
Background of the problem
BSDEs with Markov Chains

BSDEs with Singularly Perturbed Markov Chains
Application: Homogenization of Systems of PDEs

BSDEs with Markov Chains and The Application:
Homogenization of Systems of PDEs

Zhen WU

School of Mathematics,
Shandong University, Jinan 250100, China.

Email: wuzhen@sdu.edu.cn

joint with Dr. Huaibin TANG
INRIA-IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

Brest, March, 2010

1 / 52



Background of the problem
BSDEs with Markov Chains

BSDEs with Singularly Perturbed Markov Chains
Application: Homogenization of Systems of PDEs

Main results in this talk:

we consider one kind of backward stochastic differential
equations (BSDEs in short) where the coefficient f is affected by a
Markovian switching.

1. Theoretical result:
1) We obtain the existence and uniqueness results for the

solution to this kind of BSDEs.
2) We get the weak convergence result of BSDEs with a

singular-perturbed Markov chain which is involved in a large state
space.

2. Application: homogenization of one system of PDE.
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Background

1. BSDEs:

Bismut (1973): stemmed BSDEs from stochastic control
problem.

Pardoux & Peng (1990, 1991): general BSDEs driven by
Brownian motion and probabilistic representation of PDE.

Tang & Li (1994), Barles, Buchdahn & Pardoux (1997):
BSDEs with respect to both a Brownian motion and a Poisson
random measure.

Nualart & Schoutens (2001), Bahlali, Eddahbi & Essaky
(2003): BSDEs driven by a Lévy process.

4 / 52



Background of the problem
BSDEs with Markov Chains

BSDEs with Singularly Perturbed Markov Chains
Application: Homogenization of Systems of PDEs

2. Singularly perturbed Markov chains:

Zhang and Yin (1998): consider the Markov chain involved
in a large state space, they introduced a small parameter (ε > 0)
to highlight the contrast between the fast and slow transitions
among different Markovian states and lead the Markov chain to a
singularly perturbed one with two time-scale: the actual time t and
the stretched time t

ε . As ε → 0, the asymptotic probability
distribution of such Markov chain can be studied.

Zhang and Yin (1999, 2004): Applications in optimal
control problem and mathematical finance: finding the
near-optimal control of random-switching LQ optimal control
problem, and nearly optimal asset allocation in hybrid stock
investment models.
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Our question:
BSDEs with singular-perturbed Markov chains and their

application.
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BSDEs with Markov Chains

(Ω,F , P ), T > 0, {Ht, 0 ≤ t ≤ T}.
M2
Ht

(0, T ;Rn): ϕ = {ϕt; t ∈ [0, T ]} satisfying

E
∫ T
0 |ϕt|2dt < ∞;

S2
Ht

(0, T ;Rn): ϕ = {ϕt; t ∈ [0, T ]} satisfying
E(sup0≤t≤T |ϕt|2) < ∞.

B: B0 = 0, d-dimensional Ht-Brownian motion.
α: continuous-time Markov chain independent of B with the

state space M = {1, 2, . . . ,m}.
Let N denote the class of all P -null sets of F . Denote

Ft = FB
t ∨ Fα

t,T ∨N .

Denote M2(0, T ;Rn) = M2
Ft

(0, T ;Rn) and S2(0, T ;
Rn) = S2

Ft
(0, T ;Rn).

Remark: {Ft; 0 ≤ t ≤ T} is neither increasing nor decreasing,
and it does not constitute a filtration.
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Suppose the generator of the Markov chain Q = (qij)m×m is
given by

P{α(t +4) = j|α(t) = i} =
{

qij4+ o(4), if i 6= j,
1 + qij4+ o(4), if i = j,

where 4 > 0. Here qij ≥ 0 is the transition rate from i to j if
i 6= j, while qii = −

∑m
j=1,i6=j qij .

The generator Q is called weakly irreducible if the system of
equations νQ = 0 and

∑m
i=1 νi = 1 has a unique nonnegative

solution. This nonnegative solution ν = (ν1, · · · , νm) is called the
quasi-stationary distribution of Q.
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Motivation

Some references can be seen Zhang and Yin(1999), Li and
Zhou(2002) and Zhou and Yin(2003)

Consider the following stochastic LQ control problem with
Markov jumps

min J(v(·)) =
1
2
E

{∫ T

0
[x′tR(t, αt)xt + v′tN(t, αt)vt]dt + x′T Q(αT )xT

}
s.t.

{
dxt = [A(t, αt)xt + B(t, αt)vt] dt + [C(t, αt)xt + D(t, αt)vt]dBt,
x0 = x ∈ Rn,

Admissible controls set: Uad ≡ M2
Ht

(0, T ;Rnu×d).

Our aim is to find an admissible control u(·) such that

J(u(·)) = inf
v∈Uad

J(v(·)).
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Here, we use FBSDE to derive its optimal control:

Theorem 2.1 For any admissible control v(·), if the
following FBSDE admits a unique solution (xv

t , y
v
t , zv

t )
dxv

t = [A(t, αt)xv
t + B(t, αt)vt]dt + [C(t, αt)xv

t + D(t, αt)vt]dBt,
−dyv

t = [A′(t, αt)yv
t + C ′(t, αt)zv

t + R(t, αt)xv
t ]dt− zv

t dBt,
xv

0 = x, yv
T = Q(αT )xv

T

Then there exists a unique optimal control for the above LQ
problem

u(t) = −N−1(t, αt)[B′((t, αt))yt + D′(t, αt)zt].

Here (xt, yt, zt) is the solution of FBSDE with respect to the
control u(·).
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BSDEs with Markov Chains

Firstly, we will study the following BSDEs with Markov chains

Yt = ξ +
∫ T

t
f(s, Ys, Zs, αs)ds−

∫ T

t
ZsdBs. (1)

Assumption 2.1
(i) ξ ∈ L2(FT ;Rk);
(ii) f : Ω× [0, T ]×Rk ×Rk×d ×M→ Rk satisfies that

∀ (y, z) ∈ Rk ×Rk×d, ∀i ∈M, f(·, y, z, i) ∈ M2
FB

t
(0, T ;Rk), and

f(t, y, z, i) is uniformly Lipschitz continuous with respect to y and
z, i.e., ∃ µ > 0, such that ∀ (ω, t) ∈ Ω× [0, T ], (y1, z1),
(y2, z2) ∈ Rk ×Rk×d,

|f(t, y1, z1, i)− f(t, y2, z2, i)| ≤ µ(|y1 − y2|+ |z1 − z2|).
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Theorem 2.2 Under Assumption 2.1, there is a unique solution
pair (Y, Z) ∈ S2(0, T ;Rk)×M2(0, T ;Rk×d) for BSDE (1).

The following extension of Itô’s martingale representation
theorem and its corollary play key role during the proof of this
theorem.

Proposition 2.1 Define a filtration (Gt)0≤t≤T by Gt = FB
t ∨ Fα

T

where α and B are independent with each other. For M ∈ L2(GT ;
Rk), there exists a unique random variable M0 ∈ L2(Fα

T ;Rk) and
a unique stochastic process
Z = {Zt; 0 ≤ t ≤ T} ∈ M2

Gt
(0, T ;Rk×d) such that

M = M0 +
∫ T

0
ZtdBt, 0 ≤ t ≤ T.

Actually, M0 = E[M |Fα
T ].
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Corollary 2.1 For t ≤ T , we consider the filtration (Ns)t≤s≤T

defined by Ns = FB
s ∨ Fα

t,T . For M ∈ L2(NT ;Rk), there exist

Mt ∈ L2(Fα
t,T ∨ FB

t ;Rk) and a unique stochastic process

Z = {Zs; t ≤ s ≤ T} ∈ M2
Ns

(t, T ;Rk×d) such that

M = Mt +
∫ T

t
ZsdBs.

Proof of Theorem 2.2 Firstly, we will introduce a new
filtration. Define the filtration (Gt)0≤t≤T by

Gt , FB
t ∨ Fα

T ∨N .
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Combing with extension of Itô’s martingale representation
theorem (Proposition 2.1), we can show that BSDE

Yt = ξ +
∫ T

t
f(s, αs)ds−

∫ T

t
ZsdBs, 0 ≤ t ≤ T,

has a solution pair (Y, Z) ∈ S2(0, T ;Rk)×M2(0, T ;Rk×d).
One technical difficulty is to prove that the processes

Y = {Yt; 0 ≤ t ≤ T} and Z = {Zt; 0 ≤ t ≤ T} are Ft-measurable,
i.e. FB

t ∨ Fα
t,T -measurable. We used Doob’s martingale

convergence theorem and gave the careful analysis for the
σ-algebra generated by the (discrete time sequences) Markov
chains and Brownian motion, then get the desired conclusion.
Similar technique can be seen in Pardoux and Peng(1994).

With the fixed point method, we can get the corresponding
result for the general case. 2
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As a corollary, we give an estimation of the solution.
Corollary 2.2 Under Assumption 2.1, we have the following

estimation for the solution of BSDE (1)

E

(
sup

0≤t≤T
|Yt|2 +

∫ T

0
Z2

t dt

)
≤ CE

(
|ξ|2 +

∫ T

0
|f(t, 0, 0, αt)|2dt

)
.

Applying Itô’s formula, Schwartz’s inequality, Gronwall’s
lemma and Burkholder-Davis-Gundy inequality, we can get the
proof.
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Preliminary of Singularly Perturbed Markov Chains

Consider the case that the Markov chain has a large state
space which can be divided into a number of weakly irreducible
classes such that it fluctuates rapidly among different states in a
weakly irreducible class, and jumps less frequently among weakly
irreducible classes.

To distinguish the fast transitions from the slow transitions
among different states, Zhang & Yin (1998) showed that one
can introduce a small parameter ε > 0 which leads to a singularly
perturbed system involving two-time scales (actual time t and the
stretched time t

ε).
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For a continuous-time ε-dependent singularly perturbed
Markov chain αε = {αε

t ; 0 ≤ t ≤ T} which have the generator

Qε =
1
ε
Q̃ + Q̂, where Q̃ and Q̂ are time-invariant generators. Here

Q̃ = diag(Q̃1, · · · , Q̃l). For k ∈ {1, · · · , l}, Q̃k is the weakly
irreducible generator corresponding to the states in
Mk = {sk1, · · · , skmk

}. The state space can be decomposed as
M = {1, 2, · · · ,m} = M1 ∪ · · · ∪Ml.

The generator Q̃ dictates the fast motion of the Markov chain
and Q̂ governs the slow motion. That means that the slow and
fast components are coupled through weak and strong interactions
in the sense that the underlying Markov chain fluctuates rapidly in
a single group Mk and jumps less frequently among groups Mk

and Mj for k 6= j. The states in Mk , k = 1, · · · , l, are not
isolated or independent of each other.
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More precisely, if we consider the states in Mk as a “single”
state, then the transition rate between these “states” are described
by the element of matrix Q̂.

As one aggregate the states in Mk as a single state, all such
states are coupled by Q̂. So we can define an aggregated process
ᾱε = {ᾱε

t ; 0 ≤ t ≤ T} by ᾱε
t = k, when αε

t ∈Mk.

As shown in the following Proposition 3.1, the process ᾱε is
not necessarily Markovian, but it converges weakly to a continuous
time Markov chain ᾱ.
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Proposition 3.1 (Zhang and Yin(1998))
(i) ᾱε converges weakly to ᾱ generated by

Q̄ = diag(ν1, · · · , νl)Q̂diag(Im1 , · · · , Iml
),

as ε → 0, where νk is the quasi-stationary distribution of Q̃k,
k = 1, · · · , l, and Ik = (1, · · · , 1)′ ∈ Rk.
(ii) For any bounded deterministic function β(·),

E

[∫ T

s
(I{αε

t=skj} − νk
j I{ᾱε

t=k})β(t)dt

]2

= O(ε),

∀ k = 1, · · · , l,∀ j = 1, · · · ,mk.
Here IA is the indicator function of a set A.
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We can see that Q̂ together with the quasi-stationary
distributions of Q̃k, k = 1, · · · , l, determine the transition’s
probability among states in Mk, for k = 1, · · · , l. The probability
distribution of the underlying Markov chain will quickly reach a
stationary regime determined by Q̃. And the influence of Q̂ takes
over subsequently.

23 / 52



Background of the problem
BSDEs with Markov Chains

BSDEs with Singularly Perturbed Markov Chains
Application: Homogenization of Systems of PDEs

Preliminary
BSDEs with singularly perturbed Markov chains

As an obviously result of Lemma 7.3 in Zhang & Yin
(2004), we have

Proposition 3.2 Suppose (i) g(t, x) is a function defined on
[0, T ]×Rm satisfying that g(·, ·) is Lipschitz continuous with x
and ∀ x ∈ Rm, either |g(t, x)| ≤ K(1 + |x|) or |g(t, x)| ≤ K;
(ii) a sequence of stochastic process indexed by ε, {xε

t ; 0 ≤ t ≤ T}
is in M2

Ft
(0, T ;Rm) and there exists a constant C > 0 such that

E(sup0≤t≤T |xε
t |2) ≤ C.

Denote πε
ij(t) = πε

ij(t, α
ε
t ), with πε

ij(t, α) = I{α=sij}−
νi

jI{α∈Mi}, then for any k = 1, · · · , l, j = 1, · · · ,mk,

sup
0<t≤T

E

∣∣∣∣∫ t

0
g(t, xε

s)π
ε
ij(s, α

ε
s)ds

∣∣∣∣→ 0, as ε → 0.
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BSDEs with singularly perturbed Markov chains

Denote D(0, T ;Rk) be the space of càdlàg trajectories
endowed with the “ Meyer-Zheng” topology, i.e., the topology of
convergence in dt-measure.

Consider the following BSDE with a singularly perturbed
Markov chain

Y ε
t = ξ +

∫ T

t
f(s, Y ε

s , αε
s)ds−

∫ T

t
Zε

sdBs,

Set M ε
t =

∫ t
0 Zε

sdBs, we can rewrite the above BSDE as

Y ε
t = ξ +

∫ T

t
f(s, Y ε

s , αε
s)ds− (M ε

T −M ε
t ), (2)
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Our aim: show that (Y ε,M ε) converges weakly “in the
sense of Meyer-Zheng” if we equip the space of paths with the
topology of convergence in dt-measure.

Since it is hard to show that the sequence (Zε) is tight, here,
we will restrict that the generator f does not depend on Z.

Firstly, we make the following assumption:

Assumption 3.1
(i) ξ ∈ L2(FB

T ;Rk).
(ii) For f : [0, T ]×Rk ×M→ Rk, there exists a constant C > 0
such that sup

0≤t≤T
1≤i≤m

|f(t, 0, i)| ≤ C.
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Our main result here is the following theorem:

Theorem 3.1 Under Assumption 2.1 and Assumption 3.1, the
sequence of process (Y ε

t ,
∫ T
t Zε

sdBs) converges in law to the

process (Yt,
∫ T
t ZsdBs) as ε → 0, when probability measures on

C(0, T ;R2k) equipped with the topology of convergence in dt
measure. Here (Y, Z) is the solution pair to the following BSDE
with an averaged Markov chain

Yt = ξ +
∫ T

t
f̄(s, Ys, ᾱs)ds−

∫ T

t
ZsdBs, (3)

ᾱ is the averaged Markov chain, and f̄(s, y, i) =
mi∑
j=1

νi
jf(t, y, sij)

for i ∈ M̄ = {1, · · · , l}. Moreover, as ε → 0, the Fαε

T -measurable
random variables sequence (Y ε

0 ) converges in law to the random
variable Y0 which is F ᾱ

T -measurable.
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This proof is consisted of two steps.
Step 1: Tightness and convergence for (Y ε,M ε).
Proposition 3.3 Under Assumption 2.1 and Assumption 3.1,
BSDEs (2) and (3) have unique solutions (Y ε, Zε) and
(Y, Z) ∈ S2(0, T ;Rk) ×M2(0, T ;Rk×d), and there exists a
positive constant C which does not depend on ε, such that

E

[
sup

0≤t≤T
|Y ε

t |2 +
∫ T

0
(Zε

t )
2dt

]
≤ C,

E

[
sup

0≤t≤T
|Yt|2 +

∫ T

0
(Zt)2dt

]
≤ C.
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We need the following “Meyer-Zheng tightness criteria” given
in Meyer & Zheng (1984):

Lemma 3.1 The sequence of semi-martingale {V n
s ; 0 ≤ s ≤ t}

defined on the filtered probability spaces
(Ω, {Fs, 0 ≤ s ≤ t},F , Pn) is tight whenever

sup
n

(
sup

0≤s≤t
En|V n

s |+ CVt(V n)
)

< ∞,

where CVt(V n) denotes the “conditional variation of V n on [0, t]”
defined by

CVt(V n) = supEn

(∑
i

|En(V n
ti+1

− V n
ti |F

n
ti)|

)
,

with “sup” meaning the supremum has taken over all partitions of
the interval [0, t].
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Proposition 3.4 The sequence of (Y ε,M ε) is tight on the space
D(0, T ; Rk)×D(0, T ;Rk).
Proof: Let Gε

t = FB
t ∨ Fαε

T ∨N , we define

CVt(Y ε) = supE

(∑
i

|E(Y ε
ti+1

− Y ε
ti |G

ε
ti)|

)
,

where the supreme is over all partitions of the interval [0, T ].
Since M ε is a Gε

t -martingale, it follows that

CVt(Y ε) ≤ E

∫ T

0
|f(s, Y ε

s , αε
s)|ds.
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Thus, there exists a constant C > 0 which is independent of
ε, such that

sup
ε

E[ sup
0≤t≤T

|Y ε
t |2+ < M ε

t >] ≤ C.

It follows that

sup
ε

(
CVt(Y ε) + sup

0≤t≤T
|Y ε

t |+ sup
0≤t≤T

|M ε
t |

)
< ∞.

Hence the sequences (Y ε) and (M ε) satisfy the “Meyer-Zheng
tightness criteria” and the result is followed.2
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Step 2: Identification of the limit.

From Proposition 3.4, we know that there exists a
subsequence of (Y ε,M ε), which still denoted by (Y ε,M ε), and
which converges in law on the space D(0, T ;Rk)×D(0, T ;Rk)
towards a càdlàg process (Y, M). Furthermore, there exists a
countable subset D of [0, T ], such that (Y ε,M ε) converges in
finite-distribution to (Y, M) on Dc.
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Proposition 3.5 For the limit process (Y, M), we have
(i) For every t ∈ [0, T ]−D,

Yt = ξ +
∫ T

t
f̄(s, Ys, ᾱs)ds− (MT −Mt).

(ii) M is a Ht-martingale, where Ht = FB
t ∨ F ᾱ

T .
Proof: as ε → 0, from Proposition 3.2,

sup
0≤t≤T

∣∣∣∣E ∫ t

0
f(s, Y ε

s , sij)[I{αε
s=sij} − νi

jI{αε
s∈Mi}]ds

∣∣∣∣→ 0, .

Since as ε → 0, on C(0, T ;Rk)∫ ·

0
f̄(s, Y ε

s , ᾱs)ds converges weakly to
∫ ·

0
f̄(s, Ys, ᾱs)ds,
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and ∫ t

0
f(s, Y ε

s , αε
s)ds

=
∫ t

0

l∑
i=1

mi∑
j=1

f(s, Y ε
s , sij)I{αε

s=sij}

=
∫ t

0

l∑
i=1

mi∑
j=1

f(s, Y ε
s , sij)[I{αε

s=sij} − νi
jI{αε

s∈Mi}]ds

+
∫ t

0
f̄(s, Y ε

s , ᾱs)ds,

passing to the limit in the BSDE (2) and we can derive assertion
(i).
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Now, we prove assertion (ii).
For any 0 ≤ t1 ≤ t2 ≤ T , Φt1 is a continuous mapping from

C(0, t1;Rd)×D(0, t1;Rk)×D(0, T ;M̄). ∀ ε > 0, since M ε is a
martingale with respect to Gε

t = Fαε

T ∨ FB
t , Y ε and ᾱε are

Gε
t -adapted, we know

E

[
Φt1(B, Y ε, ᾱε)

∫ δ

0
(M ε

t2+r −M ε
t1+r)dr

]
= 0,

here B is the Brownian motion. From the weak convergence of
(Y ε, ᾱε) and the fact that E( sup

0≤t≤T
|M ε

t |2) ≤ C, we obtain

E

[
Φt1(B, Y, ᾱ)

∫ δ

0
(Mt2+r −Mt1+r)dr

]
= 0.
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Dividing the second identity by δ, letting δ → 0, and
exploiting the right continuity, we obtain that

E [Φt1(B, Y, ᾱ)(Mt2 −Mt1)] = 0.

From the freedom choice of t1, t2 and Φt1 , we deduce that M is a
Ht-martingale. 2
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We also can get

Proposition 3.6 Let {(Ȳt, Z̄t); 0 ≤ t ≤ T} be the unique solution
of BSDE (3), then ∀ t ∈ [0, T ],

E|Yt − Ȳt|2 + E

(
[M −

∫ ·

0
Z̄rdBr]T − [M −

∫ ·

0
Z̄rdBr]t

)
= 0.

Since Ȳ is continuous, Y is càdlàg and D is countable, we get
Yt = Ȳt, P−a.s., ∀ t ∈ [0, T ]. Moreover, we can deduce that
M ≡ M̄ . Hence, we get the result that the sequence
(Y ε

t ,
∫ T
t Zε

sdBs) converges in law to the process (Yt,
∫ T
t ZsdBs),

and the proof of Theorem 3.1 is completed.2
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Example 3.1: Consider the case that Q̃ is weakly irreducible with
the state space M = {1, · · · ,m} and ν = (ν1, · · · , νm) is the
quasi-stationary distribution, the corresponding BSDE is

Y ε
t = ξ +

∫ T

t
f(s, Y ε

s , αε
s)ds−

∫ T

t
Zε

sdBs. (4)

From our results, as ε → 0, the sequence of process (Y ε
t ,∫ T

t Zε
sdBs) converges in law to the process (Yt,

∫ T
t ZsdBs) , where

(Y, Z) is the unique solution to the following BSDE

Yt = ξ +
∫ T

t

m∑
i=1

νif(s, Ys, i)ds−
∫ T

t
ZsdBs. (5)

It is noted that the generator of BSDE (5) depends on the
quasi-stationary distribution of the Markov chain, instead of
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depending on the Markov chain. i.e., Y , which is the asymptotic
solution of FB

t ∨ Fαε

t,T -adapted process Y ε, is FB
t -adapted.

Example 3.2: Suppose the generator of the continuous-time

Markov chain affected BSDE (1) is Q =

−22 20 2
41 −42 1
1 2 −3

, and

the corresponding state space is M = {s1, s2, s3}. It is obvious
that the transition rate between s1 and s2 is larger than the
transition rate between s3 and other states, i.e., the jumps
between s1 and s2 are more frequent than jumps between s3 and
other states. We can rewrite Q as following:

Q =
1

0.05
Q̃ + Q̂ =

1
0.05

−1 1 0
2 −2 0
0 0 0

+

−2 0 2
1 −2 1
1 2 −3
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It is noted that we choose suitable ε to guarantee that Q̃ and Q̂ to
be the generator with the same order of magnitude. Introduce the
continuous-time ε-dependent singularly perturbed Markov chain
αε = {αε

t ; 0 ≤ t ≤ T} which have the generator

Qε =
1
ε
Q̃ + Q̂ =

1
ε

−1 1 0
2 −2 0
0 0 0

+

−2 0 2
1 −2 1
1 2 −3

 , and

define the aggregated process

ᾱε = {ᾱε
t ; 0 ≤ t ≤ T} =

{
1, αε

t ∈ {s1, s2},
2, αε

t ∈ {s3}.

Result of Zhang & Yin (1998) (Proposition 3.1) yields that ᾱε

converges weakly to a continuous-time Markov chain ᾱ generated
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by Q̄ =
(
−5

3
5
3

3 −3

)
. From our result, we can adopt the solution

of the following BSDE

Yt = ξ +
∫ T

t
f̄(s, Ys, ᾱs)ds−

∫ T

t
ZsdBs,

as an asymptotic solution of the original BSDE.

Remark: It is noted that in practical systems, the small
parameter ε is just a fixed parameter and it separates different
scales in the sense of order of magnitude in the generator. It does
not need to tend to 0.
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Background

Pardoux & Peng (1992): BSDEs provide a probabilistic
representation for the solution of PDE.

Then BSDEs provide a probabilistic tool to study the
homogenization of PDEs, which is the process of replacing
rapidly varying coefficients by new ones thus the solutions are
close. It is noted that there are two different probabilistic schemes
based on BSDEs.

Briand & Hu (1998), Buckdahn, Hu & Peng (1999):
based on a stability property of BSDEs.

Pardoux (1999), Essaky & Ouknine (2006), Bahlali,
Elouaflin & Pardoux (2009): based on the theory of weak
convergence of BSDEs under the “topology of Meyer-Zheng”
(much weaker than Skorohod’s topology), i.e., the topology of
convergence in dt-measure.
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Main results

For x ∈ Rm, consider the following sequence of semi-linear
backward PDE with a singularly perturbed Markov chain, indexed
by ε > 0,

uε(t, x) = h(x)+
∫ T

t
[Luε(r, x)+f(r, x, uε(r, x), αε

r)]dr, 0 ≤ t ≤ T.

Here αε is a singularly perturbed Markov chain,

Lu = (Lu1, · · · , Luk)
′, with L =

1
2

m∑
i,j=1

(σσ′)ij(t, x)
∂2

∂xi∂xj
+∑m

i=1 bi(t, x) ∂
∂xi

.
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We have the following homogenization result:

Theorem 4.1 Under suitable assumptions , the above PDE has a
classical solution {uε(t, x); 0 ≤ t ≤ T, x ∈ Rm}. As ε → 0, the
sequence of uε converges in law to a process u, where u(t, x) is the
classical solution of the following PDE with an averaged Markov
chain

u(t, x) = h(x)+
∫ T

t
[Lu(r, x)+ f̄(r, x, u(r, x), ᾱr)]dr, 0 ≤ t ≤ T.

Here ᾱ is the averaged Markov chain and f̄ is the average of f

defined as f̄(t, x, u, i) =
mi∑
j=1

νi
jf(t, x, u, sij), for

i ∈ M̄ = {1, · · · , l}.
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Relation between semi-linear PDEs and BSDEs with
Markov chains

The main part of the proof is to prove the relation between
semi-linear PDEs and BSDEs with Markov chains.

Ck(Rp;Rq): space of functions of class Ck from Rp to Rq,

Ck
l,b(R

p;Rq): space of functions of class Ck whose partial
derivatives of order less than or equal to k are bounded,

Ck
p (Rp;Rq): space of functions of class Ck which, together

with all their partial derivatives of order less than or equal to k,
grow at most like a polynomial function of the variable x at infinity.

Consider the following semi-linear backward PDE on
0 ≤ t ≤ T,

u(t, x) = h(x)+
∫ T

t
[Lu(r, x)+ f(r, x, u(r, x), (∇uσ)(r, x), αr)]dr,

(6)
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Firstly, we make the following assumption:

Assumption 4.1 b ∈ C3
l,b(R

m;Rm), σ ∈ C3
l,b(R

m;Rm×d),
h ∈ C3

p(Rm;Rk). f : [0, T ]×Rm ×Rk ×Rk×d ×M→ Rk,
∀ s ∈ [0, T ], ∀ i ∈M, (x, y, z) → f(s, x, y, z, i) is of class C3.

Moreover, f(s, ·, 0, 0, i) ∈ C3
p(Rm;Rk), and its first and

second order partial derivatives in y and z are bounded on
[0, T ]×Rm ×Rk ×Rk×d ×M, as well as its derivatives of order
one and two with respect to x.

Definition 4.1 A classical solution of PDE (6) is a Rk-valued
stochastic process {u(t, x); 0 ≤ t ≤ T, x ∈ Rm} which is in
C0,2([0, T ]×Rm;Rk) and satisfies that u(t, x) is Fα

t,T -measurable,
for all (t, x).
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∀ t ∈ [0, T ], x ∈ Rm, we introduce the following SDE and
BSDE with a Markov chain on t ≤ s ≤ T

Xt,x
s = x +

∫ s

t
b(Xt,x

r )dr +
∫ s

t
σ(Xt,x

r )dBr, (7)

Y t,x
s = h(Xt,x

T ) +
∫ T

s
f(r, Xt,x

r , Y t,x
r , Zt,x

r , αr)dr −
∫ T

s
Zt,x

r dBr

(8)

For s ≤ t, define Xt,x
s = Xt,x

s∨t, Y t,x
s = Y t,x

s∨t and Zt,x
s = 0,

then (X, Y, Z) = (Xt,x
s , Y t,x

s , Zt,x
s ) is defined on (s, t) ∈ [0, T ]2.
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We can show that, under above assumptions, the FBSDE
(7)-(8) provides both a probabilistic representation and the unique
classical solution to PDE (6).

Theorem 4.2 Under Assumption 4.1, let
{u(t, x); 0 ≤ t ≤ T, x ∈ Rm} be a classical solution of PDE (6),
and suppose that there exists a constant C such that,

|u(t, x)|+ |∂xu(t, x)σ(t, x)| ≤ C(1 + |x|), ∀ (t, x) ∈ [0, T ]×Rm,

then(
Y t,x

s = u(s,Xt,x
s ), Zt,x

s = ∂xu(s,Xt,x
s )σ(s,Xt,x

s ); t ≤ s ≤ T
)

is

the unique solution of BSDE (8), here (Xt,x
s ; t ≤ s ≤ T ) is the

solution to SDE (7).
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Now we will deduce the converse side of Theorem 4.2.

Theorem 4.3 Suppose that for some p > 0, E|h(x)|p

+E
∫ T
0 |f(t, x, 0, 0, α)|dt < ∞, then under Assumption 4.1, the

process {u(t, x) = Y t,x
t ; 0 ≤ t ≤ T, x ∈ Rm} is the unique classical

solution to PDE (6).
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The proof is mainly depends on the following two propositions
about the regularity of the solution of BSDE (8).

Proposition 4.1 {Y t,x
s ; (s, t) ∈ [0, T ]2, x ∈ Rm} has a version

whose trajectories belong to C0,0,2([0, T ]2 ×Rm). Hence for all
t ∈ [0, T ], x → Y t,x

t is of class C2 a.s..

Proposition 4.2 {Zt,x
s ; (s, t) ∈ [0, T ]2, x ∈ Rm} has an a.s.

continuous version which is given by
Zt,x

s = ∇Y t,x
s (∇Xt,x

s )−1σ(Xt,x
s ). In particular, Zt,x

t = ∇Y t,x
t σ(x).

Here

(
∇Y t,x

s =
∂Y t,x

s

∂x
,∇Zt,x

s =
∂Zt,x

s

∂x

)
is the unique solution to

∇Y t,x
s =h′(Xt,x

T )∇Xt,x
T +

∫ T

s
[f ′x(r, Xt,x

r , Y t,x
r , Zt,x

r , αr)∇Xt,x
r

+ f ′y(r, X
t,x
r , Y t,x

r , Zt,x
r , αr)∇Y t,x

r

+ f ′z(r, X
t,x
r , Y t,x

r , Zt,x
r , αr)∇Zt,x

r ]dr −
∫ T

s
Zt,x

r dBr.
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Thank you!
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