
KRULL DIMENSION OF THE ENVELOPING ALGEBRA OF A

SEMISIMPLE LIE ALGEBRA

THIERRY LEVASSEUR

Abstract. Let g be a complex semisimple Lie algebra and U(g) be its envelop-

ing algebra. We deduce from the work of R. Bezrukavnikov, A. Braverman and
L. Positselskii that the Krull-Gabriel-Rentschler dimension of U(g) is equal to

the dimension of a Borel subalgebra of g.

1. Introduction

The Krull(-Gabriel-Rentschler) dimension of a ring R was introduced in [3] and
is denoted by KdimR. Let g be a semisimple complex Lie algebra and U(g) be
its enveloping algebra. It has been conjectured that KdimU(g) is equal to dim b
where b is a Borel subalgebra of g. It is easy to see that KdimU(g) > dim b;
indeed, this follows from the fact U(g) is a free (left) module over U(b) and that
KdimU(b) = dim b, see §2. The opposite inequality is therefore the hard part of
the conjecture.

P. Smith [10] proved the conjecture for g = sl(2,C). Let G be a simply connected
semisimple complex algebraic group with Lie algebra g, U be a maximal unipotent
subgroup of G and set X = G/U (the “basic affine space”). In [7] it was shown
that the conjecture would follow from KdimD(X) 6 dimX, where D(X) is the
ring of globally defined differential operators on X (in the sense of [5]). This result
was established in [7] when g is a direct sum of copies of sl(2,C), and in [8] when
g = sl(3,C). Up to now, these were the only cases known and no progress was
made on the conjecture.

The difficulty in the study of D(X) comes from the fact that D(X) = D(X) for
some singular variety X. Recently R. Bezrukavnikov, A. Braverman and L. Posit-
selskii were able to prove, among other things, that D(X) is a Noetherian ring. This
is deduced from the existence of a finite set {Fw}w∈W (W being the Weyl group of
g) of automorphisms of D(X) such that: for every D(X)-module M 6= 0, there ex-
ists a twist MFw of M such that the localization OX⊗O(X)M

Fw is non zero. In this
note we want to explain how this result easily implies that KdimD(X) 6 dimX,
and, consequently, KdimU(g) = dim b.

2. Krull dimension

The definitions and general results related to Krull dimension can be found in
[9, Chapter 6] and we will simply quote a few facts that we need.
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Recall that the deviation of a partially ordered set (poset) (A,4) is defined
(when it exists) as follows:

· dev ∅ = −∞;
· devA = 0 if and only if A satisfies the descending chain condition;
· devA = α (some ordinal) if devA 6= β for β < α, and if (ai)i∈N is a

descending chain in A, then there exists i0 such that dev{x ∈ A : ai < x <
ai+1} < α for all i > i0.

For the proof of the next lemma, see [9, 6.1.5, 6.1.6].

Lemma 2.1. (a) Let B ↪→ A be a strictly increasing map of posets. Then, devB 6
devA when devA exists.
(b) If A satisfies the ascending chain condition, then devA exists. �

If R is a ring we denote by R-mod the category of finitely generated left R-
modules. Let M ∈ R-mod and L(M) be the lattice of submodules of M . Then
(L(M),⊆) is a poset; we say that the Krull dimension of M exists if L(M) has a
deviation, in which case we set KdimRM = KdimM = devL(M). By Lemma 2.1,
KdimM exists if R is (left) Noetherian and one has KdimM 6 KdimR ([9, 6.2.18]).

Examples. 1. Let m be a finite dimensional complex Lie algebra and l ⊂ m be a
subalgebra. Then, KdimU(l) 6 KdimU(m) 6 dimm. When m is solvable an easy
induction on dimm (using Lie’s Theorem) shows that KdimU(m) = dimm.
2. Let D(Z) be the ring of differential operators on a smooth affine complex alge-
braic variety Z. Then D(Z) is Noetherian and KdimD(Z) = dimZ, see [9, 15.1.20,
15.3.7].

We will use the following easy result:

Lemma 2.2. Let Rj, j = 1, . . . , s, be some rings and Mj ∈ Rj-mod. Then, if
KdimMj exists for all j, we have

Kdim⊕s
j=1Rj

(
⊕s
j=1Mj

)
= max{KdimMj : j = 1, . . . , s}.

Proof. The claim follows from the identification of L(⊕s
j=1Mj) with L(M1)×· · ·×

L(Ms). �

3. Rings of differential operators

If Z is a complex algebraic variety we denote by OZ its structural sheaf and
by DZ the sheaf of differential operators on Z, as defined in [5]. By taking global
sections we get the following C-algebras:

O(Z) = OZ(Z), D(Z) = DZ(Z).

Assume that Z is smooth and denote by DZ-coh the category of coherent left
DZ-modules (see [2] for a definition). Recall [2] that when Z is affine, the functor
M→ Γ(Z,M) yields an equivalence of categories DZ-coh ∼= D(Z)-mod.

Notation. Let X be an irreducible affine variety and X be a non empty (dense)
open subset of smooth points in X. We will work under the following hypothesis:

X is normal and codimX(X rX) > 2.
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In this situation one has O(X) = O(X) and it is easy to show that this implies

D(X) = D(X),

see, e.g., [6, II.2, Proposition 2]. Since X is quasi-compact and open in X we
can write X =

⋃s
i=1 Ui, where each Ui is a principal affine open subset of X, i.e.,

Ui = {x ∈ X : fi(x) 6= 0} for some fi ∈ O(X). Recall that {fki }k∈N is an Ore
subset in D(X) and that

D(Ui) = D(X)[f−1i ] = O(X)[f−1i ]⊗O(X) D(X).

Therefore, if M ∈ DX -coh, each restriction M|Ui
∈ DUi

-coh is determined by
M(Ui) = Γ(Ui,M) ∈ D(Ui)-mod.

The next lemma is well known, we include a proof for completeness.

Lemma 3.1. Let L(M) be the lattice of DX-submodules of M ∈ DX-coh. Then
L(M) satisfies the ascending chain condition.

Proof. Let (Mj)j∈N be an ascending chain of DX -submodules of M0 = M. Set
Mj,i =Mj(Ui) for i = 1, . . . , s and j ∈ N. Since the functor Γ(Ui,−) is left exact,
(Mj,i)j∈N is an ascending chain of submodules in the finitely generated D(Ui)-
module M(Ui). Therefore, there exists j(i) ∈ N such that Mj,i = Mj(i),i for all

j > j(i). Set j0 = max{j(i) : i = 1, . . . , s}; then, since X =
⋃s
i=1 Ui, we get that

Mj =Mj0 for all j > j0. �

The previous lemma and §2 enable us to define the Krull dimension of M ∈
DX -coh by

KdimM = devL(M).

Proposition 3.2. Let M∈ DX-coh. Then,

KdimM 6 max{KdimD(Ui)M(Ui) : i = 1, . . . , s} 6 dimX.

Proof. Observe that M = ⊕s
i=1M(Ui) is a finitely generated module over the

ring R = ⊕s
i=1D(Ui). As Γ(Ui,−) is left exact and X =

⋃s
i=1 Ui, the map

N → ⊕s
i=1N (Ui) yields a strictly increasing map from L(M) to L(M). Thus,

by definition and Lemma 2.2, we obtain

KdimM 6 KdimM = max{KdimD(Ui)M(Ui) : i = 1, . . . , s}.

Since KdimD(Ui) = dimUi = dimX for all i (cf. §2, Example 2), the assertion is
proved. �

Recall that we have a localization functor L : D(X)-mod→ DX -coh defined by

L(M) = DX ⊗D(X) M.

Lemma 3.3. The functor L is exact.

Proof. Let V = Xf = {x ∈ X; f(x) 6= 0}, f ∈ O(X), be a principal open subset of

X contained in X. We have already noticed that DX(V ) = O(X)[f−1]⊗O(X)D(X),
hence

Γ(V,L(M)) = DX(V )⊗D(X) M = O(X)[f−1]⊗O(X) M.

The lemma then follows from the exactness of the localization functor M →
OX ⊗O(X) M on the category O(X)-mod. �
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Suppose that τ ∈ AutD(X) is an automorphism of the algebra D(X). If M ∈
D(X)-mod we denote by Mτ ∈ D(X)-mod the module defined by: Mτ = M as
an abelian group and a.v = τ(a)v for all a ∈ D(X), v ∈ M . We now make the
supplementary hypothesis:

(H) There exist τ1, . . . , τp ∈ AutD(X) such that, for every 0 6= M ∈
D(X)-mod, L(Mτj ) 6= 0 for some j ∈ {1, . . . , p}.

We then define λ(M) ∈ DX -coh for M ∈ D(X)-mod by setting

λ(M) = ⊕p
j=1L(Mτj ).

Theorem 3.4. One has KdimM 6 Kdimλ(M) for all M ∈ D(X)-mod. In par-
ticular,

KdimD(X) 6 dimX.

Proof. The hypothesis (H) ensures that N → λ(N) is a strictly increasing map from
L(M) to L(λ(M)). Thus, using Proposition 3.2,

KdimM = devL(M) 6 devL(λ(M)) = Kdimλ(M) 6 dimX,

as required. �

The properties of the map λ : L(M)→ L(λ(M)) imply that M ∈ D(X)-mod is
Noetherian, cf., [1, Theorem 1.3].

4. The Krull dimension of U(g)

Let G be a simply connected semisimple complex algebraic group with Lie alge-
bra g. Let U be a maximal unipotent subgroup of G and set X = G/U .

Theorem 4.1. The quasi-affine variety X satisfies the hypotheses of §3 (in par-
ticular the hypothesis (H)).

Proof. It is a classical fact that X can be embedded in a normal affine variety X
such that codimX(X rX) > 2. This can be shown as follows. Let $1, . . . , $` be
the fundamental dominant weights of g; denote by E($j), j = 1, . . . , `, a simple

G-module with highest weight $j and set E = ⊕`
j=1E($j). If vj ∈ E($j) is a

highest weight vector, the orbit G.(v1 ⊕ · · · ⊕ v`) ⊂ E is isomorphic to X and its
closure X (in E) has the required properties, see [4] and [11].

Thanks to [1], each element w of the Weyl group of g yields an automorphism
Fw ∈ AutD(X). By [1, Theorem 3.8], for every non zero M ∈ D(X)-mod there
exists w such that L(MFw) 6= 0. Thus X satisfies the hypothesis (H). �

Observe that dimX is the dimension of a Borel subalgebra of g.

Corollary 4.2. One has

KdimU(g) = KdimD(X) = dimX.

Proof. By Theorem 3.4 we have KdimD(X) 6 dimX. From [7, Proposition 3.2]
we know that KdimU(g) 6 KdimD(X), thus KdimU(g) 6 KdimD(X) 6 dimX.
The result then follows from dimX 6 KdimU(g) (see §2, Example 1). �
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