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1. Introduction

Let (Yn)n≥0 be a Markov chain taking its values in {−1, 1} with
transition matrix :

π =

(
1− α α

β 1− β

)
0 < α < 1, 0 < β < 1.

Associated with (Yn) consider the process

Xn := Y0 + Y1 + · · ·+ Yn, n ≥ 0.

(Xn) is said to be a persistent random walk.
Two particular cases are interesting :

β = 1− α : (Xn) is a classical random walk whose increment is
distributed as (1− α)δ−1 + αδ1.
β = α, (Xn) is a Kac random walk : Yn+1 = Yn with probability
1− α and −Yn otherwise.
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2. Study at a fixed time and applications

Proposition 1 Let ρ := 1− α− β the asymmetry factor. Then :

E [Xt |Y0 = −1] =
α− β

1− ρ
(t + 1)− 2α

(1− ρ)2 (1− ρt+1).

E [Xt |Y0 = +1] =
α− β

1− ρ
(t + 1)− 2β

(1− ρ)2 (1− ρt+1).

Remark 1) In the classical random walk case, we have : ρ = 0.
2) it is actually possible to compute explicitly the second moment of Xt ,
see C. Tapiero and P.V. : Memory-based persistence in a counting
random walk process, Physica A, 2007
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Let us introduce :
Φ(λ, t) = E [λXt ], (λ > 0).

Proposition 2 The generating function of Xt equals:

Φ(λ, t) = a+θt
+ + a−θt

−

with

a+ =
1− α + λ(λα− θ−)

λ2
√D and a− =

1
λ
− a+ when X0 = Y0 = −1

θ± :=
1
2

(1− α

λ
+ (1− β)λ±

√
D

)

D =
(1− α

λ
+ (1− β)λ

)2
− 4(1− α− β).
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Sketch of the proof of Proposition 2

We decompose Φ(λ, t) as follows :

Φ(λ, t) = Φ−(λ, t) + Φ+(λ, t),

with

Φ−(λ, t) = E [λXt 1{Yt=−1}], Φ+(λ, t) = E [λXt 1{Yt=1}].

The, we obtain the recursive relations :

Φ−(λ, t + 1) =
1− α

λ
Φ−(λ, t) +

β

λ
Φ+(λ, t)

Φ+(λ, t + 1) = αλΦ−(λ, t) + (1− β)λΦ+(λ, t)

¥
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An application to insurance

- A "normal claim" is labelled 0 and its values at time i is Z 0
i ;

- an "unusual claim" (for instance "large") is labelled 1 and equals Z 1
i

at time i .
- The claims

(
Z 0

i , i ≥ 1
)

are i.i.d,
(
Z 1

i , i ≥ 1
)

are i.i.d and the two
families of r.v.’s are independent.
- The process which attributes labels is (Y ′

i ). So, Y ′
i = 0 if at time i a

normal claim occurs.
Note that Y ′

i ∈ {0, 1}. Set Yi = 2Y ′
i − 1. Then

Yi ∈ {−1, 1} and Y ′
i = 1 ⇔ Yi = 1.

- We suppose that :
* (Y ′

i ) is a Markov chain (then (Yi) is a Markov chain as above);
* all the claims

(
Z j

i , j = 0, 1, i ≥ 1
)

and (Y ′
i ) are independent.
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The sum of claims at time t is :

ξt =
t∑

i=0

Z 1
t 1{Y ′i =1} +

t∑

i=0

Z 0
t 1{Y ′i =0}.

Proposition 3 1) The first moment of ξt is :

E(ξt) = (t + 1)E(Z 0
1 ) +

[
E(Z 1

1 )− E(Z 0
1 )

]
E(X ′

t )

where X ′
t =

t∑

i=0

Y ′
i .

2) The Laplace transform of ξt equals :

E
(
e−λξt

)
=

[
E

(
e−λZ 0

1
)]t+1

Φ̃(z, t) λ > 0

where

z :=
E

(
e−λZ 1

1
)

E
(
e−λZ 0

1
) , Φ̃(z, t) := E

(
zX ′t

)
.
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Remark Reference : C. Tapiero and P.V. A claims persistence process
and Insurance, Insurance : Mathematics and Economics (2009).
2) Recall that :

Xt = 2X ′
t − (t + 1).

Then,

E(X ′
t ) =

1
2
(
E(Xt) + t + 1

)
, E

(
zX ′t

)
= z

t+1
2 E

(
zXt/2)
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3. From discrete to continuous time

S. Herrmann and P.V. : From persistent random walks to the Telegraph
noise. Accepted in Stochastics and Dynamics (2009).

3.1 Notations
a) Denote α0, β0 two real numbers : 0 < α0 ≤ 1, 0 < β0 ≤ 1.
b) ∆x is a "small" parameter such that :

α := α0 + c0∆x ∈ [0, 1], β := β0 + c1∆x ∈ [0, 1].

c) (Yt , t ∈ N) is a Markov chain which takes its values in {−1, 1} with
transition matrix :

π∆ =

(
1− α0 − c0∆x α0 + c0∆x

β0 + c1∆x 1− β0 − c1∆x

)
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d) The re-normalized random walk associated with (Yt) is defined as :

Z∆
s = ∆xXs/∆t , s ∈ ∆t N (∆t > 0).

e) (Z̃∆
s , s ≥ 0) is the continuous time process which is obtained by

linear interpolation from (Z∆
s ).

f) Set
ρ0 = 1− α0 − β0

ρ takes into account the "distance" of the persistent random walk to the
classical r. w.

Remark Note that :

ρ0 = 1 ⇔ 1− α0 − β0 = 0 ⇔ α0 + β0 = 0 ⇔ α0 = β0 = 0.
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3.2 Convergence to the Brownian motion with drift, ρ0 6= 1

Theorem 4 We assume that α0, β0 > 0 (i.e. ρ0 6= 0) and

r∆t = ∆2
x (r > 0).

Then the processes

ξ∆
t = Z̃∆

t +

√
rη0

1− ρ0

t√
∆t

converge in distribution to the process (ξ0
t , t ≥ 0), as ∆x → 0, with :

ξ0
t = r

( −c
1− ρ0

+
η0c

(1− ρ0)2

)
t +

√
r(1 + ρ0)

1− ρ0

(
1− η2

0
(1− ρ0)2

)
Wt ,

where (Wt , t ≥ 0) stands for a standard Brownian motion and :

η0 = β0 − α0, c = c0 + c1, c = c1 − c0.

Remark η0 = 0 corresponds to the Kac random walk.
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Theorem 4 is a consequence of the central limit theorem :

Z∆
1 =

√
n
(Y1 + · · ·+ Yn

n

)
(∆t =

1
n

, ∆x =
1√
n

)

=
√

n
({

Y1−E(Y1)
}

+···+
{

Yn−E(Yn)
}

n

)
+ Rn,

with Rn :=
√

n
(E(Y1) + · · ·+ E(Yn)

n

)
.

Since ν :=
β

α + β
δ−1 +

α

α + β
δ1 is the invariant probability measure

associated with the Markov chain (Yn) we have

lim
n→∞E(Yn) =

∫
xν0(dx) =

α0 − β0

α0 + β0
=

η0

1− ρ0
.

¥
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3.3 Convergence when ρ0 = 1

In this case, the transition matrix of (Yt) equals

π∆ =

(
1− c0∆x c0∆x

c1∆x 1− c1∆x

)
(c0, c1 > 0).

Consider a sequence (en, n ≥ 1) of independent r.r.v.’s such that :
(e2n, n ≥ 1) (resp. (e2n−1; n ≥ 1)) are iid with common exponential
distribution with parameter 1

c1
(resp. 1

c0
) i.e. E [e2n] = c1 (resp.

E [e2n−1] = c0). Let

Nc0,c1
t =

∑

k≥1

1{e1+...+ek≤t}, t ≥ 0.

be the counting process associated with (en; n ≥ 1).
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Theorem 5 We suppose :

α0 = β0 = 0, Y0 = −1, ∆x = ∆t .

Then, the interpolated persistent random walk (Z̃∆
s , s ≥ 0) converges

in distribution, as ∆x → 0,to the process
(− Z c0,c1

s
)

where :

Z c0,c1
s =

∫ s

0
(−1)N

c0,c1
u du s ≥ 0.

In the case where c0 = c1, then
(
Nc0,c1

u
)

is the Poisson process with
parameter c0.
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Remarks
In the symmetric case, Theorem 5 is a stochastic version of
analytical approaches developed by Kac (1974). See for instance
the G. Weiss book (1994).
The process

(
Z c,c

s
)

has been already introduced by D. Stroock
(1982).
The convergence in terms of continuous processes allows to
obtain for instance the convergence in distribution of max

0≤s≤1
Z̃∆

s to

the r.v. max
0≤s≤1

(− Z c0,c1
s

)
, as ∆x → 0.
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Sketch of the proof of Theorem 5

We only consider Y0 = −1. Let :

T1 = inf
{

n ≥ 1; Yn = 1
}
.

Then T1 ∼ G(
c0∆x

)
.

Consequently :
T ′1 = inf

{
s; Z̃∆

s > Z̃∆
s−

}

= inf
{

n∆t ; Yn = 1
}

= T1∆t .

it is easy to deduce the convergence in distribution of T ′1 to e1, as
∆x = ∆t → 0. Recall that e1 is exponentially distributed with
parameter 1/c0.
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3.4 A few properties of (Z c0,c1
t )

Recall

Z c0,c1
s =

∫ s

0
(−1)N

c0,c1
u du.

a)
(
(Z c0,c1

t ), t ≥ 0
)

is not Markov, however the process((
Nc0,c1

t , Z c0,c1
t

)
, t ≥ 0

)
is Markov. Its semigroup and the joint law of(

Nc0,c1
t , Z c0,c1

t
)

can be determined explicitly.
Note that

dZ c0,c1
t
dt

= (−1)N
c0,c1
t , t ≥ 0.

b) We can calculate :

P
(
Nc0,c1

t = 2k
)
, P

(
Nc0,c1

t = 2k + 1
)

P. Vallois (IECN) persistent random walk Roscoff, March 22, 2010 18 / 24



c) The distribution of Z c0,c1
t is the following :

P
(
Z c0,c1

t ∈ dx
)

= ec0tδt(dx) +
1
2

e−c0t f (t , x)1[−1,1](x)dx

with δt the Dirac measure at t ,

f (t , x) =

√
c0c1(t + x)

t − x
I1

(√
c0c1(t2 − x2)

)
+ c0I0

(√
c0c1(t2 − x2)

)

and
Iν(x) =

∑

k≥0

1
Γ(ν + k + 1)k !

(x
2

)ν+2k
.

d) The Laplace transform of Z c0,c1
t can be determined.
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3.5 Link with the telegraph equation

For simplicity we suppose that c0 = c1 = c.

Let f : R→ R be a function of class C2 with bounded derivatives.
Introduce :

u(x , t) =
1
2

{
f (x + σt) + f (x − σt)

}
.

Then, u is the unique solution of the wave equation in dimension 1 :




∂2u
∂t2 = σ2 ∂2u

∂x2 ,

u(x , 0) = f (x),
∂u
∂t

(x , 0) = 0.
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Proposition 6The function

w(x , t) = E
[
u
(

x , Z c,c
t

)]
, (x ∈ R, t ≥ 0)

where

Z c,c
t =

∫ t

0
(−1)Nc,c

s ds

is the solution of the telegraph equation :




∂2w
∂t2 + 2c

∂w
∂t

= σ2 ∂2w
∂x2 ,

w(x , 0) = f (x),
∂w
∂t

(x , 0) = 0.

Remark We have a proof based on stochastic calculus.
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4. Extensions
4.1 The case where Yt takes its values in a finite set

Let us deal with the case where (Yt) is {y1, · · · , yk}-valued. Denote(
π∆(i , j), 1 ≤ i , j ≤ k

)
its transition matrix. Suppose :

π∆(i , j) =





c(i , j)∆t si i 6= j

1−
( k∑

l=1

c(i , l)
)
∆t si i = j

where c(i , j) ≥ 0 and c(i , i) = 0.
Then, the process

(
Z̃∆

t , t ≥ 0
)

converges en distribution as ∆t → 0, to
the process ∫ t

0
Rsds, t ≥ 0

where (Rs) is a continuous time Markov chain which takes its values in
the set {y1, · · · , yk}.
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4.2 The case where Yt is Markov chain with order 2

Let (Yt) be a Markov chain with order 2, i.e. (Yt , Yt+1) is a classical
Markov chain valued in E :=

{
(−1,−1), (−1, 1), (1,−1), (1, 1)

}
.

Denote π∆ its transition probability matrix :

π =




1− c0∆t c0∆t 0 0
0 0 1− p0 p0
p1 1− p1 0 0
0 0 c1∆t 1− c1∆t




where ∆t , c0, c1, p0, p1 > 0 and c0∆t , c1∆t , p0, p1 < 1.
Let us introduce :

vi :=
pi

1− (1− p0)(1− p1)
, c′i := civi , i = 0, 1.

P. Vallois (IECN) persistent random walk Roscoff, March 22, 2010 23 / 24



Suppose that Y0 = 1 and Y1 = −1.
Then, the interpolated persistent random walk (Z̃∆

s , s ≥ 0) converges
in distribution, as ∆x → 0, to the process :

(
− (1− ε)

∫ s

0
(−1)N

c′0,c′1
u du + ε

∫ s

0
(−1)N

c′1,c′0
u du, s ≥ 0

)

where ε is independent from
(
N

c′0,c′1
u

)
and

(
N

c′1,c′0
u

)
and with distribution :

P(ε = 0) = v1, P(ε = 1) = 1− v1.
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