR (f independent of z)

$$
\mathcal{E} r r\left(Y^{d \Re}, Y^{\pi}\right) \leq \frac{C}{n} \quad \text { and } \quad \operatorname{Err}\left(Z^{d \Re}, \bar{Z}^{\pi}\right) \leq C\left(\frac{\kappa}{n}+n^{-\frac{1}{2}}\right)
$$

- Distance between the DOR and the COR (f bounded in z)

$$
\mathcal{E r r}\left(Y, Y^{d \Re}\right) \leq C \kappa^{-1-\varepsilon} \quad \text { and } \quad \operatorname{Err}\left(Z, Z^{d \Re}\right) \leq C \kappa^{-\frac{1}{2}-\varepsilon}
$$

- If f independent of z, we have

$$
\begin{array}{ccc}
\Re=\pi & \Longrightarrow \quad \operatorname{Err}\left(Y, Y^{\pi}\right) \leq C|\pi|^{1-\varepsilon} \\
|\Re|=|\pi|^{2 / 3} & \Longrightarrow \quad \operatorname{Err}\left(Z, \bar{Z}^{\pi}\right) \leq C|\pi|^{\frac{1}{3}-\varepsilon}
\end{array}
$$

General Multi-dimensional reflected BSDE

- Multi-dimensional reflected BSDE (see Hamadène \& Zhang 08) :

Find m triplets $\left(Y^{i}, Z^{i}, K^{i}\right)_{i \in \mathcal{I}} \in\left(\mathcal{S}^{2} \times \mathbf{L}^{2}(\mathbf{W}) \times \mathbf{A}^{2}\right)^{\mathcal{I}}$ satisfying

$$
\left\{\begin{array}{l}
Y_{t}^{i}=\xi^{i}+\int_{t}^{T} f_{i}\left(s, Y_{s}^{1}, \ldots, Y_{s}^{m}, Z_{s}^{i}\right) d s-\int_{t}^{T} Z_{s}^{i} d W_{s}+K_{T}^{i}-K_{t}^{i} \\
Y_{t}^{i} \geq \max _{j \in \mathcal{I}} h_{i, j}\left(t, Y_{t}^{j}\right) \\
\int_{0}^{T}\left[Y_{t}^{i}-\max _{j \in \mathcal{I}}\left\{h_{i, j}\left(t, Y_{t}^{j}\right)\right\}\right] d K_{t}^{i}=0
\end{array}\right.
$$

where

- $\left(\xi^{i}\right)_{i \in \mathcal{I}} \in\left(\mathrm{~L}^{2}\left(\Omega, \mathcal{F}_{T}, \mathbf{P}\right)\right)^{\mathcal{I}}$,
- $h_{i, j}: \Omega \times[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ are a given constraint functions,
- $f_{i}: \Omega \times[0, T] \times \mathbb{R}^{m} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is an \mathbb{F}-progressively measurable map.
- Reinterpretation of the solution in terms of constrained BSDE with jumps

Idea: Introduce an independent random switching regime, allowing to jump between the components of the solution!

Alternative BSDE representation

- Introduce the random switching regime I defined by

$$
I_{t}=I_{0}+\int_{0}^{t} \int_{\mathcal{I}}\left(i-I_{s^{-}}\right) \mu(d s, d i) \quad t \leq T
$$

where μ is an independent Poisson measure on $\mathcal{I}:=\{1, \ldots, m\}$.

- Consider the one-dimensional constrained BSDE with jumps:

$$
\begin{aligned}
\tilde{Y}_{t}=\xi^{l^{T}}+\int_{t}^{T} f_{l s}(s, & \left.\tilde{Y}_{s}+\tilde{U}_{s}(1), \ldots, \tilde{Y}_{s}+\tilde{U}_{s}(m), \tilde{Z}_{s}\right) d s+\tilde{K}_{T}-\tilde{K}_{t} \\
& -\int_{t}^{T} \tilde{Z}_{s} . d W_{s}-\int_{t}^{T} \int_{\mathcal{I}} \tilde{U}_{s}(i) \mu(d s, d i), \quad 0 \leq t \leq T, \text { a.s. }
\end{aligned}
$$

constrained by : $\quad \tilde{Y}_{t^{-}}-h_{l^{-}, j}\left(t, \tilde{Y}_{t^{-}}+\tilde{U}_{t}(j)\right) \geq 0, d \mathbb{P} \otimes d t \otimes \lambda(d j)$ a.e.

- Unique minimal solution $(\tilde{Y}, \tilde{Z}, \tilde{U}, \tilde{K})$ of the constrained BSDE with jumps relates to the solution $\left(Y^{i}, Z^{i}, K^{i}\right)_{i \in \mathcal{I}}$ of the multidimensional reflected BSDE

$$
\text { via } \quad \tilde{Y}_{t}=Y_{t}^{I_{t}-}, \quad \tilde{Z}_{t}=Z_{t}^{t^{-}} \quad \text { and } \quad \tilde{U}_{t}=\left[Y_{t}^{j}-Y_{t^{-}}^{t^{-}}\right]_{j \in \mathcal{I}}
$$

- Use of probabilistic arguments valid in an eventually non Markovian context

Intuition when $m=2$

- Multi-dimensional reflected BSDE :

Find $\left(Y^{0}, Z^{0}, K^{0}\right)$ and $\left(Y^{1}, Z^{1}, K^{1}\right)$ such that

$$
\begin{aligned}
& \left\{\begin{array}{l}
Y_{t}^{0}=\xi^{0}+\int_{t}^{T} f_{0}\left(s, Y_{s}^{0}, Y_{s}^{1}, Z_{s}^{0}\right) d s-\int_{t}^{T} Z_{s}^{0} d W_{s}+K_{T}^{0}-K_{t}^{0} \\
Y_{t}^{0} \geq h_{0,1}\left(t, Y_{t}^{1}\right) ; \quad \int_{0}^{T}\left[Y_{t}^{0}-h_{0,1}\left(t, Y_{t}^{1}\right)\right] d K_{t}^{0}=0
\end{array}\right. \\
& \left\{\begin{array}{l}
Y_{t}^{1}=\xi^{1}+\int_{t}^{T} f_{1}\left(s, Y_{s}^{1}, Y_{s}^{0}, Z_{s}^{1}\right) d s-\int_{t}^{T} Z_{s}^{1} d W_{s}+K_{T}^{1}-K_{t}^{1} \\
Y_{t}^{1} \geq h_{1,0}\left(t, Y_{t}^{0}\right) ; \quad \int_{0}^{T}\left[Y_{t}^{1}-h_{1,0}\left(t, Y_{t}^{0}\right)\right] d K_{t}^{1}=0
\end{array}\right.
\end{aligned}
$$

- Constrained BSDE with jumps :

Random switching regime : $I_{t}=I_{0}+\int_{0}^{t}\left(1-I_{s^{-}}\right) \mu(d s, 1) \quad t \leq T$, and the one-dimensional constrained BSDE with jumps on $[0, T]$:
$\tilde{Y}_{t}=\xi^{l^{T}}+\int_{t}^{T} f_{l s}\left(s, \tilde{Y}_{s}, \tilde{Y}_{s}+\tilde{U}_{s}, \tilde{Z}_{s}\right) d s+\tilde{K}_{T}-\tilde{K}_{t}-\int_{t}^{T} \tilde{Z}_{s} \cdot d W_{s}-\int_{t}^{T} \tilde{U}_{s} \mu(d s, 1)$,
constrained by : $\quad \tilde{Y}_{t^{-}}-h_{I_{t^{-}}, 1-I_{t^{-}}}\left(t, \tilde{Y}_{t^{-}}+\tilde{U}_{t}\right) \geq 0$, a.e.
Link via $\quad \tilde{Y}_{t}=Y_{t}^{I_{\mathbf{t}-}}, \quad \tilde{Z}_{t}=Z_{t}^{I^{-}-} \quad$ and $\quad \tilde{U}_{t}=Y_{t}^{1-I_{t-}}-Y_{t^{-}}^{I^{-}}$.

Possible extension : optimal Switching with controlled diffusion

Consider the optimal switching problem : $\sup _{a \in \mathcal{A}} J(a)$ with

$$
J(a):=\mathbb{E}\left[g_{a_{T}}\left(X_{T}^{a}\right)+\int_{0}^{T} f_{a_{s}}\left(X_{s}^{a}\right) d s-\sum_{0<\tau_{k} \leq T} c_{a_{\tau_{k}^{-}}, a_{\tau_{k}}}\left(X_{\tau_{k}}^{a}\right)\right]
$$

where the underlying X^{a}, is the controlled diffusion defined by

$$
X_{t}^{a}=X_{0}+\int_{0}^{t} b_{a_{s}}\left(X_{s}^{a}\right) d s+\int_{0}^{t} \sigma_{a_{s}}\left(X_{s}^{a}\right) d W_{s}, \quad t \geq 0
$$

Representation in terms of constrained BSDE with jumps?

- Introduce the forward process $\left(I, X^{\prime}\right)$ defined by
$I_{t}=i_{0}+\int_{0}^{t} \int_{\mathcal{I}}\left(i-I_{t^{-}}\right) \mu(d t, d i), \quad X_{t}^{\prime}=x_{0}+\int_{0}^{t} b_{1_{s}}\left(X_{s}^{\prime}\right) d s+\int_{0}^{t} \sigma_{\mathrm{I}_{\mathrm{s}}}\left(X_{s}^{\prime}\right) d W_{s}$
- Consider the constrained BSDE with jumps :
$\widetilde{Y}_{t}=g_{I_{T}}\left(X_{T}^{\prime}\right)+\int_{t}^{T} f_{l s}\left(X_{s}^{\prime}\right) d s-\int_{t}^{T} \widetilde{Z}_{s} . d W_{s}-\int_{t}^{T} \int_{\mathcal{I}} \widetilde{U}_{s}(i) \mu(d s, d i)+\tilde{K}_{T}-\tilde{K}_{t}$,
on $[0, T]$, with the constraint : $\widetilde{U}_{t}(i) \leq c_{t_{t^{-}}, i}\left(X_{t}^{\prime}\right), d \mathbb{P} \otimes d t \otimes \lambda(d i)$ a.e.
- Y_{0} is the solution of the switching problem starting in mode i_{0} at time 0 .

Related systems of variational inequalities

- Bi-dimensional forward process

$$
I_{t}=i_{0}+\int_{0}^{t} \int_{\mathcal{I}}\left(i-I_{t^{-}}\right) \mu(d t, d i), \quad X_{t}^{\prime}=x_{0}+\int_{0}^{t} b_{l_{s}}\left(X_{s}^{\prime}\right) d s+\int_{0}^{t} \sigma_{I_{s}}\left(X_{s}^{\prime}\right) d W s
$$

- General Constrained BSDE with jumps

$$
\widetilde{Y}_{t}=g_{I_{T}}\left(X_{T}\right)+\int_{t}^{T} f_{s}\left(X_{s}, \widetilde{Y}_{s}+\widetilde{U}_{s}, \widetilde{Z}_{s}\right) d s+\tilde{K}_{T}-\tilde{K}_{t}-\int_{t}^{T} \widetilde{Z}_{s} \cdot d W_{s}-\int_{t}^{T} \int_{\mathcal{I}} \widetilde{U}_{s}(j) \mu(d s, d j)
$$

together with the constraint

$$
h_{l_{s-}, j}\left(X_{s}, \widetilde{Y}_{s-}, \widetilde{Y}_{s-}+\widetilde{U}_{s}(j), \widetilde{Z}_{s}\right) \geq 0, \quad j \in \mathcal{I}, \quad t \leq s \leq T
$$

\Longrightarrow We have $\widetilde{Y}_{t}:=v_{l_{\mathbf{t}}}\left(t, X_{t}^{\prime}\right)$ where v interprets as the unique viscosity solution of the following coupled system of variational inequalities

$$
\left[-\frac{\partial v_{i}}{\partial t}-\mathcal{L}^{i} v_{i}-f_{i}\left(.,\left(v_{k}\right)_{1 \leq k \leq m}, \sigma_{i}^{\top} D_{x} v_{i}\right)\right] \wedge \min _{1 \leq j \leq m} h_{i, j}\left(., v_{i}, v_{j}, \sigma_{i}^{\top} D_{x} v_{i}\right)=0
$$

$$
\text { on } \mathcal{I} \times[0, T) \times \mathbb{R}^{d}, \quad \text { with terminal condition } \quad v(T, .)=g \text { on } \mathbb{R}^{d}
$$

Numerical approximation

- Bi-dimensional forward process

$$
I_{t}=i_{0}+\int_{0}^{t} \int_{\mathcal{I}}\left(i-I_{t^{-}}\right) \mu(d t, d i), \quad X_{t}^{\prime}=x_{0}+\int_{0}^{t} b_{I_{s}}\left(X_{s}^{\prime}\right) d s+\int_{0}^{t} \sigma_{I_{s}}\left(X_{s}^{\prime}\right) d W s
$$

- General Constrained BSDE with jumps

$$
\widetilde{Y}_{t}=g_{I T}\left(X_{T}\right)+\int_{t}^{T} f_{s}\left(X_{s}, \widetilde{Y}_{s}+\widetilde{U}_{s}, \widetilde{Z}_{s}\right) d s+\tilde{K}_{T}-\tilde{K}_{t}-\int_{t}^{T} \widetilde{Z}_{s} \cdot d W_{s}-\int_{t}^{T} \int_{\mathcal{I}} \widetilde{U}_{s}(j) \mu(d s, d j)
$$

together with the constraint

$$
h_{l_{s-}, j}\left(X_{s}, \widetilde{Y}_{s-}, \widetilde{Y}_{s-}+\widetilde{U}_{s}(j), \widetilde{Z}_{s}\right) \geq 0, \quad j \in \mathcal{I}, \quad t \leq s \leq T
$$

- Numerical approximation via :
- Forward simulation of $\left(I, X^{\prime}\right)$
- Include the constraint in the driver by penalization
- Use of approximation scheme for BSDEs with jumps, Bouchard \& Elie 07
- Convergence of the scheme
- Practical influence of the penalization parameter and the jump frequency

Conclusion

- Probabilistic numerical approximation of optimal switching problems.
- via obliquely reflected BSDE (convergence rate)
- via constrained BSDE with jumps (possibility of controlled diffusion)
- Constrained BSDEs with jumps unify and generalize
- Constrained BSDE without jumps, Peng \& Xu 07
- BSDE with diffusion-transmutation process, Pardoux, Pradeilles \& Rao 97
- BSDE with constrained jumps, Kharroubi, Ma, Pham \& Zhang 08
- Multidimensional BSDE with oblique reflections, Hamadène \& Zhang 08
- Numerical approximation for coupled systems of variational inequalities:
$\min \left[-\frac{\partial v_{i}}{\partial t}-\mathcal{L}^{i} v_{i}-f_{i}\left(., v_{i}, \sigma_{i}^{\top} D_{x} v_{i},\left[v_{j}-v_{i}\right]_{j \in \mathcal{I}}\right), \min _{j \in \mathcal{I}} h^{i, j}\left(., v_{i}, \sigma_{i}^{\top} D_{\times} v_{i}, v_{j}-v_{i}\right)\right]=0$,
with terminal condition $v(T,)=$.$g .$

