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This talk is based on the following paper:

Lin, Q., Representation of G-martingales as stochastic
integrals with respect to G-Brownian motion, 2009, preprint.
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Introduction

Peng [2006] introduced G-expectation, G-normal distribution
and G-Brownian motion. Moreover, Peng developed an Itô
calculus for the G-Brownian motion.

Xu [2009] obtained the martingale characterization of the
G-Brownian motion .

The objective of the present paper is to investigate a
representation of G-martingales as stochastic integrals with respect
to the G-Brownian motion in the framework of sublinear
expectation spaces. In this paper, we

study stochastic integrals with respect to G-martingale;

study representation theorem of G-martingales.
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Preliminaries

We briefly recall some basic results about G-stochastic
analysis in the following papers:

Peng, S., G-expectation, G-Brownian motion and related
stochastic calculus of Itô type. Stochastic analysis and
applications, 541–567, Abel Symp., 2, Springer, Berlin,(2007).
Peng, S. , Multi-Dimensional G-Brownian Motion and Related
Stochastic Calculus under G-Expectation, Stochastic
Processes and their Applications, 118 (12),(2008), 2223-2253.

Let Ω be a given set and H be a linear space of real functions
defined on Ω such that if x1, · · ·, xn ∈ H then ϕ(x1, · · ·, xn) ∈ H,
for each ϕ ∈ Cl,lip(Rm). Here Cl,lip(Rm) denotes the linear space
of functions ϕ satisfying

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|n + |y|n)|x− y|, for all x, y ∈ Rm,

for some C > 0 and n ∈ N, both depending on ϕ. The space H is
considered as a set of random variables. 5 / 35



Introduction
Preliminaries
Main Results

References

Let Ω = C0(R+) be the space of all real valued continuous
functions (ωt)t∈R+ with ω0 = 0, equipped with the distance

ρ(ω1, ω2) =
∞∑
i=1

2−i
[
( max
t∈[0,i]

|ω1
t − ω2

t |) ∧ 1
]
, ω1, ω2 ∈ Ω.

For each T > 0, we consider the following space of random
variables:

L0
ip(FT ) : =

{
X(ω) = ϕ(ωt1 · · · , ωtm) | t1, · · · , tm ∈ [0, T ],

for all ϕ ∈ Cl,lip(Rm), m ≥ 1
}

,

L0
ip(F) =

∞⋃
n=1

L0
ip(Fn).
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Sublinear expectations

Definition

A Sublinear expectation Ê on H is a functional Ê : H 7→ R
satisfying the following properties: for all X, Y ∈ H, we have

(i) Monotonicity: If X ≥ Y , then Ê[X] ≥ Ê[Y ].

(ii) Constant preserving: Ê[c] = c, for all c ∈ R.

(iii) Self-dominated property: Ê[X]− Ê[Y ] ≤ Ê[X − Y ].

(iv) Positive homogeneity: Ê[λX] = λÊ[X], for all λ ≥ 0.

The triple (Ω,H, Ê) is called a sublinear expectation space.

Remark

The sublinear expectation space can be regarded as a
generalization of the classical probability space (Ω,F , P) endowed
with the linear expectation associated with P.
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Coherent risk measures and sublinear expectations

Let
ρ(X)

.
= Ê[−X], X ∈ H.

Then ρ(·) is a coherent risk measure, namely

1 Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y ).

2 Constant preserving: ρ(c) = −c, for all c ∈ R.

3 Self-dominated property: ρ(X)− ρ(Y ) ≤ ρ(X − Y ).

4 Positive homogeneity: ρ(λX) = λρ(X), for all λ ≥ 0.

Conversely, for every coherent risk measure ρ, let

Ê[X]
.
= ρ(−X) X ∈ H.

Then Ê[·] is a sublinear expectation.
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For p ≥ 1, ‖X‖p = Ê
1
p [|X|p], X ∈ L0

ip(F).

Let H = Lp
G(F) (resp. Ht = Lp

G(Ft)) be the completion of
L0

ip(F) (resp. L0
ip(Ft)) under the norm ‖ · ‖p.

(Lp
G(F), ‖ · ‖p) is a Banach space.

Lp
G(Ft) ⊂ Lp

G(FT ) ⊂ Lp
G(F), for all 0 ≤ t ≤ T < ∞.

Remark

Bounded and measurable random variables in general are not in
Lp

G(F) (e.g. IA). Thus, the powerful techniques of stopping times
in classical situations cannot be applied to G-stochastic analysis.
This is a main difficulty faced in the calculus.
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Independence

Definition

In a sublinear expectation space (Ω,H, Ê), a random vector
Y = (Y1, · · · , Yn), Yi ∈ H, is said to be independent of another
random vector X = (X1, · · · , Xm), Xi ∈ H, if for each test
function ϕ ∈ Cl,lip(Rm+n) we have

Ê[ϕ(X, Y )] = Ê[Ê[ϕ(x, Y )]x=X ].

Remark

Independence means the distribution of Y does not change the
realization of X(X = x).
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Remark

Y is independent of X does not imply that X is independent of Y .

Example

Ê[X] = Ê[−X] = 0, Ê[X+] > 0, Ê[Y 2] > −Ê[−Y 2] > 0.

If X is independent of Y , then Ê[XY 2] = 0.

But if Y is independent of X, then Ê[XY 2] > 0.
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G-normal distribution

Definition

G-normal distribution:
ξ ∼ N (0, [σ2

1, σ
2
2]), if for all ϕ ∈ Cl,lip(R),

u(t, x) := Ê[ϕ(x +
√

tξ)], (t, x) ∈ [0,∞)× R

is the solution of the following PDE:

∂tu = G(∂2
xxu), u|t=0 = ϕ,

where G(α) = 1
2 sup

σ1≤σ≤σ2

ασ2, 0 ≤ σ1 ≤ σ2.
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Remark

In the case where σ1 = σ2 > 0, then N (0, [σ2
1, σ

2
2]) is just the

classical normal distribution N (0, σ2
2).

Remark

If X ∼ N (0, [σ2
1, σ

2
2]) and ϕ is convex, then

Ê[ϕ(X)] =
1√
2πσ2

2

∫ ∞

−∞
ϕ(y) exp(−(x− y)2

2σ2
2t

)dy.

Remark

Let X ∼ N (0, [σ2
1, σ

2
2]). If ϕ is concave and σ2

1 > 0, then

Ê[ϕ(X)] =
1√
2πσ2

1

∫ ∞

−∞
ϕ(y) exp(−(x− y)2

2σ2
1t

)dy.
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G-Brownian motion

For simplicity, we assume 0 ≤ σ1 = σ ≤ 1, σ2 = 1 in the
following.

Definition

A process B in a sublinear expectation space (Ω,H, Ê) is called
G-Brownian motion if for each n ∈ N and
0 ≤ t1 ≤ · · · ≤ tn < ∞, Bt1 , · · · , Btn ∈ H, the following properties
are satisfied:

(i) B0 = 0;

(ii) For each t, s ≥ 0, Bt+s −Bt ∼ N (0, [σ2s, s]);

(iii) For each t, s ≥ 0, Bt+s −Bt is independent of (Bt1 , · · · , Btn),
for each n ∈ N and tn ≤ t.
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Hu and Peng [2009] obtained presentation theorem of
G-expectation.

Theorem

Let Ê be a G-expectation. Then there exists a weekly compact
family of probability measures P on (Ω,B(Ω)) such that

Ê[X] = max
P∈P

EP [X], for all X ∈ H,

where EP [·] is the linear expectation with respect to P ∈ P.

Definition

Choquet capacity: c(A) = sup
P∈P

P (A), A ∈ B(Ω).

A set A is called polar if c(A) = 0 and a property holds
quasi-surely (q.s.) if it holds outside a polar set.
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As in the classical stochastic analysis, the definition of a
modification of a process plays an important role.

Definition

Let I be a set of indexes, and {Xt}t∈I and {Yt}t∈I two processes
indexed by I. We say that Y is a modification of X if for all t ∈ I,
Xt = Yt q.s.
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Finally, we recall the definition of a G-martingale introduced
by Peng [2006].

Definition

A process M = {Mt, t ≥ 0} is called a G-martingale (respectively,
G-supermartingale, and G-submartingale) if for each
t ∈ [0,∞),Mt ∈ L1

G(Ft) and for each s ∈ [0, t], we have

Ê[Mt|Hs] = Ms, (respectively ≤ Ms, and ≥ Ms) q.s.

Definition

A process M = {Mt, t ≥ 0} is called a symmetric G-martingale, if
M and −M are G-martingales.

Remark

Bt is symmetric G-martingale, but B2
t − t is not symmetric

G-martingale.
17 / 35
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Stochastic integral of G-martingales
Representation of G-martingales as stochastic integrals

Representation theorem for G-martingale

Our objective: representation theorem for G-martingales

Recall: classical representation theorem for martingales

Theorem

Let M be a square integrable continuous martingale.
M2

t −
∫ t
0 f2

s ds is a martingale, for some adapted process f such

that
∫ T
0 f2

s ds < ∞, a.s.,. Then there exists a Brownian motion B
such that

Mt =

∫ t

0
fsdBs.
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Representation of G-martingales as stochastic integrals

Stochastic integral of G-martingales

Peng [2006] introduced stochastic integrals with respect to
G-Brownian motion.

Xu [2009] introduced stochastic integrals with respect to
symmetric G-martingales M , with {M2

t − t}t∈[0,T ] being a
G-martingale.

In order to obtain representation of G-martingale, it is necessary to
extend the notion of G-stochastic integrals.
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Stochastic integral of G-martingales
Representation of G-martingales as stochastic integrals

Let p ≥ 1 and T > 0. Let {At, t ∈ [0, T ]} be a continuous
and increasing process such that for all t ∈ [0, T ], At ∈ Ht, A0 = 0
and Ê[AT ] < ∞. We first consider the following space of step
processes:

Mp,0
G (0, T ) =

{
η : ηt =

n−1∑
j=0

ξtjI[tj ,tj+1), 0 = t0 < t1 < · · · < tn = T,

ξtj ∈ Lp
G(Ftj ), j = 0, · · · , n− 1, for all n ≥ 1

}
,

and we define the following norm in Mp,0
G (0, T ):

‖ η ‖p=

(
Ê

[ ∫ T

0
|ηt|pdAt

]) 1
p

=

(
Ê

[ n−1∑
j=0

|ξtj |p(Atj+1 −Atj )
]) 1

p

.

20 / 35



Introduction
Preliminaries
Main Results

References

Stochastic integral of G-martingales
Representation of G-martingales as stochastic integrals

We denote by Mp
G,A(0, T ) the completion of Mp,0

G (0, T ) under the

norm ‖ · ‖p. If At = t, then we denote by Mp
G(0, T ) the

completion of Mp,0
G (0, T ) under the norm ‖ · ‖p.

N =
{

M |M is a continuous symmetric G-martingale such that

M2 −A is a G-supermartingale
}

.

Definition

For any M ∈ N and η ∈ M2,0
G (0, T ) of the form

ηt =
n−1∑
j=0

ξtjI[tj ,tj+1)(t), we define

I(η) =

∫ T

0
ηtdMt =

n−1∑
j=0

ξtj (Mtj+1 −Mtj ).
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Stochastic integral of G-martingales
Representation of G-martingales as stochastic integrals

Proposition

For all M ∈ N , the mapping I : M2,0
G (0, T ) → L2

G(FT ) is a linear
continuous mapping and, thus, can be continuously extended to
I : M2

G,A(0, T ) → L2
G(FT ). Moreover, for all η ∈ M2

G,A(0, T ), the

process
{∫ t

0 ηsdMs

}
t∈[0,T ]

is a symmetric G-martingale and

Ê
[
|
∫ T

0
ηtdMt|2

]
≤ Ê

[ ∫ T

0
|ηt|2dAt

]
. (1)
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For 0 ≤ s ≤ t ≤ T and η ∈ M2
G,A(0, T ), we denote

∫ t

s
ηudMu =

∫ T

0
I[s,t](u)ηudMu.

It is now straightforward to see that we have the following
properties of the stochastic integral of G-martingales.

Proposition

Let 0 ≤ s < r ≤ t ≤ T . For all M ∈ N and θ, η ∈ M2
G,A(0, T ), we

have

(i)
∫ t
s ηudMu =

∫ r
s ηudMu +

∫ t
r ηudMu;

(ii)
∫ t
s (ηu + αθu)dMu =

∫ t
s ηudMu + α

∫ t
s θudMu, for all α

bounded random variable in Lp
G(Fs);

(iii) Ê[X +
∫ T
r ηudMu|Hs]=Ê[X|Hs], for all X ∈ Lp

G(F).
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Stochastic integral of G-martingales
Representation of G-martingales as stochastic integrals

For proving the continuity of the stochastic integral regarded as a
process, we need the following Doob inequality for symmetric
G-martingale.

Theorem

If X is a right-continuous symmetric G-martingale running over an
interval [0, T ] of R, then for every p > 1 such that XT ∈ Lp

G(F),

Ê[ sup
0≤t≤T

|Xt|p] ≤ (
p

p− 1
)pÊ[|XT |p].
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Theorem

For all M ∈ N and η ∈ M2
G,A(0, T ), there exists a continuous

modification of stochastic integral∫ t

0
ηsdMs, 0 ≤ t ≤ T.
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Stochastic integral of G-martingales
Representation of G-martingales as stochastic integrals

Now we give the Burkholder-Davis-Gundy inequality for the
stochastic integral with respect to G-martingales.

Theorem

For every q > 0, there exist a positive constant Cq such that, for
all M ∈ N and all η ∈ M2

G,A(0, T ),

Ê
[

sup
t∈[0,T ]

|
∫ t

0
ηsdMs|2q

]
≤ CqÊ

[
(

∫ T

0
η2

sdAs)
q
]
.
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Stochastic integral of G-martingales
Representation of G-martingales as stochastic integrals

Assumptions:

Ê[A2
T ] < ∞

For all {πn}n≥1 sequence of partitions
πn = {0 = tn0 < tn1 · · · < tnn = T} of [0, T ] such that

|πn| → 0, as n →∞, Ê[
n−1∑
i=0

(Atni+1
−Atni

)2] → 0, n →∞.

Proposition

Let M ∈ N . Then the quadratic variation of M exists and

〈M〉t = M2
t − 2

∫ t

0
MsdMs, for all t ≥ 0.

Remark

The quadratic variation of M is increasing and continuous.
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Stochastic integral of G-martingales
Representation of G-martingales as stochastic integrals

Now we can give another kind of the Burkholder-Davis-Gundy
inequalities for the stochastic integral with respect to
G-martingales.

Theorem

For every p > 0, there exist two positive constants cp and Cp such
that, for all M ∈ N and all η ∈ M2

G,A(0, T ),

cpÊ
[
(

∫ T

0
η2

sd〈M〉s)p
]
≤ Ê

[
sup

t∈[0,T ]
|
∫ t

0
ηsdMs|2p

]
≤ CpÊ

[
(

∫ T

0
η2

sd〈M〉s)p
]
.
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Proposition

For a fixed T ≥ 0, M is a symmetric G-martingale such that
M2 −A and −M2 + σ2

0A be G-martingales. If f ∈ M1
G,A(0, T ),

then

Xt :=

∫ t

0
fsd〈M〉s − 2

∫ t

0
G(fs)dAs, t ∈ [0, T ]

is a decreasing G-martingale.

Recall G(α) = 1
2(α+ − σ2α−), α ∈ R.

Corollary

∫ t

0
fsd〈B〉s − 2

∫ t

0
G(fs)ds, t ∈ [0, T ], is a G-martingale.
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With respect to a linear expectation, if X is a continuous
martingale with finite variation, then X is a constant.

But it is not true in G-stochastic analysis.

Example

〈B〉t − t is a continuous G-martingale with finite variation.
But 〈B〉t− t is not a constant. It is a decreasing stochastic process.
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Representation theorem of G-martingales

Special case of the martingale representation is the Lévy
characterization theorem of Brownian motion.

Recall: Lévy characterization theorem of Brownian motion.

With respect to a linear expectation we have

Lemma

A process M is a Brownian motion if

1 M is continuous and M0 = 0;

2 M is a local martingale;

3 M2
t − t is a local martingale.

31 / 35



Introduction
Preliminaries
Main Results

References
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Representation of G-martingales as stochastic integrals

Lévy characterization theorem of G-Brownian motion

Xu [2009] obtained a Lévy characterization theorem for the
G-Brownian motion.

Lemma

A process M ∈ M2
G(0, T ) is a G-Brownian motion with a

parameter 0 < σ ≤ 1 if

1 M is continuous and M0 = 0;

2 M is a symmetric G-martingale;

3 For any t ≥ 0, M2
t − t is a G-martingale;

4 For any t ≥ 0, Ê[−M2
t ] = −σ2t.

Remark

In our framework, we do not need the assumption M ∈ M2
G(0, T ).
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Main Results —-Representation of G-martingales

The following representation of G-martingales as stochastic
integrals with respect to G-Brownian motion is the main result in
this section.

Theorem

Let 0 < σ ≤ 1 and f ∈ M2
G(0, T ) be such that Ê[

∫ T
0 |fs|4ds] < ∞.

Moreover, if there exists a constant C (small enough) such that
0 < C ≤ |f | and the following hold

1 M is a symmetric G-martingale and M0 = 0;

2 M2
t −

∫ t
0 f2

s ds and −M2
t + σ2

∫ t
0 f2

s ds are G-martingales, for
t ∈ [0, T ],

then there exists a G-Brownian motion B such that
Mt =

∫ t
0 fsdBs, for all t ∈ [0, T ].
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Thanks for your attention!
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