Numerical simulation of BSDEs with drivers of quadratic growth

Adrien Richou

IRMAR, Université de Rennes 1

Roscoff - 2010
(1) Introduction

- (Markovian) BSDEs
- Simulation
- Quadratic BSDEs
(2) Different ideas for simulation
(3) A new scheme
- A time-dependent estimate of Z
- Convergence of the scheme

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $\left(W_{t}\right)_{t \in \mathbb{R}^{+}}$be a Brownian motion in $\mathbb{R}^{d},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}^{+}}$be his augmented natural filtration, T be a nonnegative real number. We consider an SDE

$$
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s}
$$

with standard assumptions on b and σ, and a Markovian BSDE

$$
Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
$$

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $\left(W_{t}\right)_{t \in \mathbb{R}^{+}}$be a Brownian motion in $\mathbb{R}^{d},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}^{+}}$be his augmented natural filtration, T be a nonnegative real number. We consider an SDE

$$
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s}
$$

with standard assumptions on b and σ, and a Markovian BSDE

$$
Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
$$

Definition

A solution to this BSDE is a pair of processes $\left(Y_{t}, Z_{t}\right)_{0 \leqslant t \leqslant T}$ such that :
(1) (Y, Z) is a predicable process with values in $\mathbb{R} \times \mathbb{R}^{1 \times d}$,
(2) \mathbb{P}_{T} a.s. $t \mapsto Y_{t}$ is continuous and

$$
\int_{0}^{T}\left|f\left(r, X_{r}, Y_{r}, Z_{r}\right)\right|+\left\|Z_{r}\right\|^{2} d r<\infty
$$

Theorem (Pardoux-Peng 1990)

Let us assume that f is a Lipschitz function with respect to y and z and $\mathbb{E}\left[\left|g\left(X_{T}\right)\right|^{2}+\int_{0}^{T}\left|f\left(r, X_{r}, 0,0\right)\right|^{2} d r\right]<\infty$. Then the previous equation has a unique solution (Y, Z) such that

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|Y_{t}\right|^{2}\right]<\infty, \quad \mathbb{E}\left[\int_{0}^{T}\left|Z_{t}\right|^{2} d t\right]<\infty
$$

Time discretization

We consider a time discretization of the BSDE. We denote the time step by $h=T / n$ and $\left(t_{k}=k h\right)_{0 \leqslant k \leqslant n}$ stands for the discretization times. For X we take the Euler scheme :

$$
\begin{aligned}
X_{0}^{n} & =x \\
X_{t_{k+1}}^{n} & =X_{t_{k}}^{n}+h b\left(t_{k}, X_{t_{k}}^{n}\right)+\sigma\left(t_{k}, X_{t_{k}}^{n}\right)\left(W_{t_{k+1}}-W_{t_{k}}\right), \quad 0 \leqslant k \leqslant n .
\end{aligned}
$$

For (Y, Z) we use the classical dynamic programming equation

$$
\begin{aligned}
& Y_{t_{n}}^{n}=g\left(X_{t_{n}}^{n}\right) \\
& Z_{t_{k}}^{n}=\frac{1}{h} \mathbb{E}_{t_{k}}\left[Y_{t_{k+1}}^{n}\left(W_{t_{k+1}}-W_{t_{k}}\right)\right], \quad 0 \leqslant k \leqslant n-1, \\
& Y_{t_{k}}^{n}=\mathbb{E}_{t_{k}}\left[Y_{t_{k+1}}^{n}\right]+h \mathbb{E}_{t_{k}}\left[f\left(t_{k}, X_{t_{k}}^{n}, Y_{t_{k+1}}^{n}, Z_{t_{k}}^{n}\right)\right], \quad 0 \leqslant k \leqslant n-1,
\end{aligned}
$$

where $\mathbb{E}_{t_{k}}$ stands for the conditional expectation given $\mathcal{F}_{t_{k}}$.

Remarks on simulation

- the dynamic programming equation is obtained by minimizing the difference

$$
\mathbb{E}\left[\left(Y_{t_{k+1}}^{n}+h \mathbb{E}_{t_{k}} f\left(t_{k}, X_{t_{k}}^{n}, Y_{t_{k+1}}^{n}, Z\right)-Y-Z\left(W_{t_{k+1}}-W_{t_{k}}\right)\right)^{2}\right]
$$

over $\mathcal{F}_{t_{k}}$-measurable squared integrable random variables (Y, Z).

- After time discretization, we need to use a spatial discretization in order to compute conditional expectation.
- We suppose that g and f are Lipschitz functions with respect to x, y, z and t. If we define the error

$$
e(n)=\sup _{0 \leqslant k \leqslant n} \mathbb{E}\left|Y_{t_{k}}^{n}-Y_{t_{k}}\right|^{2}+\mathbb{E} \sum_{k=0}^{n-1} \int_{t_{k}}^{t_{k+1}}\left|Z_{t_{k}}^{n}-Z_{t}\right|^{2} d t
$$

then $e(n)=O(1 / n)$.

References for simulation

See, for exemple :

- B. Bouchard, N. Touzi [2004],
- J. Zhang [2005],
- E. Gobet, J.P. Lemor, X. Warin [2005],
- F. Delarue, S. Menozzi [2006].

Quadratic BSDEs

What happened if f has a quadratic growth with respect to z ?

- when g is bounded : existence and uniqueness results have been proved by M. Kobylanski [2000].
- when g is unbounded : an existence result has been proved by P. Briand and Y. Hu [2006], partial uniqueness results has been proved by P. Briand and Y. Hu [2008], F. Delbaen, Y. Hu and A. R. [2010].
Such BSDEs have applications in finance : this class arises, for example, in the context of utility optimization problems with exponential utility functions (see e.g. Y. Hu, P. Imkeller and M. Müller [2005]).

BMO tool

Definition

For a brownian martingale $\Phi_{t}=\int_{0}^{t} \phi_{s} d W_{s}, t \in[0, T]$, we say that Φ is a BMO martingale if

$$
\|\Phi\|_{B M O}=\sup _{\tau \in[0, T]} \mathbb{E}\left[\int_{\tau}^{T} \phi_{s}^{2} d s \mid \mathcal{F}_{\tau}\right]^{1 / 2}<+\infty
$$

where the supremum is taken over all stopping times in $[0, T]$.

BMO tool

the very important feature of BMO martingales is the following lemma:

Lemma

Let Φ be a BMO martingale. Then we have :
(1) The stochastic exponential

$$
\mathcal{E}(\Phi)_{t}=\mathcal{E}_{t}=\exp \left(\int_{0}^{t} \phi_{s} d W_{s}-\frac{1}{2} \int_{0}^{t}\left|\phi_{s}\right|^{2} d s\right), \quad 0 \leqslant t \leqslant T
$$

is a uniformly integrable martingale.
(2) Thanks to the reverse Hölder inequality, there exists $p>1$ such that $\mathcal{E}_{T} \in L^{p}$. The maximal p with this property can be expressed in terms of the BMO norm of Φ.

Theorem (Briand, Confortola (2008), Ankirchner and al. (2007))

We suppose that

$$
\begin{aligned}
|f(t, x, y, z)| \leqslant & M_{f}\left(1+|y|+|z|^{2}\right), \\
\left|f(t, x, y, z)-f\left(t, x^{\prime}, y^{\prime}, z^{\prime}\right)\right| \leqslant & K_{f, x}\left|x-x^{\prime}\right|+K_{f, y}\left|y-y^{\prime}\right| \\
& +\left(K_{f, z}+L_{f, z}\left(|z|+\left|z^{\prime}\right|\right)\right)\left|z-z^{\prime}\right|, \\
|g(x)| \leqslant & M_{g} .
\end{aligned}
$$

The SDE-BSDE system has a unique solution (X, Y, Z) such that $\mathbb{E}\left[\sup _{t \in[0, T]}|X|^{2}\right]<+\infty, Y$ is a bounded measurable process and $\mathbb{E}\left[\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right]<+\infty$. The martingale $Z * W$ belongs to the space of BMO martingales and $\|Z * W\|_{B M O}$ only depends on T, M_{g} and M_{f}. Moreover, there exists $r>1$ such that $\mathcal{E}(Z * W) \in L^{r}$.

Proposition (Briand, Confortola (2008), Ankirchner and al. (2007))

If we denote $\left(Y^{i}, Z^{i}\right)$ the solution of a BSDE with a terminal condition g_{i} and a driver f_{i}, then we have

$$
\begin{aligned}
& \mathbb{E}\left[\sup _{t \in[0, T]}\left|Y_{t}^{1}-Y_{t}^{2}\right|^{2}\right]+\mathbb{E}\left[\int_{0}^{T}\left|Z_{s}^{1}-Z_{s}^{2}\right|^{2} d s\right] \\
& \leqslant \mathbb{E}\left[\left|g_{1}\left(X_{T}\right)-g_{2}\left(X_{T}\right)\right|^{2 q}+\left(\int_{0}^{T}\left|\left(f_{1}-f_{2}\right)\left(s, X_{s}, Y_{s}^{2}, Z_{s}^{2}\right)\right| d s\right)^{2 q}\right]^{1 / q} .
\end{aligned}
$$

where $1 / r+1 / q=1$.

Goal

The aim of our work is to give a time discretization scheme for quadratic BSDEs, and to obtain a "good" convergence rate for this scheme.

The exponential transformation

When the generator has the specific form

$$
f(t, x, y, z)=I(t, x, y)+a(t, z)+\frac{\gamma}{2}|z|^{2},
$$

with a and / Lipschitz functions and a homogeneous with respect to z, it is possible to use an exponential transform (also known as the Cole-Hopf transformation) : $\left(e^{\gamma Y}, \gamma e^{\gamma Y} Z\right)$ is the solution of a BSDE with a driver of linear growth. See P. Imkeller, G. dos Reis and J. Zhang [2010].

g Lipschitz

Proposition

If g is a Lipschitz function with a Lipschitz constant K_{g} and σ does not depend on x, then, $\forall t \in[0, T]$,

$$
\left|Z_{t}\right| \leqslant C\left(1+K_{g}\right)
$$

In this situation the driver becomes a Lipschitz function with respect to z, and so we are allowed to use the classical discrete time approximation.

If g is α-Hölder, we have an explicit uniform Lipschitz approximation g_{N} of g with $K_{g_{N}}=N$. Then we do an approximation of (Y, Z) by the solution $\left(Y^{N}, Z^{N}\right)$ to the BSDE

$$
Y_{t}^{N}=g_{N}\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}^{N}, Z_{s}^{N}\right) d s-\int_{t}^{T} Z_{s}^{N} d W_{s}
$$

- Thanks to BMO tools we have an error estimate for this approximation: $C N^{\frac{-\alpha}{1-\alpha}}$.
- We also need to have the error estimate for the time approximation of our BSDE with linear growth: $C e^{C N^{2}} n^{-1}$.
Finally, if we take $N=\left(\frac{C}{\varepsilon} \log n\right)^{1 / 2}$ with ε small, then the global error bound becomes

$$
C_{\varepsilon}(\log n)^{\frac{-\alpha}{2(1-\alpha)}}
$$

Truncated BSDE

An other idea is to do an approximation of (Y, Z) by the solution $\left(Y^{N}, Z^{N}\right)$ to the truncated BSDE

$$
Y_{t}^{N}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}^{N}, h_{N}\left(Z_{s}^{N}\right)\right) d s-\int_{t}^{T} Z_{s}^{N} d W_{s}
$$

where $h_{N}: \mathbb{R}^{1 \times d} \rightarrow \mathbb{R}^{1 \times d}$ is a smooth modification of the projection on the open Euclidean ball of radius N about 0 . An error estimate is obtain by P. Imkeller and G. dos Reis [2009], but the same drawback appears.

A time-dependent estimate of Z

Theorem (Delbaen, Hu, Bao (2010), R. (2010))

We suppose that b is differentiable with respect to x and σ is differentiable with respect to t. There exists $\lambda \in \mathbb{R}^{+}$such that $\forall \eta \in \mathbb{R}^{d}$

$$
\begin{equation*}
\left|{ }^{t} \eta \sigma(s)\left[{ }^{t} \sigma(s)^{t} \nabla b(s, x)-{ }^{t} \sigma^{\prime}(s)\right] \eta\right| \leqslant \lambda\left|{ }^{t} \eta \sigma(s)\right|^{2} . \tag{3.1}
\end{equation*}
$$

Moreover, suppose that g is lower (or upper) semi-continuous. Then, $\forall t \in[0, T$,

$$
\left|Z_{t}\right| \leqslant C_{z}+C_{z}^{\prime}(T-t)^{-1 / 2} .
$$

Sketch of the proof (1/2)

We suppose that

- f does not depends on x and y ,
- g is C^{1} with respect to x and f is C^{1} with respect to z.

Then Y and Z are differentiable with respect to x the initial condition of X, and

$$
\begin{aligned}
\nabla Y_{t} & =\nabla g\left(X_{T}\right) \nabla X_{T}+\int_{t}^{T} \nabla_{z} f \nabla Z_{s} d s-\int_{t}^{T} \nabla Z_{s} d W_{s} \\
& =\nabla g\left(X_{T}\right) \nabla X_{T}-\int_{t}^{T} \nabla Z_{s} d \tilde{W}_{s}
\end{aligned}
$$

That is to say ∇Y is a \mathbb{Q}-martingale.

Sketch of the proof (2/2)

Thanks to the Malliavin calculus we have :
$Z_{t}=\nabla Y_{t}\left(\nabla X_{t}\right)^{-1} \sigma(t)$. By applying the Itô formula to the process $\left|e^{\lambda t} \nabla Y_{t}\left(\nabla X_{t}\right)^{-1} \sigma(t)\right|^{2}$, we show that $\left|e^{\lambda t} Z_{t}\right|^{2}$ is a \mathbb{Q}-submartingale. Finally
$e^{2 \lambda t}\left|Z_{t}\right|^{2}(T-t) \leqslant \mathbb{E}^{\mathbb{Q}}\left[\int_{t}^{T} e^{2 \lambda_{s}}\left|Z_{s}\right|^{2} d s \mid \mathcal{F}_{t}\right] \leqslant e^{2 \lambda T}\|Z\|_{B M O(\mathbb{Q})}$.

Remark

This type of estimation is well known in the case of drivers with linear growth as a consequence of the Bismut-Elworthy formula. In our case, σ does not depends on x but we do not need to suppose that σ is invertible.

How can we use this time-dependent estimate of Z ?

In the Lipschitz case, to obtain a bound for the error

$$
\sup _{0 \leqslant k \leqslant n} \mathbb{E}\left[\left|Y_{t_{k}}^{n}-Y_{t_{k}}\right|^{2}\right]
$$

we show such an estimate :

$$
\mathbb{E}\left[\left|Y_{t_{k}}^{n}-Y_{t_{k}}\right|^{2}\right] \leqslant\left(1+C h+K_{f, z}^{2} h\right) \mathbb{E}\left[\left|Y_{t_{k+1}}^{n}-Y_{t_{k+1}}\right|^{2}\right]+h
$$

and then we use the Gronwall's lemma.

How can we use this time-dependent estimate of Z ?

In our case we have
$\mathbb{E}\left[\left|Y_{t_{k}}^{n}-Y_{t_{k}}\right|^{2}\right] \leqslant\left(1+C\left(t_{k}-t_{k+1}\right)+K \frac{t_{k+1}-t_{k}}{T-t_{k+1}}\right) \mathbb{E}\left[\left|Y_{t_{k+1}}^{n}-Y_{t_{k+1}}\right|^{2}\right]+h$.
So, the idea is to find a new time net such that $\frac{t_{k+1}-t_{k}}{T-t_{k+1}}$ is a constant : We define the n first discretization times by

$$
t_{k}=T\left(1-\left(\frac{\varepsilon}{T}\right)^{k /(n-1)}\right) .
$$

ε is a parameter : $t_{n-1}=T-\varepsilon$. We will set $\varepsilon:=T / n^{2}$ with a a parameter.

How can we use this time-dependent estimate of Z ?

Lemma

$$
\prod_{i=0}^{n-2}\left(1+C\left(t_{i+1}-t_{i}\right)+K \frac{t_{i+1}-t_{i}}{T-t_{i+1}}\right) \leqslant C n^{a K}
$$

Our algorithm (1/2)

Due to technical reason, we have to approximate our BSDE by an other one. Let $\left(Y_{t}^{N, \varepsilon}, Z_{t}^{N, \varepsilon}\right)$ the solution of the BSDE

$$
\begin{equation*}
Y_{t}^{N, \varepsilon}=g_{N}\left(X_{T}\right)+\int_{t}^{T} f^{\varepsilon}\left(s, X_{s}, Y_{s}^{N, \varepsilon}, Z_{s}^{N, \varepsilon}\right) d s-\int_{t}^{T} Z_{s}^{N, \varepsilon} d W_{s} \tag{3.2}
\end{equation*}
$$

with

$$
f^{\varepsilon}(s, x, y, z):=\mathbb{1}_{s<T-\varepsilon} f(s, x, y, z)+\mathbb{1}_{s \geqslant T-\varepsilon} f(s, x, y, 0),
$$

and g_{N} a N-Lipschitz approximation of g.

Our algorithm (2/2)

We denote $\rho_{s}: \mathbb{R}^{1 \times d} \rightarrow \mathbb{R}^{1 \times d}$ the projection on the ball

$$
B\left(0, C_{z}+\frac{C_{z}^{\prime}}{(T-s)^{1 / 2}}\right) .
$$

Finally we denote ($Y^{N, \varepsilon, n}, Z^{N, \varepsilon, n}$) our time approximation of $\left(Y^{N, \varepsilon}, Z^{N, \varepsilon}\right)$. This couple is obtained by a slight modification of the classical dynamic programming equation :
$Y_{t_{n}}^{N, \varepsilon, n}=g_{N}\left(X_{t_{n}}^{n}\right)$
$Z_{t_{k}}^{N, \varepsilon, n}=\rho_{t_{k+1}}\left(\frac{1}{h_{k}} \mathbb{E}_{t_{k}}\left[Y_{t_{k+1}}^{N, \varepsilon, n}\left(W_{t_{k+1}}-W_{t_{k}}\right)\right]\right), \quad 0 \leqslant k \leqslant n-1$,
$Y_{t_{k}}^{N, \varepsilon, n}=\mathbb{E}_{t_{k}}\left[Y_{t_{k+1}}^{N, \varepsilon, n}\right]+h_{k} \mathbb{E}_{t_{k}}\left[f\left(t_{k}, X_{t_{k}}^{n}, Y_{t_{k+1}}^{N, \varepsilon, n}, Z_{t_{k}}^{N, \varepsilon, n}\right)\right], \quad 0 \leqslant k \leqslant n-$

A first speed of convergence

Theorem

Let us recall that $\varepsilon=T / n^{a}$. We set $N=n^{b}$. We assume that g is α-Hölder. Then we can set a and b such that for all $\eta>0$, there exists a constant $C_{\eta}>0$ that verifies

$$
\sup _{0 \leqslant k \leqslant n} \mathbb{E}\left[\left|Y_{t_{k}}^{N, \varepsilon, n}-Y_{t_{k}}\right|^{2}\right]+\sum_{k=0}^{n-1} \mathbb{E}\left[\int_{t_{k}}^{t_{k+1}}\left|Z_{t_{k}}^{N, \varepsilon, n}-Z_{t}\right|^{2} d t\right] \leqslant \frac{C_{\eta}}{n^{p}}
$$

where

$$
p=\frac{2 \alpha}{(2-\alpha)(2+K(1+\eta))-2+2 \alpha} .
$$

K is an explicit constant. It depends on constants that appear in assumptions on g and f.

A better speed of convergence

Theorem

If, moreover, b is bounded, then we can take K as small as we want :

$$
\sup _{0 \leqslant k \leqslant n} \mathbb{E}\left[\left|Y_{t_{k}}^{N, \varepsilon, n}-Y_{t_{k}}\right|^{2}\right]+\sum_{k=0}^{n-1} \mathbb{E}\left[\int_{t_{k}}^{t_{k+1}}\left|Z_{t_{k}}^{N, \varepsilon, n}-Z_{t}\right|^{2} d t\right] \leqslant \frac{C_{\eta}}{n^{\alpha-\eta}}
$$

References (1/2)

囯 P. Briand and F. Confortola.
BSDEs with stochastic Lipschitz condition and quadratic PDEs in Hilbert spaces.
Stochastic Process. Appl., 118(5) :818-838, 2008.
目 P. Imkeller and G. dos Reis.
Path regularity and explicit convergence rate for bsde with truncated quadratic growth.
Stochastic Process. Appl., In Press, Corrected Proof, 2009.
F. Delbaen, Y. Hu, and X. Bao.

Backward SDEs with superquadratic growth.
To appear in Probab. Theory Related Fields, 2009.

References (2/2)

A. R.,

Numerical simulation of BSDEs with drivers of quadratic growth.

```
arXiv :1001.0401v2
```

