From persistent random walk to the telegraph noise

P. Vallois
Institut Élie Cartan Nancy, Nancy-Université

joint work with C. Tapiero (NYU) and S. Herrmann (Institut Élie Cartan Nancy)
Roscoff, March 22, 2010

Outline

Introduction
Results at a fixed time and applications
From discrete to continuous time
Few extensions

1. Introduction

Let $\left(Y_{n}\right)_{n \geq 0}$ be a Markov chain taking its values in $\{-1,1\}$ with transition matrix :

$$
\pi=\left(\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right) \quad 0<\alpha<1, \quad 0<\beta<1
$$

Associated with $\left(Y_{n}\right)$ consider the process

$$
X_{n}:=Y_{0}+Y_{1}+\cdots+Y_{n}, \quad n \geq 0
$$

$\left(X_{n}\right)$ is said to be a persistent random walk.
Two particular cases are interesting :
$\beta=1-\alpha:\left(X_{n}\right)$ is a classical random walk whose increment is distributed as $(1-\alpha) \delta_{-1}+\alpha \delta_{1}$.
$\beta=\alpha,\left(X_{n}\right)$ is a Kac random walk : $Y_{n+1}=Y_{n}$ with probability
$1-\alpha$ and $-Y_{n}$ otherwise.

2. Study at a fixed time and applications

Proposition 1 Let $\rho:=1-\alpha-\beta$ the asymmetry factor. Then :

$$
\begin{aligned}
& E\left[X_{t} \mid Y_{0}=-1\right]=\frac{\alpha-\beta}{1-\rho}(t+1)-\frac{2 \alpha}{(1-\rho)^{2}}\left(1-\rho^{t+1}\right) \\
& E\left[X_{t} \mid Y_{0}=+1\right]=\frac{\alpha-\beta}{1-\rho}(t+1)-\frac{2 \beta}{(1-\rho)^{2}}\left(1-\rho^{t+1}\right)
\end{aligned}
$$

Remark 1) In the classical random walk case, we have : $\rho=0$. 2) it is actually possible to compute explicitly the second moment of X_{t}, see C. Tapiero and P.V. : Memory-based persistence in a counting random walk process, Physica A, 2007

Let us introduce :

$$
\Phi(\lambda, t)=E\left[\lambda^{X_{t}}\right], \quad(\lambda>0) .
$$

Proposition 2 The generating function of X_{t} equals:

$$
\Phi(\lambda, t)=a_{+} \theta_{+}^{t}+a_{-} \theta_{-}^{t}
$$

with

$$
\begin{gathered}
a_{+}=\frac{1-\alpha+\lambda\left(\lambda \alpha-\theta_{-}\right)}{\lambda^{2} \sqrt{\mathcal{D}}} \text { and } a_{-}=\frac{1}{\lambda}-a_{+} \quad \text { when } X_{0}=Y_{0}=-1 \\
\theta_{ \pm}:=\frac{1}{2}\left(\frac{1-\alpha}{\lambda}+(1-\beta) \lambda \pm \sqrt{\mathcal{D}}\right) \\
\mathcal{D}=\left(\frac{1-\alpha}{\lambda}+(1-\beta) \lambda\right)^{2}-4(1-\alpha-\beta) .
\end{gathered}
$$

Sketch of the proof of Proposition 2

We decompose $\Phi(\lambda, t)$ as follows :

$$
\Phi(\lambda, t)=\Phi_{-}(\lambda, t)+\Phi_{+}(\lambda, t)
$$

with

$$
\Phi_{-}(\lambda, t)=E\left[\lambda^{X_{t}} 1_{\left\{Y_{t}=-1\right\}}\right], \quad \Phi_{+}(\lambda, t)=E\left[\lambda^{X_{t}} 1_{\left\{Y_{t}=1\right\}}\right] .
$$

The, we obtain the recursive relations :

$$
\begin{aligned}
\Phi_{-}(\lambda, t+1) & =\frac{1-\alpha}{\lambda} \Phi_{-}(\lambda, t)+\frac{\beta}{\lambda} \Phi_{+}(\lambda, t) \\
\Phi_{+}(\lambda, t+1) & =\alpha \lambda \Phi_{-}(\lambda, t)+(1-\beta) \lambda \Phi_{+}(\lambda, t)
\end{aligned}
$$

An application to insurance

- A "normal claim" is labelled 0 and its values at time i is Z_{i}^{0};
- an "unusual claim" (for instance "large") is labelled 1 and equals Z_{i}^{1} at time i.
- The claims $\left(Z_{i}^{0}, i \geq 1\right)$ are i.i.d, $\left(Z_{i}^{1}, i \geq 1\right)$ are i.i.d and the two families of r.v.'s are independent.
- The process which attributes labels is $\left(Y_{i}^{\prime}\right)$. So, $Y_{i}^{\prime}=0$ if at time i a normal claim occurs.
Note that $Y_{i}^{\prime} \in\{0,1\}$. Set $Y_{i}=2 Y_{i}^{\prime}-1$. Then

$$
Y_{i} \in\{-1,1\} \quad \text { and } \quad Y_{i}^{\prime}=1 \Leftrightarrow Y_{i}=1
$$

- We suppose that :
* $\left(Y_{i}^{\prime}\right)$ is a Markov chain (then $\left(Y_{i}\right)$ is a Markov chain as above);
* all the claims $\left(Z_{i}^{j}, j=0,1, i \geq 1\right)$ and $\left(Y_{i}^{\prime}\right)$ are independent.

The sum of claims at time t is :

$$
\xi_{t}=\sum_{i=0}^{t} Z_{t}^{1} 1_{\left\{Y_{i}^{\prime}=1\right\}}+\sum_{i=0}^{t} Z_{t}^{0} 1_{\left\{Y_{i}^{\prime}=0\right\}}
$$

Proposition 3 1) The first moment of ξ_{t} is :

$$
E\left(\xi_{t}\right)=(t+1) E\left(Z_{1}^{0}\right)+\left[E\left(Z_{1}^{1}\right)-E\left(Z_{1}^{0}\right)\right] E\left(X_{t}^{\prime}\right)
$$

where $X_{t}^{\prime}=\sum_{i=0}^{t} Y_{i}^{\prime}$.
2) The Laplace transform of ξ_{t} equals :

$$
E\left(e^{-\lambda \xi_{t}}\right)=\left[E\left(e^{-\lambda Z_{1}^{0}}\right)\right]^{t+1} \widetilde{\Phi}(z, t) \quad \lambda>0
$$

where

$$
z:=\frac{E\left(e^{-\lambda Z_{1}^{1}}\right)}{E\left(e^{-\lambda Z_{1}^{0}}\right)}, \quad \widetilde{\Phi}(z, t):=E\left(z^{X_{t}^{\prime}}\right)
$$

Remark Reference : C. Tapiero and P.V. A claims persistence process and Insurance, Insurance : Mathematics and Economics (2009). 2) Recall that :

$$
X_{t}=2 X_{t}^{\prime}-(t+1)
$$

Then,

$$
E\left(X_{t}^{\prime}\right)=\frac{1}{2}\left(E\left(X_{t}\right)+t+1\right), \quad E\left(z^{X_{t}^{\prime}}\right)=z^{\frac{t+1}{2}} E\left(z^{X_{t} / 2}\right)
$$

3. From discrete to continuous time

S. Herrmann and P.V. : From persistent random walks to the Telegraph noise. Accepted in Stochastics and Dynamics (2009).
3.1 Notations
a) Denote α_{0}, β_{0} two real numbers: $0<\alpha_{0} \leq 1, \quad 0<\beta_{0} \leq 1$.
b) Δ_{x} is a "small" parameter such that :

$$
\alpha:=\alpha_{0}+c_{0} \Delta_{x} \in[0,1], \quad \beta:=\beta_{0}+c_{1} \Delta_{x} \in[0,1] .
$$

c) $\left(Y_{t}, t \in \mathbb{N}\right)$ is a Markov chain which takes its values in $\{-1,1\}$ with transition matrix :

$$
\pi^{\Delta}=\left(\begin{array}{cc}
1-\alpha_{0}-c_{0} \Delta_{x} & \alpha_{0}+c_{0} \Delta_{x} \\
\beta_{0}+c_{1} \Delta_{x} & 1-\beta_{0}-c_{1} \Delta_{x}
\end{array}\right)
$$

d) The re-normalized random walk associated with $\left(Y_{t}\right)$ is defined as:

$$
Z_{s}^{\Delta}=\Delta_{x} X_{s / \Delta_{t}}, \quad s \in \Delta_{t} \mathbb{N} \quad\left(\Delta_{t}>0\right)
$$

e) $\left(\widetilde{Z}_{s}^{\Delta}, s \geq 0\right)$ is the continuous time process which is obtained by linear interpolation from $\left(Z_{s}^{\Delta}\right)$.
f) Set

$$
\rho_{0}=1-\alpha_{0}-\beta_{0}
$$

ρ takes into account the "distance" of the persistent random walk to the classical r. w.

Remark Note that :

$$
\rho_{0}=1 \Leftrightarrow 1-\alpha_{0}-\beta_{0}=0 \Leftrightarrow \alpha_{0}+\beta_{0}=0 \Leftrightarrow \alpha_{0}=\beta_{0}=0 .
$$

3.2 Convergence to the Brownian motion with drift, $\rho_{0} \neq 1$

Theorem 4 We assume that $\alpha_{0}, \beta_{0}>0$ (i.e. $\rho_{0} \neq 0$) and

$$
r \Delta_{t}=\Delta_{x}^{2} \quad(r>0)
$$

Then the processes

$$
\xi_{t}^{\Delta}=\widetilde{Z}_{t}^{\Delta}+\frac{\sqrt{r} \eta_{0}}{1-\rho_{0}} \frac{t}{\sqrt{\Delta_{t}}}
$$

converge in distribution to the process $\left(\xi_{t}^{0}, t \geq 0\right)$, as $\Delta_{x} \rightarrow 0$, with :

$$
\xi_{t}^{0}=r\left(\frac{-\bar{c}}{1-\rho_{0}}+\frac{\eta_{0} c}{\left(1-\rho_{0}\right)^{2}}\right) t+\sqrt{\frac{r\left(1+\rho_{0}\right)}{1-\rho_{0}}\left(1-\frac{\eta_{0}^{2}}{\left(1-\rho_{0}\right)^{2}}\right)} W_{t}
$$

where $\left(W_{t}, t \geq 0\right)$ stands for a standard Brownian motion and :

$$
\eta_{0}=\beta_{0}-\alpha_{0}, \quad \boldsymbol{c}=c_{0}+c_{1}, \quad \bar{c}=c_{1}-c_{0} .
$$

Remark $\eta_{0}=0$ corresponds to the Kac random walk.

Theorem 4 is a consequence of the central limit theorem :

$$
\begin{aligned}
Z_{1}^{\Delta} & =\sqrt{n}\left(\frac{Y_{1}+\cdots+Y_{n}}{n}\right) \quad\left(\Delta_{t}=\frac{1}{n}, \Delta_{x}=\frac{1}{\sqrt{n}}\right) \\
& =\sqrt{n}\left(\frac{\left\{Y_{1}-E\left(Y_{1}\right)\right\}+\cdots+\left\{Y_{n}-E\left(Y_{n}\right)\right\}}{n}\right)+R_{n}
\end{aligned}
$$

with $R_{n}:=\sqrt{n}\left(\frac{E\left(Y_{1}\right)+\cdots+E\left(Y_{n}\right)}{n}\right)$.
Since $\nu:=\frac{\beta}{\alpha+\beta} \delta_{-1}+\frac{\alpha}{\alpha+\beta} \delta_{1}$ is the invariant probability measure associated with the Markov chain $\left(Y_{n}\right)$ we have

$$
\lim _{n \rightarrow \infty} E\left(Y_{n}\right)=\int x \nu_{0}(d x)=\frac{\alpha_{0}-\beta_{0}}{\alpha_{0}+\beta_{0}}=\frac{\eta_{0}}{1-\rho_{0}}
$$

3.3 Convergence when $\rho_{0}=1$

In this case, the transition matrix of $\left(Y_{t}\right)$ equals

$$
\pi^{\Delta}=\left(\begin{array}{cc}
1-c_{0} \Delta_{x} & c_{0} \Delta_{x} \\
c_{1} \Delta_{x} & 1-c_{1} \Delta_{x}
\end{array}\right) \quad\left(c_{0}, c_{1}>0\right) .
$$

Consider a sequence $\left(e_{n}, n \geq 1\right)$ of independent r.r.v.'s such that : $\left(e_{2 n}, n \geq 1\right)$ (resp. $\left(e_{2 n-1} ; n \geq 1\right)$) are iid with common exponential distribution with parameter $\frac{1}{c_{1}}$ (resp. $\frac{1}{c_{0}}$) i.e. $E\left[e_{2 n}\right]=c_{1}$ (resp. $\left.E\left[e_{2 n-1}\right]=c_{0}\right)$. Let

$$
N_{t}^{c_{0}, c_{1}}=\sum_{k \geq 1} 1_{\left\{e_{1}+\ldots+e_{k} \leq t\right\}}, \quad t \geq 0
$$

be the counting process associated with $\left(e_{n} ; n \geq 1\right)$.

Theorem 5 We suppose:

$$
\alpha_{0}=\beta_{0}=0, \quad Y_{0}=-1, \quad \Delta_{x}=\Delta_{t}
$$

Then, the interpolated persistent random walk ($\left.\tilde{Z}_{s}^{\Delta}, s \geq 0\right)$ converges in distribution, as $\Delta_{x} \rightarrow 0$, to the process $\left(-Z_{S}^{C_{0}, c_{1}}\right)$ where :

$$
Z_{s}^{c_{0}, c_{1}}=\int_{0}^{s}(-1)^{N_{u}^{c_{0}, c_{1}}} d u \quad s \geq 0
$$

In the case where $c_{0}=c_{1}$, then $\left(N_{u}^{c_{0}, c_{1}}\right)$ is the Poisson process with parameter c_{0}.

Remarks

In the symmetric case, Theorem 5 is a stochastic version of analytical approaches developed by Kac (1974). See for instance the G. Weiss book (1994).
The process $\left(Z_{s}^{c, c}\right)$ has been already introduced by D. Stroock (1982).

The convergence in terms of continuous processes allows to obtain for instance the convergence in distribution of $\max _{0 \leq s \leq 1} \widetilde{Z}_{s}^{\Delta}$ to the r.v. $\max _{0 \leq s \leq 1}\left(-Z_{s}^{c_{0}, c_{1}}\right)$, as $\Delta_{x} \rightarrow 0$.

Sketch of the proof of Theorem 5

We only consider $Y_{0}=-1$. Let :

$$
T_{1}=\inf \left\{n \geq 1 ; Y_{n}=1\right\}
$$

Then $T_{1} \sim \mathcal{G}\left(c_{0} \Delta_{x}\right)$.
Consequently :

$$
\begin{aligned}
T_{1}^{\prime} & =\inf \left\{s ; \tilde{Z}_{s}^{\Delta}>\tilde{Z}_{s-}^{\Delta}\right\} \\
& =\inf \left\{n \Delta_{t} ; Y_{n}=1\right\} \\
& =T_{1} \Delta_{t}
\end{aligned}
$$

it is easy to deduce the convergence in distribution of T_{1}^{\prime} to e_{1}, as $\Delta_{x}=\Delta_{t} \rightarrow 0$. Recall that e_{1} is exponentially distributed with parameter $1 / c_{0}$.

3.4 A few properties of $\left(Z_{t}^{C_{0}, C_{1}}\right)$

Recall

$$
Z_{s}^{c_{0}, c_{1}}=\int_{0}^{s}(-1)^{N_{u}^{c_{0}, c_{1}}} d u
$$

a) $\left(\left(Z_{t}^{c_{0}, c_{1}}\right), t \geq 0\right)$ is not Markov, however the process
$\left(\left(N_{t}^{c_{0}, c_{1}}, Z_{t}^{c_{0}, c_{1}}\right), t \geq 0\right)$ is Markov. Its semigroup and the joint law of ($N_{t}^{c_{0}, c_{1}}, Z_{t}^{c_{0}, c_{1}}$) can be determined explicitly.
Note that

$$
\frac{d Z_{t}^{c_{0}, c_{1}}}{d t}=(-1)^{N_{t}^{c_{0}, c_{1}}}, \quad t \geq 0
$$

b) We can calculate :

$$
P\left(N_{t}^{c_{0}, c_{1}}=2 k\right), \quad P\left(N_{t}^{c_{0}, c_{1}}=2 k+1\right)
$$

c) The distribution of $Z_{t}^{c_{0}, c_{1}}$ is the following :

$$
P\left(Z_{t}^{c_{0}, c_{1}} \in d x\right)=e^{c_{0} t} \delta_{t}(d x)+\frac{1}{2} e^{-c_{0} t} f(t, x) 1_{[-1,1]}(x) d x
$$

with δ_{t} the Dirac measure at t,

$$
f(t, x)=\sqrt{\frac{c_{0} c_{1}(t+x)}{t-x}} l_{1}\left(\sqrt{c_{0} c_{1}\left(t^{2}-x^{2}\right)}\right)+c_{0} I_{0}\left(\sqrt{c_{0} c_{1}\left(t^{2}-x^{2}\right)}\right)
$$

and

$$
I_{\nu}(x)=\sum_{k \geq 0} \frac{1}{\Gamma(\nu+k+1) k!}\left(\frac{x}{2}\right)^{\nu+2 k}
$$

d) The Laplace transform of $Z_{t}^{c_{0}, c_{1}}$ can be determined.

3.5 Link with the telegraph equation

For simplicity we suppose that $c_{0}=c_{1}=c$.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function of class \mathcal{C}^{2} with bounded derivatives. Introduce :

$$
u(x, t)=\frac{1}{2}\{f(x+\sigma t)+f(x-\sigma t)\} .
$$

Then, u is the unique solution of the wave equation in dimension 1 :

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}=\sigma^{2} \frac{\partial^{2} u}{\partial x^{2}} \\
u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=0
\end{array}\right.
$$

Proposition 6 The function

$$
w(x, t)=E\left[u\left(x, Z_{t}^{c, c}\right)\right], \quad(x \in \mathbb{R}, t \geq 0)
$$

where

$$
Z_{t}^{c, c}=\int_{0}^{t}(-1)^{N_{s}^{c, c}} d s
$$

is the solution of the telegraph equation :

$$
\left\{\begin{array}{l}
\frac{\partial^{2} w}{\partial t^{2}}+2 c \frac{\partial w}{\partial t}=\sigma^{2} \frac{\partial^{2} w}{\partial x^{2}} \\
w(x, 0)=f(x), \quad \frac{\partial w}{\partial t}(x, 0)=0
\end{array}\right.
$$

Remark We have a proof based on stochastic calculus.

4. Extensions

4.1 The case where Y_{t} takes its values in a finite set

Let us deal with the case where $\left(Y_{t}\right)$ is $\left\{y_{1}, \cdots, y_{k}\right\}$-valued. Denote $\left(\pi^{\Delta}(i, j), 1 \leq i, j \leq k\right)$ its transition matrix. Suppose :

$$
\pi^{\Delta}(i, j)=\left\{\begin{array}{cl}
c(i, j) \Delta_{t} & \text { si } i \neq j \\
1-\left(\sum_{l=1}^{k} c(i, l)\right) \Delta_{t} & \text { si } i=j
\end{array}\right.
$$

where $c(i, j) \geq 0$ and $c(i, i)=0$.
Then, the process $\left(\widetilde{Z}_{t}^{\Delta}, t \geq 0\right)$ converges en distribution as $\Delta_{t} \rightarrow 0$, to the process

$$
\int_{0}^{t} R_{s} d s, \quad t \geq 0
$$

where $\left(R_{S}\right)$ is a continuous time Markov chain which takes its values in the set $\left\{y_{1}, \cdots, y_{k}\right\}$.
4.2 The case where Y_{t} is Markov chain with order 2

Let $\left(Y_{t}\right)$ be a Markov chain with order 2, i.e. $\left(Y_{t}, Y_{t+1}\right)$ is a classical Markov chain valued in $E:=\{(-1,-1),(-1,1),(1,-1),(1,1)\}$. Denote π^{Δ} its transition probability matrix :

$$
\pi=\left(\begin{array}{cccc}
1-c_{0} \Delta_{t} & c_{0} \Delta_{t} & 0 & 0 \\
0 & 0 & 1-p_{0} & p_{0} \\
p_{1} & 1-p_{1} & 0 & 0 \\
0 & 0 & c_{1} \Delta_{t} & 1-c_{1} \Delta_{t}
\end{array}\right)
$$

where $\Delta_{t}, c_{0}, c_{1}, p_{0}, p_{1}>0$ and $c_{0} \Delta_{t}, c_{1} \Delta_{t}, p_{0}, p_{1}<1$. Let us introduce :

$$
v_{i}:=\frac{p_{i}}{1-\left(1-p_{0}\right)\left(1-p_{1}\right)}, \quad c_{i}^{\prime}:=c_{i} v_{i}, \quad i=0,1
$$

Suppose that $Y_{0}=1$ and $Y_{1}=-1$.
Then, the interpolated persistent random walk ($\left.\widetilde{Z}_{s}^{\Delta}, s \geq 0\right)$ converges in distribution, as $\Delta_{x} \rightarrow 0$, to the process :

$$
\left(-(1-\epsilon) \int_{0}^{s}(-1)^{N_{u}^{c_{0}^{\prime}, c_{1}^{\prime}}} d u+\epsilon \int_{0}^{s}(-1)^{N_{u}^{c_{1}^{\prime}, c_{0}^{\prime}}} d u, s \geq 0\right)
$$

where ϵ is independent from $\left(N_{u}^{c_{0}^{\prime}, c_{1}^{\prime}}\right)$ and $\left(N_{u}^{c_{1}^{\prime}, c_{0}^{\prime}}\right)$ and with distribution :

$$
P(\epsilon=0)=v_{1}, \quad P(\epsilon=1)=1-v_{1} .
$$

