ITN-Marie Curie "Deterministic and Stochastic Controlled Systems and Application"

Some Applications of SDEs (BSDEs) with Oblique Reflection

PHD Student : GASSOUS M. A.
SUPERVISOR : RASCANU A.
UNIVERSITY " ALEXANDRU IOAN CUZA" IASI
FACULTY OF MATHEMATICS

- Introduction
- Applications
- Reflected SDE in time-dependent domains
- Two examples in Economics (Backward case)
- Switching Games (Backward case)
- References

Introduction

Forward case (solved):

- Lions and Sznitman, 1984.
- Dupuis and Ishii, 1993.
- Gassous and Rascanu:

$$
\left\{\begin{array}{l}
d X_{t}+R\left(X_{t}\right) \partial \varphi\left(X_{t}\right)(d t) \ni f\left(t, X_{t}\right) d t+g\left(t, X_{t}\right) d B_{t}, t>0 \tag{1}\\
X_{0}=\xi
\end{array}\right.
$$

where $\left.\left.\varphi: \mathbb{R}^{d} \rightarrow\right]-\infty,+\infty\right]$ is a proper convex lower-semicontinuous function, $\partial \varphi$ is the subdifferential of φ and $R=\left(r_{i, j}\right)_{d \times d} \in$ $C_{b}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{2 d}\right)$ is a symmetric matrix such that for all $x \in \mathbb{R}^{d}$,

$$
\frac{1}{c}|u|^{2} \leq\langle R(x) u, u\rangle \leq c|u|^{2}, \quad \forall u \in \mathbb{R}^{d}(\text { for some } c \geq 1) .
$$

When $\varphi=I_{\overline{\mathcal{O}}}$, we have
(1) $X_{t} \in C\left(\left[0, \infty[\overline{\mathcal{O}}), k_{t} \in C\left(\left[0, \infty\left[, \mathbb{R}^{d}\right) \cap B V_{l o c}\left(\mathbb{R}^{+}, \mathbb{R}^{d}\right)\right.\right.\right.\right.$,
(2) $X_{t}+k_{t}=x_{0}+\int_{0}^{t} f\left(X_{s}\right) d s+\int_{0}^{t} g\left(X_{s}\right) d B s$, for $t \geq 0$,
(3) $\uparrow k \uparrow_{t}=\int_{0}^{t} 1_{b d(\mathcal{O})}(x(s)) d \uparrow k \downarrow_{s}, k(t)=\int_{0}^{t} \gamma(x(s)) d \downarrow k \downarrow_{s}$.

Backward case (in work):

- Ramasubramanian, 2002 (special domain)

$$
\left\{\begin{array}{l}
d Y_{t}-R\left(Y_{t}\right) \partial \varphi\left(Y_{t}\right)(d t) \ni-f\left(t, Y_{t}, Z_{t}\right) d t+Z_{t} d B_{t}, t \geq 0 \tag{3}\\
Y_{T}=\xi
\end{array}\right.
$$

Application

We consider $\left(B_{t}\right)_{t \geq 0}$ a k-dimensional standard BM on a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and $\left\{\mathcal{F}_{t}: t \geq 0\right\}$ the natural filtration.

1.Reflected Stochastic differential equations in time-dependent domains

Let K be a subset of $\mathbb{R}_{+} \times \mathbb{R}^{n}$ such that the projection of K onto time axis is $[0, T[$, and for each $0 \leq t<T, K(t)=$ $\left\{x \in \mathbb{R}^{n}:(t, x) \in K\right\}$ is a bounded connected open set in \mathbb{R}^{n}.

Let $\mathbf{n}(t, x)$ be the unit inward normal of $K(t)$ and $\vec{\gamma}$ be the unit inward normal vector field on ∂K.

Theorem

Suppose that $\vec{\gamma} \cdot \mathbf{n} \geq c_{0}$ on ∂K for some $c_{0}>0$. Then for each (s, x) $\in \bar{K}$ with $s<T$, there is a unique pair of adapted continuous processes ($X^{s, x}, L^{s, x}$) s.t.
(i) $\left(t, X_{t}^{s, x}\right) \in \bar{K}$ for $t \in\left[s, T\left[\right.\right.$, with $X_{s}^{s, x}=x$,
(ii) $\left\{L_{t}^{s, x}, t \in\left[s, T[\}\right.\right.$ is a nondecreasing process with $L_{s}^{s, x}=0$ s.t.

$$
L_{t}^{s, x}=\int_{s}^{t} 1_{\partial K}\left(r, X_{r}\right) d L_{r}^{s, x}
$$

(iii) $X_{t}^{s, x}=x+\int_{s}^{t} b\left(r, X_{r}^{s, x}\right) d s+\int_{s}^{t} \sigma\left(r, X_{r}^{s, x}\right) d B_{r}+\int_{s}^{t} \mathbf{n}\left(r, X_{r}^{s, x}\right) d L_{r}^{s, x}$

Proof We remark that the last equation is equivalent to an equation with an oblique reflection vector field \mathbf{n} verified by the time-space diffusion process ($\mathrm{t}, X_{t}^{s, x}$) in K.

2. Two examples in Economics (BSDE) :

We consider the RBSDE in an d-dimensional positive orthant G with oblique reflection $G=\left\{x \in \mathbb{R}^{d}: x_{i}>0,1 \leq i \leq d\right\}$:

$$
\begin{align*}
& Y(t)=\xi+\int_{t}^{T} b(s, Y(s)) d s+\int_{t}^{T} R(s, Y(s)) d K(s)-\int_{t}^{T}\langle Z(s), d B(s) \\
& \text { with } Y(\cdot) \in \bar{G} \text { for all } 0 \leq t \leq T \text {; } \\
& \text { and } K_{i}(0)=0, K_{i}(\cdot) \text { continuous, nondecreasing with } \\
& \qquad K_{i}(t)=\int_{0}^{t} I_{\{0\}}\left(Y_{i}(s)\right) d K_{i}(s) . \quad \text { (3) } \tag{3}
\end{align*}
$$

This equation has a unique solution (see [1]).

* Backward stochastic analogue of subsidy-surplus model considered in Ramasubramanian [1]

We consider an economy with d interdependent sectors, with the following interpretation
(a) $Y_{i}(t)=$ current surplus in Sector i at time t;
(b) $K_{i}(t)=$ cumulative subsidy given to Sector i over $[0, t]$;
(c) $\xi_{i}=$ desired surplus in Sector i at time T;
(d) $\int_{s}^{t} b_{i}(u, Y(u)) d u=$ net production of Sector i over $[s, t]$ due to evolution of the system; this being negative indicates there is net consumption;
(e) $\int_{s}^{t} r_{i j}^{-}(u, Y(u)) d K_{j}=$ amount of subsidy for Sector j mobilized from Sector i over $[s, t]$;
(f) $\int_{s}^{t} r_{i j}^{+}(u, Y(u)) d K_{j}=$ amount of subsidy mobilized for Sector j which is actually used in Sector i (but not as subsidy in Sector $i)$ over $[s, t]$.

The condition (3) in $\operatorname{RBSDE}(\xi, b, R$) means that subsidy for Sector i can be mobilized only when Sector i has no surplus.
(The uniform spectral radius condition would mean that the subsidy mobilized from external sources is nonzero; so this would be an 'open' system in the jargon of economics).
\star Backward stochastic (oblique) analogue of projected dynamical system

Suppose the system represents d traders each specializing in a different commodity. For this model we assume:
$r_{i j}(\cdot, \cdot) \leq 0, i \neq j ;$
$Y_{i}(t)=$ current price of Commodity i at time t; there is a price floor viz. prices cannot be negative;
$K_{i}(t)=$ cumulative adjustment involved in the price of Commodity i over $[0, t]$;
$b_{i}(t, Y(t)) d t=$ infinitesimal change in price of Commodity i due to evolution of the system;
$\xi_{i}=$ desired price level of Commodity i at time T.

Condition (3) then means that adjustment $d K_{i}(t)$ can take place only if the price of Commodity i is zero.
$\int_{s}^{t} r_{i j}^{-}(u, Y(u)) d K_{j}(u)=$ adjustment from Trader i when price of Commodity j is zero.

Note that $d K_{j}(\cdot)$ can be viewed upon as a sort of artificial/forced infinitesimal consumption when the price of Commodity j is zero to boost up the price;
hence

$$
r_{i j}^{-}(t, Y(t)) d K_{j}(t)
$$

is the contribution of Trader i towards this forced consumption. (As before, the uniform spectral radius condition) implies that there is nonzero 'external adjustment', like perhaps governmental intervention/consumption to boost prices when prices crash).

3. Switching Games(Ying-Hu and Shanjian Tang)

Consider two players I and II, who use their respective switching control processes $a(\cdot)$ and $b(\cdot)$ to control the following BSDE:

$$
\begin{aligned}
& U(t)=\xi+\left(A^{(a)}(T)-A^{(a)}(t)\right)-\left(B^{(b)}(T)-B^{(b)}(t)\right) \\
& +\int_{t}^{T} f(s, U(s), V(s), a(s), b(s)) d s-\int_{t}^{T} V(s) d B(s),
\end{aligned}
$$

where $A^{a(.)}(\cdot)$ and $B^{b(\cdot)}(\cdot)$ are the cost processes associated with the switching control processes $a(\cdot)$ and $b(\cdot)$.

Under suitable conditions, the above BSDE has a unique adapted solution, denoted by $\left(U^{a(\cdot), b(\cdot)}, V^{a(\cdot), b(\cdot)}\right)$.

Player I chooses the switching control $a(\cdot)$ from a given finite set to minimize the cost

$$
\min -->J(a(\cdot), b(\cdot))=U^{a(\cdot), b(\cdot)}(0)
$$

and each of his instantaneous switching from one scheme $i \in \Lambda$ to another different scheme $i^{\prime} \in \Lambda$ incurs a positive cost which will be specified by the function $k\left(i, i^{\prime}\right)$.

While Player II chooses the switching control $b(\cdot)$ from a given finite set Π to maximize the cost

$$
\max -->J(a(\cdot), b(\cdot))
$$

and each of his instantaneous switching from one scheme $j \in \Pi$ to another different scheme $j^{\prime} \in \Pi$ incurs a positive cost which will be specified by the function $l(j, j \prime)$,

Let $\left\{\theta_{j}\right\}_{j=0}^{\infty}$ increasing sequence of stopping time, $\alpha_{j} \mathcal{F}_{\theta_{j}}$-measurable $r . v$ with value in \wedge, then a admissible switching strategy for player I:

$$
a(s)=\alpha_{0} \chi_{\left\{\theta_{0}\right\}}(s)+\sum_{j=1}^{N} \alpha_{j-1} \chi_{\left(\theta_{j-1}, \theta_{j}\right]}(s),
$$

therefore

$$
A^{a(\cdot)}(s)=\sum_{j=1}^{N-1} k\left(\alpha_{j-1}, \alpha_{j}\right) \chi_{\left[\theta_{j}, T\right]}(s) .
$$

We are interested in the existence and the construction of the value process as well as the saddle point.

The solution of the above-stated switching game will appeal the reflected backward stochastic differential equation with oblique reflection:

$$
\left\{\begin{array}{l}
Y_{i, j}(t)=\xi_{i, j}+\int_{t}^{T} f\left(s, Y_{i j}(s), Z_{i j}(s), i, j\right) d s \\
\quad-\int_{t}^{T} d K_{i j}(s)+\int_{t}^{T} d L_{i j}(s)-\int_{t}^{T} Z_{i j}(s) d B(s) \\
\quad Y_{i, j}(t) \leq \min _{i^{\prime} \neq i}\left\{Y_{i^{\prime}, j}(t)+k\left(i, i^{\prime}\right)\right\}, \\
\quad Y_{i, j}(t) \geq \max _{i^{\prime} \neq i}\left\{Y_{i, j^{\prime}}(t)-l\left(j, j^{\prime}\right)\right\}, \tag{4}\\
\quad \int_{0}^{T}\left(Y_{i, j}(s)-\min _{i^{\prime} \neq i}\left\{Y_{i^{\prime}, j}(s)+k\left(i, i^{\prime}\right)\right\}\right) d K_{i j}(s)=0, \\
\quad \int_{0}^{T}\left(Y_{i, j}(s)-\max _{i^{\prime} \neq i}\left\{Y_{i, j^{\prime}}(t)-l\left(j, j^{\prime}\right)\right\}\right) d L_{i j}(s)=0 .
\end{array}\right.
$$

We define $\left(a^{*}(\cdot), b^{*}(\cdot)\right)$ as follows:

$$
\theta_{0}^{*}:=0, \tau_{0}^{*}:=0 ; \alpha_{0}^{*}:=i, \beta_{0}^{*}:=j .
$$

We define stopping times $\theta_{p}^{*}, \tau_{p}^{*} ; \alpha_{p}^{*}, \beta_{p}^{*}$ in the following inductive manner:

$$
\begin{gathered}
\theta_{p}^{*}:=\inf \left\{s \geq \theta_{p-1}^{*} \wedge \tau_{p-1}^{*}: Y_{\alpha_{p-1}^{*}, \beta_{p-1}^{*}}(s)=\min _{i^{\prime} \neq i}\left\{Y_{i^{\prime}, \beta_{p-1}^{*}}(s)\right.\right. \\
\left.\left.+k\left(\alpha_{p-1}^{*}, i^{\prime}\right)\right\}\right\} \wedge T, \\
\tau_{p}^{*}:=\inf \left\{s \geq \theta_{p-1}^{*} \wedge \tau_{p-1}^{*}: Y_{\alpha_{p-1}^{*}, \beta_{p-1}^{*}}(s)=\max _{j^{\prime} \neq j}\left\{Y_{\alpha_{p-1}^{*}, j^{\prime}}(s)\right.\right. \\
\left.\left.-l\left(\beta_{p-1}^{*}, j^{\prime}\right)\right\}\right\} \wedge T .
\end{gathered}
$$

Theorem

Under the usual hypothesis. Let (Y, Z, K, L) solution in the space $S^{2} \times M^{2} \times N^{2} \times N^{2}$ to RBSDE (4). Then we have the representation :

$$
Y_{i j}(t)=\underset{a(\cdot) \in \mathcal{A}_{t}^{i}}{\operatorname{essinf}} U_{j}^{a(\cdot)}(t)
$$

Theorem

We denote by $\left(Y_{i j}, Z_{i j}, K_{i j}, L_{i j} ; i \in \Lambda, j \in \Pi\right)$ solution of (4). We assume the usual hypothesis which are standard in the literature of switching games. Then $\left(Y_{i j} ; i \in \Lambda, j \in \Pi\right)$ is the value process for our switching game, and the switching strategy $a^{*}(\cdot):=$ $\left(\theta_{p}^{*} \wedge \tau_{p}^{*}, \alpha_{p}^{*}\right)$ for Player I and $b^{*}(\cdot):=\left(\theta_{p}^{*} \wedge \tau_{p}^{*}, \beta_{p}^{*}\right)$ for Player II is a saddle point of the switching game, it means that

$$
Y_{i j}(0)=U^{a^{*}(\cdot), b^{*}(\cdot)}(0) .
$$

[1] S. RAMASUBRAMANIAN, Reflected backward stochastic differential equations in an orthant, Math.Sci, vol. 112, no. 2, pp. 347-360, 2001.
[2] Y. Hu and S. Tang,Switching games of backward stochastic differential equations, Hal-00287645, June 12, 2008.
[3] P. L. Lions and A. S. Sznitman, Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math. 38 (1984), 511-537.
[4] K. Burdzy, Z-Q Chen and J. Sylvester, The heat equation and reflected brownian motion in time-dependent domains, Annals Probability, Vol. 32, No. IB, 775-804 (2004)
[5] A. Nagumey and S. Siokos, Financial Networks (Berlin: Springer) (1997)

Thank you for your attention !

