ITN-Marie Curie "Deterministic and Stochastic Controlled Systems and Application"

Some Applications of SDEs (BSDEs) with Oblique Reflection

PHD Student : GASSOUS M. A.

SUPERVISOR : RASCANU A.

UNIVERSITY "ALEXANDRU IOAN CUZA" IAȘI FACULTY OF MATHEMATICS

Spring School "Stochastic Control In Finance" Roscoff 2010.

- Applications
 - Reflected SDE in time-dependent domains
 - Two examples in Economics (Backward case)
 - Switching Games (Backward case)
- References

Introduction

Forward case (solved):

- Lions and Sznitman, 1984.
- Dupuis and Ishii, 1993.

- Gassous and Rascanu:

$$\begin{cases} dX_t + R\left(X_t\right)\partial\varphi\left(X_t\right)\left(dt\right) \ni f\left(t, X_t\right)dt + g\left(t, X_t\right)dB_t, \ t > 0, \\ X_0 = \xi, \end{cases}$$
(1)
where $\varphi : \mathbb{R}^d \to \left] -\infty, +\infty \right]$ is a proper convex lower-semicontinuous function, $\partial\varphi$ is the subdifferential of φ and $R = \left(r_{i,j}\right)_{d \times d} \in C_b^2\left(\mathbb{R}^d; \mathbb{R}^{2d}\right)$ is a *symmetric* matrix such that for all $x \in \mathbb{R}^d$, $\frac{1}{c} |u|^2 \leq \langle R\left(x\right)u, u \rangle \leq c |u|^2, \quad \forall \ u \in \mathbb{R}^d$ (for some $c \geq 1$).

When
$$\varphi = I_{\overline{\mathcal{O}}}$$
, we have
(1) $X_t \in C([0, \infty[, \overline{\mathcal{O}}), k_t \in C([0, \infty[, \mathbb{R}^d) \cap BV_{loc}(\mathbb{R}^+, \mathbb{R}^d),$
(2) $X_t + k_t = x_0 + \int_0^t f(X_s)ds + \int_0^t g(X_s) dBs$, for $t \ge 0$,
(3) $\uparrow k \uparrow_t = \int_0^t \mathbf{1}_{bd(\mathcal{O})}(x(s)) d\uparrow k \uparrow_s, k(t) = \int_0^t \gamma(x(s)) d\uparrow k \uparrow_s.$
(2)

Backward case (in work):

- Ramasubramanian, 2002 (special domain)

$$\begin{cases} dY_t - R(Y_t) \,\partial\varphi(Y_t)(dt) \ni -f(t, Y_t, Z_t) \,dt + Z_t dB_t, \ t \ge 0, \\ Y_T = \xi \end{cases}$$
(3)

Application

We consider $(B_t)_{t\geq 0}$ a k-dimensional standard BM on a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and $\{\mathcal{F}_t : t \geq 0\}$ the natural filtration.

1.Reflected Stochastic differential equations in time-dependent domains

Let K be a subset of $\mathbb{R}_+ \times \mathbb{R}^n$ such that the projection of K onto time axis is [0, T[, and for each $0 \le t < T, K(t) = \{x \in \mathbb{R}^n : (t, x) \in K\}$ is a bounded connected open set in \mathbb{R}^n .

Let $\mathbf{n}(t, x)$ be the unit inward normal of K(t) and $\overrightarrow{\gamma}$ be the unit inward normal vector field on ∂K .

Theorem

Suppose that $\overrightarrow{\gamma} \cdot \mathbf{n} \ge c_0$ on ∂K for some $c_0 > 0$. Then for each $(s, x) \in \overline{K}$ with s < T, there is a unique pair of adapted continuous processes $(X^{s,x}, L^{s,x})$ s.t.

(i)
$$(t, X_t^{s,x}) \in \overline{K}$$
 for $t \in [s, T[$, with $X_s^{s,x} = x$,
(ii) $\{L_t^{s,x}, t \in [s, T[\} \text{ is a nondecreasing process with } L_s^{s,x} = 0 \text{ s.t.}$
 $L_t^{s,x} = \int_s^t \mathbf{1}_{\partial K}(r, X_r) dL_r^{s,x}$,
(iii) $X_t^{s,x} = x + \int_s^t b(r, X_r^{s,x}) ds + \int_s^t \sigma(r, X_r^{s,x}) dB_r + \int_s^t \mathbf{n}(r, X_r^{s,x}) dL_r^{s,x}$

Proof We remark that the last equation is equivalent to an equation with an oblique reflection vector field \mathbf{n} verified by the time-space diffusion process (t, $X_t^{s,x}$) in K.

2. Two examples in Economics (BSDE) :

We consider the RBSDE in an d-dimensional positive orthant G with oblique reflection $G = \{x \in \mathbb{R}^d : x_i > 0, 1 \le i \le d\}$:

$$Y(t) = \xi + \int_{t}^{T} b(s, Y(s)) ds + \int_{t}^{T} R(s, Y(s)) dK(s) - \int_{t}^{T} \langle Z(s), dB(s) \rangle$$

with $Y(\cdot) \in \overline{G}$ for all $0 \le t \le T$;
and $K_{i}(0) = 0, K_{i}(\cdot)$ continuous, nondecreasing with
 $K_{i}(t) = \int_{0}^{t} I_{\{0\}}(Y_{i}(s)) dK_{i}(s).$ (3)

This equation has a unique solution (see [1]).

* Backward stochastic analogue of subsidy-surplus model considered in Ramasubramanian [1]

We consider an economy with d interdependent sectors, with the following interpretation

(a) $Y_i(t) = \text{current surplus in Sector } i \text{ at time } t$;

(b) $K_i(t) =$ cumulative subsidy given to Sector *i* over [0, t];

(c) ξ_i = desired surplus in Sector *i* at time *T*;

(d) $\int_{s}^{t} b_{i}(u, Y(u)) du =$ net production of Sector *i* over [s, t] due to evolution of the system; this being negative indicates there is net consumption;

(e) $\int_{s}^{t} r_{ij}^{-}(u, Y(u)) dK_{j} =$ amount of subsidy for Sector j mobilized from Sector i over [s, t];

(f) $\int_{s}^{t} r_{ij}^{+}(u, Y(u)) dK_{j} = \text{amount of subsidy mobilized for Sector}$ *j* which is actually used in Sector *i* (but not as subsidy in Sector *i*) over [*s*, *t*].

The condition (3) in RBSDE (ξ, b, R) means that subsidy for Sector *i* can be mobilized only when Sector *i* has no surplus.

(The uniform spectral radius condition would mean that the subsidy mobilized from external sources is nonzero; so this would be an 'open' system in the jargon of economics).

* Backward stochastic (oblique) analogue of projected dynamical system

Suppose the system represents d traders each specializing in a different commodity. For this model we assume:

 $r_{ij}(\cdot, \cdot) \leq 0, i \neq j;$

 $Y_i(t) =$ current price of Commodity *i* at time *t* ; there is a price floor viz. prices cannot be negative;

 $K_i(t) =$ cumulative adjustment involved in the price of Commodity *i* over [0, t];

 $b_i(t, Y(t)) dt =$ infinitesimal change in price of Commodity *i* due to evolution of the system;

 ξ_i = desired price level of Commodity *i* at time *T*.

Condition (3) then means that adjustment $dK_i(t)$ can take place only if the price of Commodity *i* is zero.

 $\int_{s}^{t} r_{ij}^{-}(u, Y(u)) dK_{j}(u) = \text{adjustment from Trader } i \text{ when price}$ of Commodity j is zero.

Note that $dK_j(\cdot)$ can be viewed upon as a sort of artificial/forced infinitesimal consumption when the price of Commodity j is zero to boost up the price;

hence

$r_{ij}^{-}(t,Y(t)) dK_{j}(t)$

is the contribution of Trader i towards this forced consumption. (As before, the uniform spectral radius condition) implies that there is nonzero 'external adjustment', like perhaps governmental intervention/consumption to boost prices when prices crash).

3. Switching Games(Ying-Hu and Shanjian Tang)

Consider two players I and II, who use their respective switching control processes $a(\cdot)$ and $b(\cdot)$ to control the following BSDE :

$$U(t) = \xi + (A^{(a)}(T) - A^{(a)}(t)) - (B^{(b)}(T) - B^{(b)}(t)) + \int_{t}^{T} f(s, U(s), V(s), a(s), b(s)) ds - \int_{t}^{T} V(s) dB(s),$$

where $A^{a(.)}(\cdot)$ and $B^{b(\cdot)}(\cdot)$ are the cost processes associated with the switching control processes $a(\cdot)$ and $b(\cdot)$.

Under suitable conditions, the above BSDE has a unique adapted solution, denoted by $(U^{a(\cdot),b(\cdot)}, V^{a(\cdot),b(\cdot)})$.

Player I chooses the switching control $a(\cdot)$ from a given finite set to minimize the cost

$$\min -- > J(a(\cdot), b(\cdot)) = U^{a(\cdot), b(\cdot)}(0)$$

and each of his instantaneous switching from one scheme $i \in \Lambda$ to another different scheme $i' \in \Lambda$ incurs a positive cost which will be specified by the function k(i, i').

While Player II chooses the switching control $b(\cdot)$ from a given finite set Π to maximize the cost

$$\max --> J(a(\cdot), b(\cdot))$$

and each of his instantaneous switching from one scheme $j \in \Pi$ to another different scheme $j' \in \Pi$ incurs a positive cost which will be specified by the function l(j, j'), Let $\{\theta_j\}_{j=0}^{\infty}$ increasing sequence of stopping time, $\alpha_j \mathcal{F}_{\theta_j}$ -measurable r.v with value in Λ , then a admissible switching strategy for player I:

$$a(s) = \alpha_0 \chi_{\{\theta_0\}}(s) + \sum_{j=1}^{N} \alpha_{j-1} \chi_{(\theta_{j-1}, \theta_j]}(s),$$

therefore

$$A^{a(\cdot)}(s) = \sum_{j=1}^{N-1} k\left(\alpha_{j-1}, \alpha_{j}\right) \chi_{\left[\theta_{j}, T\right]}(s).$$

We are interested in the existence and the construction of the value process as well as the saddle point.

The solution of the above-stated switching game will appeal the reflected backward stochastic differential equation with oblique reflection:

$$Y_{i,j}(t) = \xi_{i,j} + \int_{t}^{T} f\left(s, Y_{ij}(s), Z_{ij}(s), i, j\right) ds$$

$$-\int_{t}^{T} dK_{ij}(s) + \int_{t}^{T} dL_{ij}(s) - \int_{t}^{T} Z_{ij}(s) dB(s)$$

$$Y_{i,j}(t) \leq \min_{i' \neq i} \left\{ Y_{i',j}(t) + k(i,i') \right\},$$

$$Y_{i,j}(t) \geq \max_{i' \neq i} \left\{ Y_{i,j'}(t) - l(j,j') \right\},$$

$$\int_{0}^{T} \left(Y_{i,j}(s) - \min_{i' \neq i} \left\{ Y_{i',j}(s) + k(i,i') \right\} \right) dK_{ij}(s) = 0,$$

$$\int_{0}^{T} \left(Y_{i,j}(s) - \max_{i' \neq i} \left\{ Y_{i,j'}(t) - l(j,j') \right\} \right) dL_{ij}(s) = 0.$$

(4)

We define $(a^*(\cdot), b^*(\cdot))$ as follows:

$$\theta_0^* := 0, \tau_0^* := 0; \ \alpha_0^* := i, \beta_0^* := j.$$

We define stopping times θ_p^*, τ_p^* ; α_p^*, β_p^* in the following inductive manner:

$$\begin{split} \theta_p^* &:= \inf\{s \ge \theta_{p-1}^* \land \tau_{p-1}^* : Y_{\alpha_{p-1}^*, \beta_{p-1}^*}(s) = \min_{\substack{i' \ne i}} \{Y_{i', \beta_{p-1}^*}(s) \\ &+ k(\alpha_{p-1}^*, i')\}\} \land T, \\ \tau_p^* &:= \inf\{s \ge \theta_{p-1}^* \land \tau_{p-1}^* : Y_{\alpha_{p-1}^*, \beta_{p-1}^*}(s) = \max_{\substack{j' \ne j}} \{Y_{\alpha_{p-1}^*, j'}(s) \\ &- l(\beta_{p-1}^*, j')\}\} \land T. \end{split}$$

Theorem

Under the usual hypothesis. Let (Y, Z, K, L) solution in the space $S^2 \times M^2 \times N^2 \times N^2$ to *RBSDE* (4). Then we have the representation :

$$Y_{ij}(t) = \operatorname{ess\,inf}_{a(\cdot) \in \mathcal{A}_t^i} U_j^{a(\cdot)}(t) \,.$$

Theorem

We denote by $(Y_{ij}, Z_{ij}, K_{ij}, L_{ij}; i \in \Lambda, j \in \Pi)$ solution of (4). We assume the usual hypothesis which are standard in the literature of switching games. Then $(Y_{ij}; i \in \Lambda, j \in \Pi)$ is the value process for our switching game, and the switching strategy $a^*(\cdot) := (\theta_p^* \wedge \tau_p^*, \alpha_p^*)$ for Player I and $b^*(\cdot) := (\theta_p^* \wedge \tau_p^*, \beta_p^*)$ for Player II is a saddle point of the switching game, it means that

$$Y_{ij}(0) = U^{a^*(\cdot),b^*(\cdot)}(0)$$
.

[1] S. RAMASUBRAMANIAN, Reflected backward stochastic differential equations in an orthant, Math.Sci, vol. 112, no. 2, pp. 347–360, 2001.

[2] Y. Hu and S. Tang, Switching games of backward stochastic differential equations, Hal-00287645, June 12, 2008.

[3] P. L. Lions and A. S. Sznitman, Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math. 38 (1984), 511-537.

[4] K. Burdzy, Z-Q Chen and J. Sylvester, The heat equation and reflected brownian motion in time-dependent domains, Annals Probability, Vol. 32, No. IB, 775-804 (2004)

[5] A. Nagumey and S. Siokos, Financial Networks (Berlin: Springer) (1997)

Thank you for your attention !