
Semigroups and stochastic partial (pseudo)
differential equations on measure spaces

M. Zähle (joint work with M. Hinz)

(University of Jena)

Marie Curie ITN Workshop on Stochastic Control and Finance
Roscoff, March 18-23, 2010



1. Introduction

[X, X, µ] σ-finite measure space (or a certain locally finite metric
measure space)
consider the formal Cauchy problem on [0, T ]×X

∂u

∂t
= −Aθu + F (u) + G(u) · ∂Z∗

∂t
, t ∈ (0, T ] , (1)

with initial condition u(0, x) = f(x), where
I −A is the generator of an ultracontractive strongly continuous

Markovian symmetric semigroup (Pt)t≥0 on L2(µ)
I Aθ, θ ≤ 1, is a fractional power of A

I F and G are sufficiently regular functions on R
I Z∗ is a random element in C1−α

(
[0, T ],Hθβ

2,∞(µ)∗
)

(resp. in
C1−α

(
[0, T ],Hθβ

q (µ)∗
)
)

I f ∈ H2γ+θβ+ε
2,∞ (µ)

Aim: pathwise mild function solution u ∈ W γ
(
[0, T ],Hθδ

2,∞(µ)
)
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for θ = 1 mild solution defined by

u(t, x) = Ptf(x) +
∫ t

0

Pt−sF (u(s, ·)(x)) ds

+
∫ t

0

Pt−s

(
G(u(s, ·)) · ∂Z∗

∂s
(s)

)
(x)ds

the last formal integral to be determined,
for θ < 1 use the subordinated semigroup P θ with generator −Aθ instead
of Pt

Main ideas:
I the smoothness is measured in terms of potential spaces Hσ

2 (µ)
generated by the semigroup, and the latter lifts certain dual spaces
to function spaces,

I the paraproduct is introduced by duality relations
I the time integral is realized by means of Banach space valued

fractional calculus
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our approach is independent of series expansions

Related literature: Gubinelli, Lejay, Tindel 2006

dU(t) = AU(t) + G(U(t)) dX(t) , U(0) = U0 ,

U(t) = PtU0 +
∫ t

0

Pt−sG(U(s)) dX(s) , t ≤ T

(semigroups Pt in Banach spaces B, potential spaces Bα = Dom(Aα),
the noise process X takes values in B∗α, G as mapping from
Bδ 7→ L(B∗α, Bρ) satisfying some Lipschitz conditions, the time integral
is realized as Young integral, solution U ∈ Cκ([0, T ], Bδ) for certain
parameters)

abstract approach, application to the above situation yields some partial
results
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2. Bessel potential spaces associated with semigroups on
(metric) measure spaces

Main assumptions:
I ((X, µ) σ-finite measure space (resp.(X, d, µ) locally compact

metric measure space, µ Radon measure, X = suppµ)) admitting a
I strongly continuous Markov semigroup (Pt)t≥0 on L2(µ) (with

transition density pt(x, y))
I

Pt = e−At , −A infinitesimal generator ,

I Pt is ultracontractive: ||Pt||2→∞ ≤ const t−dS/4, dS spectral
dimension of the semigroup (the transition densities possess
sub-Gaussian estimates)
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Fractional powers of A are determined by:

Aαu = const(α, l)
∫ ∞

0

t−α−1(I − Pt)lu dt

for l > α > 0 and

A−αϕ = Γ(α)−1

∫ ∞

0

tα−1Ptϕ dt

for α > 0 and all ϕ ∈ L2(µ) if 0 is in the resolvent of A

define for σ ≥ 0 and some ω > 0:
Bessel potential operators: (take e−ωtPt instead of Pt)

Jσ := (ωI + A)−σ/2

Bessel potential spaces: Hσ
2 (µ) := Jσ(L2(µ)) with norm

||u||Hσ
2 (µ) := ||(ωI + A)σ/2(u)||L2(µ) ∼ ||u||L2(µ) + ||Aσ/2(u)||L2(µ)

(resp. for all p > 1, Hσ
p (µ) := Jσ(Lp(µ)) with norm

||u||Hσ
p (µ) := ||(ωI + A)σ/2(u)||Lp(µ) ∼ ||u||Lp(µ) + ||Aσ/2(u)||Lp(µ) )
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we also consider the spaces

Hσ
A,∞(µ) := Hσ

A(µ) ∩ L∞(µ)

with norm
||u||Hσ

A,∞
(µ) := ||u||Hσ

A(µ) + ||u||L∞(µ)

Dual spaces:

H−σ
2,∞(µ) := Hσ

2,∞(µ)∗ (resp. H−σ
p (µ) := Hσ

p (µ)∗ )

by duality the operators Jσ(µ) can be extended to the dual spaces and
act isomorphically:

Jα
: Hβ

2 (µ) 7→ Hβ+α
2 (µ) , α, β ∈ R

and
PtJ

σ u = JσPt u

for σ ≥ 0, and thus the semigroup can be extended to the dual spaces
with the above equality for σ ∈ R
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act isomorphically:

Jα
: Hβ

2 (µ) 7→ Hβ+α
2 (µ) , α, β ∈ R

and
PtJ

σ u = JσPt u

for σ ≥ 0, and thus the semigroup can be extended to the dual spaces
with the above equality for σ ∈ R
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mapping properties of Pt in the above spaces are implied
(for L∞ properties the ultracontractivity is needed, fulfilled for many
examples, classical and fractal cases)

Application to parabolic SPDE on fractals:
I up to on certain fractals mainly elliptic (and some parabolic) PDE

with respect to Laplace operators have been considered (Falconer,
Hu, Grigoryan, Koshnevisan, ...), without noise terms

I fractal Laplacians: Lindstrøm, Barlow, Bass, Kusuoka, Strichartz,
Kigami and many others)

I these fractals are special metric measure spaces fulfilling the above
assumptions,

our pathwise approach to the above parabolic equations with random
noise is related to some methods from the Euclidean case (Hinz, Z.: J.
Funct. Anal. 2009) and results on generalized Bessel potential spaces
(Hu, Z. : Studia Math. 2005, Potential Anal. 2009)
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3. Rigorous definition and solution of the stochastic partial
(pseudo) differential equation

general situation as above: (Pt) with generator −A (or P θ
t with generator

−Aθ instead);
recall that u is a mild solution of the Cauchy problem (1) if

u(t, x) = Ptf(x) +
∫ t

0

Pt−sF (u(s, ·)(x)) ds

+
∫ t

0

Pt−s

(
G(u(s, ·)) · ∂Z∗

∂s
(s)

)
(x) ds

rewrite the last formal integral as∫ t

0

Φt(s)
(

∂Z∗

∂s
(s)

)
(x)ds

where
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Φt(s)(w) := Pt−s (G(u(s, ·) · w) is for u ∈ Hδ
2,∞(µ) shown to be a

mapping
Φt : [0, T ] → L

(
Hρ

2,∞(µ)∗,Hδ
2,∞(µ)

)
(for some ρ) with fractional order of smoothness α′ slightly larger than α,
by assumption Z∗ has fractional order of smoothness 1− α′, so that we
can define∫ t

0

Φt(s)
(

∂Z∗

∂s
(s)

)
ds :=

∫ t

0

Dα′

0+Φt(s)
(
D1−α′

t− Z∗t

)
ds

for left and right sided fractional derivatives Dα′

0+ and D1−α′

t− (and
Z∗t := Z∗ − Z∗(t−))

If the noise coefficient function G is linear, in the metric case the
L∞-norms can be omitted. This leads to solutions for all spectral
dimensions: 0 < θ ≤ 1

Theorem. If 0 < α, β, γ, δ, ε < 1, β < δ and 2γ + θδ < 2(1− α)− θβ,
then problem (1) has a unique mild solution u ∈ W γ

(
[0, T ],Hθδ

2 (µ)
)
.

||u||W γ([0,T ],H) := sup
0≤t≤T

(
||u(t)||H +

∫ t

0

||u(t)− u(s)||H
(t− s)γ+1

ds

)
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In the general case we prove a contraction principle for the mild solution
of (1) in W γ

(
[0, T ],Hθδ

2,∞(µ)
)

under some additional conditions on the
parameters α, β, γ, δ involving the spectral dimension dS , which can be
satisfied only for dS < 2.

For the metric case with nonlinear G such a result remains true for
dS < 4 and Hθδ

2 (µ) (without the spatial sup-norm).

Standard example for Z∗: let {ei}i∈N be a complete orthonormal
system of eigenfunctions of A in L2(µ) (if exist) and λi be the
corresponding eigenvalues, {BH

i (t)}i∈N are i.i.d fractional Brownian
motions with Hurst exponent 0 < H < 1, and take for Z∗ the formal
series

bH
t :=

∞∑
i=1

BH
i (t) qi ei with

∞∑
i=1

q2
i λ−2β′

i < ∞ ,

for real coefficients qi, then

Z∗ = bH ∈ C1−α
(
[0, T ],Hβ

q (µ)∗
)

for any 0 < 1− α < H, 0 < β′ < β < 1, and q > 1 (convergence of the
series in these spaces)
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