NA2 (discrete time)

NFL2(continuous time

Roscoff, March 19, 2010

NFL2

Yuri Kabanov

Laboratoire de Mathématiques, Université de Franche-Comté

March 19, 2010

Outline

NA2 (discrete time)

Example

Two-asset 1-period model : $S_0^1 = S_0^2 = 1$, $S_1^1 = 1$, S_1^2 takes values $1 + \varepsilon$ and $1 - \varepsilon > 0$ with probabilities 1/2. The filtration is generated by S. $K_0^* = \operatorname{cone} \{ (1,2), (2,1) \}, K_1^* = \mathbf{R}_+ \mathbf{1}.$ Then $\hat{K}_1^* = \mathbf{R}_+ S_1.$ The process Z with $Z_0 = (1, 1)$ and $Z_1 = S_1$ is a strictly consistent price system, so the NA^{w} -property holds. Let $v \in C$ where $C^* = \operatorname{cone} \{(1, 1 + \varepsilon), (1, 1 - \varepsilon)\} \subseteq K_1$. For $\varepsilon \in [0, 1/2]$ the cone C is strictly larger than $K_0 = K_0$. The investor the initial endowment $v \in C \setminus K_0$ will solvent at T = 1 though not solvent at the date zero. One can introduce small transaction costs at time T = 1 to get the same conclusion for a model with efficient friction.

NA2 (discrete time)

Arbitrage of the second kind Setting

Let $G = (G_t)$, t = 0, 1, ..., T, be an adapted cone-valued process, $A_s^T := \sum_{t=s}^T L^0(-G_t, \mathcal{F}_t).$

The models admits arbitrage opportunities of the 2nd kind if there exist $s \leq T - 1$ and an \mathcal{F}_s -measurable d-dimensional random variable ξ such that $\Gamma := \{\xi \notin G_s\}$ is not a null-set and

$$(\xi + A_s^T) \cap L^0(G_T, \mathcal{F}_T) \neq \emptyset,$$

i.e. $\xi = \xi_s + ... + \xi_T$ for some $\xi_t \in L^0(G_t, \mathcal{F}_t)$, $s \le t \le T$. If such ξ does exist then, in the financial context where $G = \widehat{K}$, an investor having $I_{\Gamma}\xi$ as the initial endowments at time s, may use the strategy $(I_{\Gamma}\xi_t)_{t>s}$ and get rid of all debts at time T.

NA2 property Rasonyi theorem (2008)

The model has no arbitrage opportunities of the 2nd kind (i.e. has the NA2-property) if s and $\xi \in L^0(\mathbb{R}^d, \mathcal{F}_s)$ the intersection $(\xi + A_s^T) \cap L^0(G_T, \mathcal{F}_T)$ is non-empty only if $\xi \in L^0(G_s, \mathcal{F}_s)$. Alternatively, the NA2-property can be expressed as :

$$L^0(\mathbf{R}^d,\mathcal{F}_s)\cap (-A_s^T)=L^0(G_s,\mathcal{F}_s)\qquad \forall s\leq T.$$

Theorem

Suppose that the efficient friction condition is fulfilled, i.e. $G_t \cap (-G_t) = \{0\}$ and $\mathbf{R}^d_+ \subseteq G_t$ for all t. Then the following conditions are equivalent :

(b)
$$L^0(\mathsf{R}^d,\mathcal{F}_s)\cap L^0(\mathcal{G}_{s+1},\mathcal{F}_s)\subseteq L^0(\mathcal{G}_s,\mathcal{F}_s)$$
 for all $s< T$;

(c) cone int
$$E(G^*_{s+1} \cap \overline{\mathcal{O}}_1(0) | \mathcal{F}_s) \supseteq$$
 int G^*_s (a.s.) for all $s < T$;

(d) for any s < T and $\eta \in L^1(\text{int } G_s^*, \mathcal{F}_s)$ there is $Z \in \mathcal{M}'_s(\text{int } G^*)$ such that $Z_s = \eta$ (**PCV** - "Prices are consistently extendable".)

Tools Conditional expectations

A subset $\Xi \in L^p$ is called *decomposable* if with two its elements ξ_1, ξ_2 it contains also $\xi_1 I_A + \xi_2 I_{A^c}$ whatever is $A \in \mathcal{F}$.

Proposition

Let Ξ be a closed subset of $L^p(\mathbf{R}^d)$, $p \in [0, \infty[$. Then $\Xi = L^p(\Gamma)$ for some Γ which values are closed sets if and only if Ξ is decomposable, .

Proposition

Let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . Let Γ be a measurable mapping which values are non-empty closed convex subsets of $\overline{\mathcal{O}}_1(0) \subset \mathbf{R}^d$. Then there is a \mathcal{G} -measurable mapping, $E(\Gamma|\mathcal{G})$, which values are non-empty convex compact subsets of $\overline{\mathcal{O}}_1(0)$ and the set of its \mathcal{G} -measurable a.s. selectors coincides with the set of \mathcal{G} -conditional expectations of a.s. selectors of Γ .

Outline

Model

 We are given set-valued adapted processes G = (G_t)_{t∈[0,T]} and G^{*} = (G^{*}_t)_{t∈[0,T]} whose values are closed cone in ℝ^d,

$$G_t^*(\omega) = \{y: yx \ge 0 \ \forall x \in G_t(\omega)\}.$$

"Adapted" means that

$$\{(\omega, x) \in \Omega imes \mathbb{R}^d : x \in G_t(w)\} \in \mathcal{F}_t \otimes \mathcal{B}^d.$$

- G_t are proper (EF-condition) : G_t ∩ (−G_t) = {0}.
 We assume also that G_t dominate ℝ^d₊, i.e. G^{*}\{0} ⊂ int ℝ^d₊.
- In financial context $G_t = \widehat{K}_t$, the solvency cone in physical units.
- For each $s \in]0, T]$ we are given a convex cone \mathcal{Y}_s^T of optional \mathbb{R}^d -valued processes $Y = (Y_t)_{t \in [s,T]}$ with $Y_s = 0$.
- Assumption : if sets $A^n \in \mathcal{F}_s$ form a countable partition of Ω and $Y^n \in \mathcal{Y}_s^T$, then $\sum_n Y^n I_{A^n} \in \mathcal{Y}_s^T$.

NA2 (discrete time)

Notations

for d-dimensional processes Y and Y' the relation Y ≥_G Y' means Y_t - Y'_t ∈ G_t a.s. for every t;

•
$$\mathbf{1} = (1,...,1) \in \mathbb{R}^d_+$$
 ;

• $\mathcal{Y}_{s,b}^{T}$ denotes the subset of \mathcal{Y}_{s}^{T} formed by the processes Y dominated from below : $Y_{t} + \kappa \mathbf{1} \in G_{t}$ for some constant κ ;

•
$$\mathcal{Y}_{s,b}^{\mathcal{T}}(\mathcal{T})$$
 is the set of random variables $Y_{\mathcal{T}}$ where $Y \in \mathcal{Y}_{s,b}^{\mathcal{T}}$;

•
$$\frac{\mathcal{A}_{s,b}^{\mathsf{T}}(\mathsf{T})}{\mathcal{A}_{s,b}^{\mathsf{T}}(\mathsf{T})} = (\mathcal{Y}_{s,b}^{\mathsf{T}}(\mathsf{T}) - \mathcal{L}^{0}(\mathsf{G}_{\mathsf{T}},\mathcal{F}_{\mathsf{T}})) \cap \mathcal{L}^{\infty}(\mathbb{R}^{d},\mathcal{F}_{\mathsf{T}}) \text{ and }$$
$$\frac{\mathcal{A}_{s,b}^{\mathsf{T}}(\mathsf{T})}{\mathcal{A}_{s,b}^{\mathsf{T}}(\mathsf{T})}^{\mathsf{w}} \text{ is its closure in } \sigma\{\mathcal{L}^{\infty},\mathcal{L}^{1}\};$$

• $\mathcal{M}_{s}^{\mathcal{T}}(G^{*})$ is the set of martingales $Z = (Z_{t})_{t \in [s,T]}$ evolving in G^{*} , i.e. such that $Z_{t} \in L^{1}(G_{t}^{*}, \mathcal{F}_{t})$.

Conditions

Standing Hypotheses

- $\mathbf{S}_1 \ E \xi Z_T \leq 0$ for all $\xi \in \mathcal{Y}_{s,b}^T(T)$, $Z \in \mathcal{M}_s^T(G^*)$, $s \in [0, T[$. • $\mathbf{S}_{s+1+s} \ I^{\infty}(-C - \mathcal{T}) \subset \mathcal{Y}_s^T(T)$ for each $s \in [0, T]$.
- $\mathbf{S}_2 \cup_{t \geq s} L^{\infty}(-G_t, \mathcal{F}_t) \subseteq \mathcal{Y}_{s,b}^{\mathcal{T}}(\mathcal{T})$ for each $s \in [0, \mathcal{T}]$.

Properties of Interest

- NFL $\overline{\mathcal{A}_{s,b}^{T}(T)}^{w} \cap L^{\infty}(\mathbb{R}^{d}_{+},\mathcal{F}_{T}) = \{0\}$ for each $s \in [0,T[.$
- **NFL2** For each $s \in [0, T[$ and $\xi \in L^{\infty}(\mathbb{R}^{d}, \mathcal{F}_{s})$

$$(\xi + \overline{\mathcal{A}_{s,b}^{\mathsf{T}}(\mathsf{T})}^{\mathsf{w}}) \cap L^{\infty}(\mathbb{R}^{d}_{+}, \mathcal{F}_{\mathsf{T}}) \neq \emptyset$$

only if $\xi \in L^{\infty}(G_s, \mathcal{F}_s)$.

- MCPS For any $\eta \in L^1(\text{int } G_s^*, \mathcal{F}_s)$, there is $Z \in \mathcal{M}_s^T(G^* \setminus \{0\})$ with $Z_s = \eta$.
- **B** If ξ is an \mathcal{F}_s -measurable \mathbb{R}^d -valued random variable such that $Z_s \xi \ge 0$ for every $Z \in \mathcal{M}_s^T(G^*)$, then $\xi \in G_s$.

FTAP

Theorem

$\mathsf{NFL} \Leftrightarrow \mathcal{M}_0^T(G^* \setminus \{0\}) \neq \emptyset.$

Proof. (\Leftarrow) Let $Z \in \mathcal{M}_0^T(G^* \setminus \{0\})$. Then the components of Z_T are strictly positive and $EZ_T \xi > 0$ for all $\xi \in L^{\infty}(\mathbb{R}^d_+, \mathcal{F}_T)$ except $\xi = 0$. On the other hand, $E\xi Z_T \leq 0$ for all $\xi \in \mathcal{Y}_{\epsilon,b}^{T}(T)$ and so for all $\xi \in \overline{\mathcal{A}_{a,b}^{T}(T)}^{W}$. (\Rightarrow) The Kreps–Yan theorem on separation of closed cones in $L^{\infty}(\mathbb{R}^d, \mathcal{F}_T)$ implies the existence of $\eta \in L^1(\operatorname{int} \mathbb{R}^d_+, \mathcal{F}_T)$ such that $E\xi\eta \leq 0$ for every $\xi \in \overline{\mathcal{A}_{s.b}^{T}(T)}^{w}$, hence, by virtue of the hypothesis **S**₂, for all $\xi \in L^{\infty}(-G_t, \mathcal{F}_t)$. Let us consider the martingale $Z_t = E(\eta | \mathcal{F}_t), t \geq s$, with strictly positive components. Since $EZ_t \xi = E\xi \eta \ge 0$, $t \ge s$, for every $\xi \in L^{\infty}(G_t, \mathcal{F}_t)$, it follows that $Z_t \in L^1(G_t, \mathcal{F}_t)$ and, therefore, $Z \in \mathcal{M}_{\epsilon}^T(G^* \setminus \{0\})$.

Main Result

Theorem

The following relations hold :

 $\text{MCPS} \Rightarrow \{\text{B}, \ \mathcal{M}_0^{\mathcal{T}}(\mathcal{G}^* \backslash \{0\}) \neq \emptyset\} \Leftrightarrow \{\text{B}, \ \text{NFL}\} \Leftrightarrow \text{B} \Leftrightarrow \text{NFL2}.$

If, moreover, the sets $\mathcal{Y}_{s,b}^{T}(T)$ are Fatou-closed for any $s \in [0, T[$. Then all five conditions are equivalent.

In the above formulation the Fatou-closedness means that the set $\mathcal{Y}_{s,b}^{T}(T)$ contains the limit on any a.s. convergent sequence of its elements provided that the latter is bounded from below in the sense of partial ordering induced by G_{T} .

$$\mathbf{B}^{\rho}$$
 If $\xi \in L^{0}(\mathbb{R}^{d}, \mathcal{F}_{s})$ and $Z_{s}\xi \geq 0$ for any $Z \in \mathcal{M}_{s}^{T}(G^{*})$ with $Z_{T} \in L^{\rho}$, then $\xi \in G_{s}$ (a.s.), $s = 0, ..., T$.

NAA^{*p*}
$$\overline{\mathcal{A}_{0,b}^{\mathcal{T}}(\mathcal{T})}^{L^{p}} \cap L^{p}(\mathbb{R}^{d}_{+},\mathcal{F}_{\mathcal{T}}) = \{0\}.$$

Lemma

The conditions NAA^p for $p \in [1, \infty[$ are measure-invariant and any of them is equivalent to NAA^0 as well as to the condition NFL (which, in turn, is equivalent, to the existence of a bounded process Z in $\mathcal{M}_s^T(G^* \setminus \{0\})$.

NAA2
p
 For each $s=0,1,...,T-1$ and $\xi\in L^\infty(\mathrm{R}^d,\mathcal{F}_s)$

$$(\xi + \overline{\mathcal{A}_{s,b}^{T}(T)}^{L^{p}}) \cap L^{0}(\mathbb{R}^{d}_{+}, \mathcal{F}_{T}) \neq \emptyset$$

only if $\xi \in L^{\infty}(G_s, \mathcal{F}_s)$.

Lemma

The conditions NAA2^{*p*} for $p \in [1, \infty[$ are measure-invariant and any of them is equivalent to NAA2⁰ as well as to the condition NFL2 (which, in turn, is equivalent to the condition B).

Thus, for the discrete-time model with efficient friction

$$\mathsf{MCPS} \Leftrightarrow \{\mathsf{B}, \ \mathcal{M}_0^{\mathcal{T}}({\mathcal{G}}^* \backslash \{0\}) \neq \emptyset\} \Leftrightarrow \{\mathsf{B}, \ \mathsf{NFL}\} \Leftrightarrow \mathsf{B} \Leftrightarrow \mathsf{NFL2}$$

Formally, all properties above are different from those in the Rásonyi theorem **PCE** \Leftrightarrow **NA2**. Recall that $A_s^T := \sum_{t=s}^T L^0(-G_t, \mathcal{F}_t)$ and **NA2** For each $s \in [0, T[$ and $\xi \in L^0(\mathbb{R}^d, \mathcal{F}_s)$

$$(\xi + A_s^T) \cap L^0(\mathbf{R}^d_+, \mathcal{F}_T) \neq \emptyset$$

only if $\xi \in L^0(G_s, \mathcal{F}_s)$.

However, this equivalence follows from two simple observations. First, **NFL2** \Leftrightarrow **NA2**. Indeed, due to the coincidence of L^0 -closures of A_s^T and $A_s^T(T)$, **NFL2** is equivalent to :

NA2' For each $s \in [0, T[$ and $\xi \in L^0(\mathbb{R}^d, \mathcal{F}_s)$

$$(\xi + \overline{A_s^T}^{L^0}) \cap L^0(\mathbf{R}^d_+, \mathcal{F}_T) \neq \emptyset$$

only if $\xi \in L^0(G_s, \mathcal{F}_s)$.

This us approperty stronger than **NGV**. On the other hand, successive application of **NGV** in combination with the efficient friction condition implies that the identity $\sum_{t=s}^{T} \xi_t = 0$ with $\xi_t \in L^0(-G_t, \mathcal{F}_t)$ may hold only if all $\xi_t = 0$. But it is well-known that in such a case A_s^T is closed in L^0 .

Second, **PCE** \Leftrightarrow **MCPS**. The implication \Rightarrow is trivial. The inverse implication can be proven by backward induction. Indeed, for s = T there is nothing to prove. Suppose that for $s = t + 1 \leq T$ the claim holds. In particular, there is $\tilde{Z} \in \mathcal{M}_{t+1}^T(\operatorname{int} G)$ with $|\tilde{Z}_{t+1}| = 1$. Put $\tilde{Z}_t := E(\tilde{Z}_{t+1}|\mathcal{F}_t)$. Let $\eta \in L^1(\mathcal{F}_t, G_t)$ with $|\eta| = 1$. Take α be the \mathcal{F}_t -measurable random variable equal to the half of the distance of η_t to ∂G_t . Then $\eta - \alpha \tilde{Z}_t \in L^1(\operatorname{int} G_t, \mathcal{F}_t)$. By **MCPS** there exists $Z \in \mathcal{M}_t^T(G \setminus \{0\})$ with $Z_t \in \mathcal{M}_t^T(G \setminus \{0\})$ and $Z_t = \eta - \alpha \tilde{Z}_t$. Since $Z + \alpha \tilde{Z} \in \mathcal{M}_t^T(\operatorname{int} G)$ and $Z_t + \alpha \tilde{Z}_t = \eta$, we conclude.