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1. Introduction

Let (Yn)n>0 be a Markov chain taking its values in {—1, 1} with
transition matrix :

w:(1;a 165) O<a<1, 0<pB<Ai.
Associated with (Y,) consider the process
Xn=Yo+Yi+---+Ys n>0.
(Xn) is said to be a persistent random walk.

Two particular cases are interesting :

B =1—a:(Xy)is aclassical random walk whose increment is
distributed as (1 — «)0_1 + ady.

B = a, (Xp) is a Kacrandom walk : Y, .1 = Y, with probability
1 — a and — Y, otherwise.
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2. Study at a fixed time and applications

Proposition 1 Let p := 1 — a — (3 the asymmetry factor. Then :

E[Xi|Yo=—-1] = C::/ﬂ)(t+1)_(1?:ap)2(1 _ .
E[Xi| Yo = +1] = ?_i(z‘m)—“i)m — ptth.

Remark 1) In the classical random walk case, we have : p = 0.

2) it is actually possible to compute explicitly the second moment of X;,
see C. Tapiero and PV. : Memory-based persistence in a counting
random walk process, Physica A, 2007
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Let us introduce :
o\ 1) = EPNX], (A >0).

Proposition 2 The generating function of X; equals:

O(\ 1) = a0 +a ot

with
1—a+ A Aa—-10-) 1
a, = and a_=—--—a when Xp = Yy = —1
+ A2\/,5 2 + 0 0
1/1 -«
ei.=§( : +(1—5)>\i\/5>
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Sketch of the proof of Proposition 2
We decompose ®(\, t) as follows :
DN 1) = D_(\ 1) + Do(N, 1),
with
O (A1) = ENTy—_ny],  dp(A 1) = EIN U ey
The, we obtain the recursive relations :

O_(Mt41) = | ;a O_(\ 1)+ g O, (\ 1)

O (Mt+1) = add_(\ )+ (1 —B)AdL () 1)
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An application to insurance

- A "normal claim" is labelled 0 and its values at time i is Z°;

- an "unusual claim" (for instance "large") is labelled 1 and equals Z,-1
at time /.

- The claims (Z0,i > 1) arei.id, (Z',i > 1) are i.i.d and the two
families of r.v.s are independent.

- The process which attributes labels is (Y/). So, Y/ =0if attime i a
normal claim occurs.

Note that Y/ € {0,1}. Set Y; =2Y/ — 1. Then

Yie{-1,1} and Y/=1 & VY;=1.

- We suppose that :
*(Y]) is a Markov chain (then (Y;) is a Markov chain as above);

* all the claims (Z/,j = 0,1, i > 1) and (Y]) are independent.
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The sum of claims at time t is :

t t
=Y ZMy=ny + Y Zv—g).
i=0 i=0

Proposition 3 17) The first moment of &; is :
(&) (t+ 1EZP) + [E(Z]) - E(Z))] E(X])
where X; = Z Y/,
2) The Laplace transform of & equals :
E(e™) = [E(e‘AZP)THCB(z, 1) A>0
where
E(e"\z11)

z:= m, ®(z,1) := E(2X).
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Remark Reference : C. Tapiero and P V. A claims persistence process
and Insurance, Insurance : Mathematics and Economics (2009).

2) Recall that :
Xe=2X{ — (t+1).

Then,

E(X) = 5(EX) +t+1), E(2¥) =27 E(2X/?)

N —
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3. From discrete to continuous time

S. Herrmann and P.V. : From persistent random walks to the Telegraph
noise. Accepted in Stochastics and Dynamics (2009).

3.1 Notations
a) Denote «q, Gp two real numbers : 0 < ag <1, 0< Gy < 1.
b) A, is a "small" parameter such that :

a:=ag+ Ay €[0,1], B:= o+ c1Ax € [0,1].
c) (Yi, t € N) is a Markov chain which takes its values in {—1, 1} with

transition matrix :

a_ (1-a—clx  ao+GAx )
Bo+c1Ax 11— 50— 1A
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d) The re-normalized random walk associated with (Y;) is defined as :
Z8 = NXgjn, SENN (Ar>0).

e) (ZA, s > 0) is the continuous time process which is obtained by
linear interpolation from (Z2).
f) Set

po=1—ap—fo

p takes into account the "distance" of the persistent random walk to the
classical r. w.

Remark Note that :

po=11-a-Fo=0&ap+Fy=04 ag=0F =0.
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3.2 Convergence to the Brownian motion with drift, pg # 1

Theorem 4 We assume that ag, 5y > 0 (i.e. pg # 0) and
riy = A2 (r>0).

Then the processes

converge in distribution to the process (&2, t > 0), as Ay — 0, with :

o_,(_—C 1n0C r(0+p0) (M
‘i _r<1—ﬂo+(1—Po)2>t+\/ 1—po (1 (1—po)2> W

where (W, t > 0) stands for a standard Brownian motion and :

no=P0 —ay, C=C+C, C=C—Cp.

Remark 7y = 0 corresponds to the Kac random walk.



Theorem 4 is a consequence of the central limit theorem :
Yi+--+Y, 1 1
A 1 n _ ! _
zp = Vn(FEEE) (A= Ay =
Yi—E(Yq) p++{ Yo—E(Ya
:ﬁ<{ —E(Y) b+ { Yo E( )})JFRH’

)

n

with R, — W<E(Y1) + n + E(Yn)).
Since v := af_ﬂéq + - i 551 is the invariant probability measure

associated with the Markov chain (Y,) we have

. ag — o 70
lim E(Y,) = | xvp(dx) = = )
A, E(Yn) / o) aotBo  1T—po
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3.3 Convergence when pg = 1

In this case, the transition matrix of (Y;) equals

1 —cA CoA
A 08X 08X
T _< A, 1—c1AX> (co,c1 > 0).

Consider a sequence (e, n > 1) of independent r.r.v.s such that :
(e2n, N> 1) (resp. (e2n_1; n > 1)) are iid with common exponential
distribution with parameter Cl1 (resp. %) i.e. E[esn] = ¢ (resp.
Ele2n-1] = ¢o). Let

NtCO7c1 — Z 1{91+...+ek§t}7 t 2 0.
k>1

be the counting process associated with (e,; n > 1).
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Theorem 5 We suppose :
ap=pF =0, Yo=-1, Ax=A:

Then, the interpolated persistent random walk (Z2, s > 0) converges
in distribution, as Ax — 0,to the process ( — Z5*') where :

Co,C1 ° NGO
zoo — [ ()N gy s> 0.
0

In the case where ¢y = ¢, then (N;*") is the Poisson process with
parameter c;.
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Remarks

In the symmetric case, Theorem 5 is a stochastic version of
analytical approaches developed by Kac (1974). See for instance
the G. Weiss book (1994).

The process (ZSC’C) has been already introduced by D. Stroock
(1982).

The convergence in terms of continuous processes allows to
obtain for instance the convergence in distribution of max Z2 to
<s<

the r.v. max (— Zs), as Ax — 0.
0<s<1
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Sketch of the proof of Theorem 5

We only consider Yy = —1. Let:
Ty=inf{n>1; Y,=1}.

Then Ty ~ G(coAx).
Consequently : N N
T; = inf{s; Z&>2Z2}

inf {nA;; Y,=1}

= TiA;

it is easy to deduce the convergence in distribution of T} to ey, as
Ay = At — 0. Recall that ey is exponentially distributed with
parameter 1/cp.
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3.4 A few properties of (Z;>")

Recall

750:C1 s NGO
s (—1) au.

a) ((Z>), t > 0) is not Markov, however the process
((Nf‘”C1 L ZE), > 0) is Markov. Its semigroup and the joint law of

(N>, Z") can be determined explicitly.

Note that
dzo°

dt
b) We can calculate :

— (M t>o.

P(NZ® = 2k), P(N® =2k +1)
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c) The distribution of Z*“' is the following :
1
P(Z{ € dx) = e'i(dx) + 56" (t, X) 1|1 1y (x)0x
with ¢; the Dirac measure at ¢,

f(t,x) = \/WA (\/0001 (t2 — x2)> + co/0< cocy(t? — x2)>

and | B 1i X\ v+2k
"(X)_k;)r(wkﬂ)k! (3)

d) The Laplace transform of Z®“ can be determined.
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3.5 Link with the telegraph equation

For simplicity we suppose that ¢y = ¢y = c.

Let f: R — R be a function of class C? with bounded derivatives.
Introduce :
1
u(x, t) = §{f(x+ ot) + f(x — at)}.
Then, u is the unique solution of the wave equation in dimension 1 :

Pu  ,0%u
o7 7 ox2
ou

u(x,0) = f(x), W(X’ 0)=0.

P. Vallois (IECN) persistent random walk Roscoff, March 22, 2010 20/24



Proposition 6 The function
w(x,t) = E[u(x, Zf’c)}, (x eR,t>0)

where ,
ze© = / (—1)%“ds
0

is the solution of the telegraph equation :

0’w ow  ,0%w
9 T2 T e
w(x,0) = f(x), 8—":()(, 0)=0

Remark We have a proof based on stochastic calculus.
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4. Extensions
4.1 The case where Y; takes its values in a finite set

Let us deal with the case where (Y;) is {y1,- -, yk}-valued. Denote
(ﬂ'A(i,j),1 <ij< k) its transition matrix. Suppose :

c(i.j) A Sii#j
A .o o k
(1)) = 1_(20(/,/))At sii=j
=1

where c(i,j) > 0 and c(i, i) = 0.
Then, the process (ZtA, t> 0) converges en distribution as A; — 0, to
the process

-t
/ Ruds, >0
JO

where (Rs) is a continuous time Markov chain which takes its values in
the set {y1, -, ¥}
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4.2 The case where Y; is Markov chain with order 2

Let (Y;) be a Markov chain with order 2, i.e. (Y, Yi.1) is a classical

Markov chain valued in E := {(-1,-1), (=1,1), (1,-1), (1,1)}.
Denote 72 its transition probability matrix :

1 —cgA;  Col¢ 0 0
o 0 0 1-po Po
P 1—py 0 0

0 0 ciAy 1 —ciAy

where Ay, co, C1, po, p1 > 0 and coA¢, c1A¢, P, p1 < 1.
Let us introduce :

Pi

TP

C,{ = CjVj, i=0,1.
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Suppose that Yo =1 and Y; = —1. N
Then, the interpolated persistent random walk (Z2, s > 0) converges
in distribution, as Ay — 0, to the process :

s cl ¢l S c} ch
(—(1 —e)/ (—1)N ‘du+e/ ()N qu, 320)
0 0
where ¢ is independent from (Nﬁ‘/”q) and (Nﬁ’c‘/’) and with distribution :

P(EZO):V17 P(€:1):1—V1.
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