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Let (Ω,F ,P) be a probability space, (Wt )t∈R+ be a Brownian motion
in Rd , (Ft )t∈R+ be his augmented natural filtration, T be a
nonnegative real number. We consider an SDE

Xt = x +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs,

with standard assumptions on b and σ, and a Markovian BSDE

Yt = g(XT ) +

∫ T

t
f (s,Xs,Ys,Zs)ds −

∫ T

t
ZsdWs.

Definition

A solution to this BSDE is a pair of processes (Yt ,Zt )06t6T such that :

1 (Y ,Z ) is a predicable process with values in R× R1×d ,

2 P− a.s. t 7→ Yt is continuous and∫ T
0 |f (r ,Xr ,Yr ,Zr )|+ ‖Zr‖2 dr <∞

Adrien Richou Numerical simulation of quadratic BSDEs



Introduction
Different ideas for simulation

A new scheme

(Markovian) BSDEs
Simulation
Quadratic BSDEs

Let (Ω,F ,P) be a probability space, (Wt )t∈R+ be a Brownian motion
in Rd , (Ft )t∈R+ be his augmented natural filtration, T be a
nonnegative real number. We consider an SDE

Xt = x +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs,

with standard assumptions on b and σ, and a Markovian BSDE

Yt = g(XT ) +

∫ T

t
f (s,Xs,Ys,Zs)ds −

∫ T

t
ZsdWs.

Definition

A solution to this BSDE is a pair of processes (Yt ,Zt )06t6T such that :

1 (Y ,Z ) is a predicable process with values in R× R1×d ,

2 P− a.s. t 7→ Yt is continuous and∫ T
0 |f (r ,Xr ,Yr ,Zr )|+ ‖Zr‖2 dr <∞

Adrien Richou Numerical simulation of quadratic BSDEs



Introduction
Different ideas for simulation

A new scheme

(Markovian) BSDEs
Simulation
Quadratic BSDEs

Theorem (Pardoux-Peng 1990)

Let us assume that f is a Lipschitz function with respect to y and z
and E

[
|g(XT )|2 +

∫ T
0 |f (r ,Xr ,0,0)|2dr

]
<∞. Then the previous

equation has a unique solution (Y ,Z ) such that

E
[

sup
0≤t≤T

|Yt |2
]
<∞, E

[ ∫ T

0
|Zt |2dt

]
<∞.
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Time discretization

We consider a time discretization of the BSDE. We denote the
time step by h = T/n and (tk = kh)06k6n stands for the
discretization times. For X we take the Euler scheme :

X n
0 = x

X n
tk+1

= X n
tk + hb(tk ,X n

tk ) + σ(tk ,X n
tk )(Wtk+1 −Wtk ), 0 6 k 6 n.

For (Y ,Z ) we use the classical dynamic programming equation

Y n
tn = g(X n

tn )

Z n
tk =

1
h

Etk [Y n
tk+1

(Wtk+1 −Wtk )], 0 6 k 6 n − 1,

Y n
tk = Etk [Y n

tk+1
] + hEtk [f (tk ,X n

tk ,Y
n
tk+1

,Z n
tk )], 0 6 k 6 n − 1,

where Etk stands for the conditional expectation given Ftk .
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Remarks on simulation

the dynamic programming equation is obtained by
minimizing the difference

E
[
(Y n

tk+1
+ hEtk f (tk ,X n

tk ,Y
n
tk+1

,Z )− Y − Z (Wtk+1 −Wtk ))2
]

over Ftk -measurable squared integrable random variables
(Y ,Z ).
After time discretization, we need to use a spatial
discretization in order to compute conditional expectation.
We suppose that g and f are Lipschitz functions with
respect to x , y , z and t . If we define the error

e(n) = sup
06k6n

E
∣∣Y n

tk − Ytk

∣∣2 + E
n−1∑
k=0

∫ tk+1

tk

∣∣Z n
tk − Zt

∣∣2 dt

then e(n) = O(1/n).
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References for simulation

See, for exemple :
B. Bouchard, N. Touzi [2004],
J. Zhang [2005],
E. Gobet, J.P. Lemor, X. Warin [2005],
F. Delarue, S. Menozzi [2006].
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Quadratic BSDEs

What happened if f has a quadratic growth with respect to z ?
when g is bounded : existence and uniqueness results
have been proved by M. Kobylanski [2000].
when g is unbounded : an existence result has been
proved by P. Briand and Y. Hu [2006], partial uniqueness
results has been proved by P. Briand and Y. Hu [2008], F.
Delbaen, Y. Hu and A. R. [2010].

Such BSDEs have applications in finance : this class arises, for
example, in the context of utility optimization problems with
exponential utility functions (see e.g. Y. Hu, P. Imkeller and M.
Müller [2005]).
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BMO tool

Definition

For a brownian martingale Φt =
∫ t

0 φsdWs, t ∈ [0,T ], we say
that Φ is a BMO martingale if

‖Φ‖BMO = sup
τ∈[0,T ]

E

[∫ T

τ
φ2

sds

∣∣∣∣∣Fτ
]1/2

< +∞,

where the supremum is taken over all stopping times in [0,T ].
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BMO tool

the very important feature of BMO martingales is the following
lemma :

Lemma
Let Φ be a BMO martingale. Then we have :

1 The stochastic exponential

E(Φ)t = Et = exp
(∫ t

0
φsdWs −

1
2

∫ t

0
|φs|2 ds

)
, 0 6 t 6 T ,

is a uniformly integrable martingale.
2 Thanks to the reverse Hölder inequality, there exists p > 1

such that ET ∈ Lp. The maximal p with this property can be
expressed in terms of the BMO norm of Φ.
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Theorem (Briand, Confortola (2008), Ankirchner and al. (2007))
We suppose that

|f (t , x , y , z)| 6 Mf (1 + |y |+ |z|2),

|f (t , x , y , z)− f (t , x ′, y ′, z ′)| 6 Kf ,x |x − x ′|+ Kf ,y |y − y ′|
+(Kf ,z + Lf ,z(|z|+ |z ′|)) |z − z ′| ,

|g(x)| 6 Mg .

The SDE-BSDE system has a unique solution (X ,Y ,Z ) such
that E[supt∈[0,T ] |X |

2] < +∞, Y is a bounded measurable

process and E[
∫ T

0 |Zs|2 ds] < +∞. The martingale Z ∗W
belongs to the space of BMO martingales and ‖Z ∗W‖BMO
only depends on T , Mg and Mf . Moreover, there exists r > 1
such that E(Z ∗W ) ∈ Lr .
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Proposition (Briand, Confortola (2008), Ankirchner and al.
(2007))

If we denote (Y i ,Z i) the solution of a BSDE with a terminal
condition gi and a driver fi , then we have

E[ sup
t∈[0,T ]

∣∣Y 1
t − Y 2

t

∣∣2] + E[

∫ T

0

∣∣Z 1
s − Z 2

s

∣∣2 ds]

6 E

|g1(XT )− g2(XT )|2q +

(∫ T

0

∣∣(f1 − f2)(s,Xs,Y 2
s ,Z

2
s )
∣∣ds

)2q
1/q

.

where 1/r + 1/q = 1.
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Goal

The aim of our work is to give a time discretization scheme for
quadratic BSDEs, and to obtain a “good” convergence rate for
this scheme.
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The exponential transformation

When the generator has the specific form

f (t , x , y , z) = l(t , x , y) + a(t , z) +
γ

2
|z|2 ,

with a and l Lipschitz functions and a homogeneous with
respect to z, it is possible to use an exponential transform (also
known as the Cole-Hopf transformation) : (eγY , γeγY Z ) is the
solution of a BSDE with a driver of linear growth. See P.
Imkeller, G. dos Reis and J. Zhang [2010].
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g Lipschitz

Proposition
If g is a Lipschitz function with a Lipschitz constant Kg and σ
does not depend on x, then, ∀t ∈ [0,T ],

|Zt | 6 C(1 + Kg).

In this situation the driver becomes a Lipschitz function with
respect to z, and so we are allowed to use the classical
discrete time approximation.
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If g is α-Hölder, we have an explicit uniform Lipschitz
approximation gN of g with KgN = N. Then we do an
approximation of (Y ,Z ) by the solution (Y N ,Z N) to the BSDE

Y N
t = gN(XT ) +

∫ T

t
f (s,Xs,Y N

s ,Z
N
s )ds −

∫ T

t
Z N

s dWs.

Thanks to BMO tools we have an error estimate for this
approximation : CN

−α
1−α .

We also need to have the error estimate for the time
approximation of our BSDE with linear growth : CeCN2

n−1.
Finally, if we take N = (C

ε log n)1/2 with ε small, then the global
error bound becomes

Cε(log n)
−α

2(1−α) .
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Truncated BSDE

An other idea is to do an approximation of (Y ,Z ) by the
solution (Y N ,Z N) to the truncated BSDE

Y N
t = g(XT ) +

∫ T

t
f (s,Xs,Y N

s ,hN(Z N
s ))ds −

∫ T

t
Z N

s dWs,

where hN : R1×d → R1×d is a smooth modification of the
projection on the open Euclidean ball of radius N about 0.
An error estimate is obtain by P. Imkeller and G. dos Reis
[2009], but the same drawback appears.
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A time-dependent estimate of Z

Theorem (Delbaen, Hu, Bao (2010), R. (2010))
We suppose that b is differentiable with respect to x and σ is
differentiable with respect to t. There exists λ ∈ R+ such that
∀η ∈ Rd∣∣∣tησ(s)[tσ(s)t∇b(s, x)− t

σ′(s)]η
∣∣∣ 6 λ

∣∣tησ(s)
∣∣2 . (3.1)

Moreover, suppose that g is lower (or upper) semi-continuous.
Then, ∀t ∈ [0,T [,

|Zt | 6 Cz + C′z(T − t)−1/2.
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Sketch of the proof (1/2)

We suppose that
f does not depends on x and y,
g is C1 with respect to x and f is C1 with respect to z.

Then Y and Z are differentiable with respect to x the initial
condition of X , and

∇Yt = ∇g(XT )∇XT +

∫ T

t
∇z f∇Zsds −

∫ T

t
∇ZsdWs

= ∇g(XT )∇XT −
∫ T

t
∇ZsdW̃s.

That is to say ∇Y is a Q-martingale.
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Sketch of the proof (2/2)

Thanks to the Malliavin calculus we have :
Zt = ∇Yt (∇Xt )

−1σ(t). By applying the Itô formula to the
process

∣∣eλt∇Yt (∇Xt )
−1σ(t)

∣∣2, we show that
∣∣eλtZt

∣∣2 is a
Q-submartingale. Finally

e2λt |Zt |2 (T−t) 6 EQ

[∫ T

t
e2λs |Zs|2 ds

∣∣∣∣∣Ft

]
6 e2λT ‖Z‖BMO(Q) .
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Remark

This type of estimation is well known in the case of drivers with
linear growth as a consequence of the Bismut-Elworthy
formula. In our case, σ does not depends on x but we do not
need to suppose that σ is invertible.
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How can we use this time-dependent estimate of Z ?

In the Lipschitz case, to obtain a bound for the error

sup
06k6n

E
[∣∣Y n

tk − Ytk

∣∣2]
we show such an estimate :

E
[∣∣Y n

tk − Ytk

∣∣2] 6 (1 + Ch + K 2
f ,zh)E

[∣∣∣Y n
tk+1
− Ytk+1

∣∣∣2]+ h

and then we use the Gronwall’s lemma.
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How can we use this time-dependent estimate of Z ?

In our case we have

E
[∣∣Y n

tk − Ytk

∣∣2] 6 (1+C(tk−tk+1)+K
tk+1 − tk
T − tk+1

)E
[∣∣∣Y n

tk+1
− Ytk+1

∣∣∣2]+h.

So, the idea is to find a new time net such that tk+1−tk
T−tk+1

is a
constant : We define the n first discretization times by

tk = T
(

1−
( ε

T

)k/(n−1)
)
.

ε is a parameter : tn−1 = T − ε. We will set ε := T/na with a a
parameter.
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How can we use this time-dependent estimate of Z ?

Lemma
n−2∏
i=0

(
1 + C(ti+1 − ti) + K

ti+1 − ti
T − ti+1

)
6 CnaK .
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Our algorithm (1/2)

Due to technical reason, we have to approximate our BSDE by
an other one. Let (Y N,ε

t ,Z N,ε
t ) the solution of the BSDE

Y N,ε
t = gN(XT ) +

∫ T

t
f ε(s,Xs,Y

N,ε
s ,Z N,ε

s )ds −
∫ T

t
Z N,ε

s dWs.

(3.2)
with

f ε(s, x , y , z) := 1s<T−εf (s, x , y , z) + 1s>T−εf (s, x , y ,0),

and gN a N-Lipschitz approximation of g.
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Our algorithm (2/2)

We denote ρs : R1×d → R1×d the projection on the ball

B
(

0,Cz +
C′z

(T − s)1/2

)
.

Finally we denote (Y N,ε,n,Z N,ε,n) our time approximation of
(Y N,ε,Z N,ε). This couple is obtained by a slight modification of
the classical dynamic programming equation :

Y N,ε,n
tn = gN(X n

tn )

Z N,ε,n
tk = ρtk+1

(
1
hk

Etk [Y N,ε,n
tk+1

(Wtk+1 −Wtk )]

)
, 0 6 k 6 n − 1,

Y N,ε,n
tk = Etk [Y N,ε,n

tk+1
] + hkEtk [f (tk ,X n

tk ,Y
N,ε,n
tk+1

,Z N,ε,n
tk )], 0 6 k 6 n − 1.
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A first speed of convergence

Theorem

Let us recall that ε = T/na. We set N = nb. We assume that g
is α-Hölder. Then we can set a and b such that for all η > 0,
there exists a constant Cη > 0 that verifies

sup
06k6n

E
[∣∣∣Y N,ε,n

tk − Ytk

∣∣∣2]+
n−1∑
k=0

E

[∫ tk+1

tk

∣∣∣Z N,ε,n
tk − Zt

∣∣∣2 dt

]
6

Cη
np ,

where
p =

2α
(2− α)(2 + K (1 + η))− 2 + 2α

.

K is an explicit constant. It depends on constants that appear in
assumptions on g and f .
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A better speed of convergence

Theorem
If, moreover, b is bounded, then we can take K as small as we
want :

sup
06k6n

E
[∣∣∣Y N,ε,n

tk − Ytk

∣∣∣2]+
n−1∑
k=0

E

[∫ tk+1

tk

∣∣∣Z N,ε,n
tk − Zt

∣∣∣2 dt

]
6

Cη
nα−η

,
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