DIFFERENTIAL OPERATORS ON A REDUCTIVE LIE ALGEBRA

THIERRY LEVASSEUR

Lectures given at the University of Washington, Seattle July, 1995

1. Differential operators

Let \mathcal{X} be an affine complex algebraic variety. Denote by $\mathcal{O}(\mathcal{X})$ the algebra of regular functions, and by $\mathcal{D}(\mathcal{X})$ the algebra of differential operators (on \mathcal{X}). Recall that $\mathcal{D}(\mathcal{X})$ is a filtered \mathbb{C} -algebra (by the order of differential operators): one defines, inductively,

$$\mathcal{D}_0(\mathfrak{X}) = \mathcal{O}(\mathfrak{X}), \quad \mathcal{D}_m(\mathfrak{X}) = \{ P \in \operatorname{End}_{\mathbb{C}}(\mathcal{O}(\mathfrak{X})) : [P, \mathcal{O}(\mathfrak{X})] \subset \mathcal{D}_{m-1}(\mathfrak{X}) \}.$$

Then $\mathcal{D}(\mathfrak{X}) = \bigcup_m \mathcal{D}_m(\mathfrak{X})$ and we denote by

gr
$$\mathcal{D}(X) = \bigoplus_m \mathcal{D}_m(X)/\mathcal{D}_{m-1}(X)$$

the associated graded algebra. The principal symbol of an element $P \in \mathcal{D}(\mathcal{X})$ is denoted by gr(P).

Assume that \mathcal{X} is smooth. Then, $\mathcal{D}(\mathcal{X})$ is generated by $\mathcal{O}(\mathcal{X})$ and $\operatorname{Der} \mathcal{O}(\mathcal{X})$ (the module of \mathbb{C} -linear derivations on $\mathcal{O}(\mathcal{X})$). Furthermore, $\operatorname{gr} \mathcal{D}(\mathcal{X}) = \operatorname{S}_{\mathcal{O}(\mathcal{X})}(\operatorname{Der} \mathcal{O}(\mathcal{X}))$. Here $\operatorname{S}_{\mathcal{O}(\mathcal{X})}(\operatorname{Der} \mathcal{O}(\mathcal{X}))$ is the symmetric algebra of the module $\operatorname{Der} \mathcal{O}(\mathcal{X})$, that we identify with $\mathcal{O}(T^*\mathcal{X})$, the ring of regular functions on the cotangent bundle of \mathcal{X} .

For any affine algebraic subvariety $\mathcal{X} \subset \mathbb{C}^n$, let $\mathcal{A}(\mathcal{X})$ the radical ideal defining \mathcal{X} . Conversely if $E \subset \mathcal{O}(\mathbb{C}^n)$ is a subset, let $\mathcal{V}(E) \subseteq \mathbb{C}^n$ be the variety of zeroes of E. In particular, for any subset E of $\mathcal{D}(\mathfrak{g})$, $\mathcal{V}(\operatorname{gr} E)$ is an affine subvariety of $T^*\mathcal{X}$.

Let \mathcal{Y} be a smooth affine algebraic variety, and $\varphi: \mathcal{X} \to \mathcal{Y}$ be a morphism. Recall that φ is étale at $x \in \mathcal{X}$, if φ yields an isomorphism $d_x \varphi: T_x \mathcal{X} \xrightarrow{\sim} T_{\varphi(x)} \mathcal{Y}$. The following result is classical.

Proposition 1.1. Assume that $\varphi : \mathfrak{X} \to \mathfrak{Y}$ is étale. Then, for all $m \in \mathbb{N}$, one has natural identifications

$$\mathcal{O}(\mathfrak{X}) \otimes_{\mathcal{O}(\mathfrak{Y})} S^m(\operatorname{Der} \mathcal{O}(\mathfrak{Y})) \xrightarrow{\sim} S^m(\operatorname{Der} \mathcal{O}(\mathfrak{X})), \quad \mathcal{O}(\mathfrak{X}) \otimes_{\mathcal{O}(\mathfrak{Y})} \mathcal{D}_m(\mathfrak{Y}) \xrightarrow{\sim} \mathcal{D}_m(\mathfrak{X}).$$

Remark. Assume that $\mathcal{X} = V$ is an *n*-dimensional complex vector space. Then $\mathcal{D}(V)$ is a Weyl algebra on 2n generators. We have $\mathcal{O}(V) = S(V^*)$ and we will identify S(V) with the algebra of constant coefficient differential operators. If we fix a coordinate basis $\{x_i, \partial_i; 1 \leq i \leq n\}$, we then have

$$S(V) = \mathbb{C}[\partial_1, \dots, \partial_n] = \mathbb{C}[\partial(v); v \in V],$$

where $\partial(v)$ is the derivation given by $\partial(v)(f)(x) = \frac{d}{dt}_{|t=0}f(x+tv)$. Note that $\mathcal{D}(V) = S(V^*) \otimes_{\mathbb{C}} S(V)$ as an $\mathcal{O}(V)$ -module.

Let G be a complex reductive algebraic group with Lie algebra \mathfrak{g} . Assume that \mathfrak{X} is a G-variety¹. We denote by \mathfrak{X}/G the affine variety whose ring of regular functions is the ring of invariants $\mathfrak{O}(\mathfrak{X})^G$. Recall that \mathfrak{X}/G can be identified with the variety of closed orbits in \mathfrak{X} and that we have a natural surjective morphism $p:\mathfrak{X} \to \mathfrak{X}/G$. For $x \in \mathfrak{X}$ we denote by G^x its stabilizer in G and we set $\mathfrak{g}^x = \mathrm{Lie}(G^x)$. Recall (Matsushima's theorem) that if G.x is closed, then G^x is reductive.

 $^{{}^{1}}G$ acts rationally on \mathfrak{X} .

The action of G induces a morphism of Lie algebras $\tau_{\mathfrak{X}}: \mathfrak{g} \to \operatorname{Der} \mathfrak{O}(\mathfrak{X})$, given by $\tau_{\mathfrak{X}}(\xi)(f) = \frac{d}{dt}_{|t=0}(\exp(t\xi).f)$.

Example. Consider the adjoint action of G on its Lie algebra \mathfrak{g} . Set (for simplicity) $\tau_{\mathfrak{g}} = \tau$ in this case. Since \mathfrak{g} is reductive, we can fix a nondegenerate invariant bilinear symmetric form κ on \mathfrak{g} . Then \mathfrak{g} and \mathfrak{g}^* can be identified through κ by $x \mapsto \kappa_x = \kappa(\ , x)$. It follows easily that $\tau(\xi)(\kappa_x) = \kappa_{[\xi,x]}$, for all $\xi \in \mathfrak{g}$. The elements of $\mathfrak{O}(\mathfrak{g})\tau(\mathfrak{g})$ will be called "adjoint vector fields" on \mathfrak{g} . An easy computation also shows that the principal symbol of $\tau(\xi)$, denoted by $\sigma(\xi)$, is the function on $T^*\mathfrak{g} = \mathfrak{g} \times \mathfrak{g}^* \equiv \mathfrak{g} \times \mathfrak{g}$, given by $\sigma(\xi)(a,b) = \kappa([b,a],\xi)$ for all $a,b \in \mathfrak{g}$.

In this situation an orbit G.x is closed if and only if G^x is reductive, if and only if x is semisimple.

Return now to the general situation. The group G acts on $\mathcal{D}(\mathfrak{X})$ by $(g.P)(f) = g.(P(g^{-1}.f))$ for all $g \in G$, $P \in \mathcal{D}(\mathfrak{X})$ and $f \in \mathcal{O}(\mathfrak{X})$. It is not difficult to see that this G-action is rational and that $G.\mathcal{D}_m(\mathfrak{X}) \subseteq \mathcal{D}_m(\mathfrak{X})$ for all m. Denote by $\mathcal{D}(\mathfrak{X})^G$ the ring of invariant differential operators, that we filter by the $\mathcal{D}_m(\mathfrak{X})^G$. Since G is reductive, it follows that

$$\operatorname{gr}[\mathcal{D}(\mathfrak{X})^G] = [\operatorname{gr}\mathcal{D}(\mathfrak{X})]^G = \mathfrak{O}(T^*\mathfrak{X})^G = \mathfrak{O}(T^*\mathfrak{X}/G).$$

By restriction we obtain a morphism

$$\psi: \mathcal{D}(\mathfrak{X})^G \to \mathcal{D}(\mathfrak{X}/G), \quad \psi(P)(f) = P(f) \text{ for all } f \in \mathcal{O}(\mathfrak{X}/G).$$

It is clear that $\psi(\mathcal{D}_m(\mathfrak{X})^G) \subseteq \mathcal{D}_m(\mathfrak{X}/G)$. Note that $\mathcal{O}(\mathfrak{X})^G \subseteq \{f \in \mathcal{O}(\mathfrak{X}) : \tau_{\mathfrak{X}}(\mathfrak{g})(f) = 0\}$, with equality when G is connected. Moreover the differential of the action of G on $\mathcal{D}(\mathfrak{X})$ is given by: $\xi.P = [\tau_{\mathfrak{X}}(\xi), P]$ for all $\xi \in \mathfrak{g}$, $P \in \mathcal{D}(\mathfrak{X})$. Set

$$\mathcal{J}(\mathcal{X}) = \{ D \in \mathcal{D}(\mathcal{X}) : D(\mathcal{O}(\mathcal{X})^G) = 0 \}, \quad \mathcal{J}(\mathcal{X}) = \mathcal{J}(\mathcal{X}) \cap \mathcal{D}(\mathcal{X})^G.$$

Clearly Ker $\psi = \mathcal{I}(\mathfrak{X})$ and $\mathcal{J}(\mathfrak{X}) \supseteq \mathcal{D}(\mathfrak{X})\tau_{\mathfrak{X}}(\mathfrak{g})$.

Assume now that G = W is a finite sugroup of GL(V), where V is a complex vector space of dimension ℓ . Then, the morphism $p: V \twoheadrightarrow V/W$ is finite and every orbit is closed. Define a W-stable open subset of V by

$$V' := \{ v \in V \mid p \text{ étale at } v \}.$$

Hence, $V' = \{v \in V \mid \operatorname{rk}_v p = \ell \text{ and } p(v) \text{ is a smooth point}\}.$

Note that if the action of W is not faithful, we may decompose $V = V_W \oplus V^W$ so that $V/W = (V_W/W) \oplus V^W$ and $(V_W)^W = 0$. Therefore the analysis of the situation always reduces to the case of a faithful action of W on V. In this case, it is a classical result that $V' = \{v \in V \mid W^v = \{1\}\}$.

Recall that $\mathcal{D}(V)$ is a simple ring, and, since W is finite, $\mathcal{D}(V)^W$ is also simple [10]. Hence $\psi : \mathcal{D}(V)^W \hookrightarrow \mathcal{D}(V/W)$ is an embedding. The following result is well known².

Theorem 1.2. The following are equivalent

- (1) ψ is a (filtered) isomorphism;
- (2) $\operatorname{codim}(V \setminus V') \ge 2$;
- (3) W does not contain any pseudoreflection $(\neq 1)$.

²We shall not use this result.

Recall that V/W is smooth if and only if W is generated by pseudoreflections. Therefore, if $W \neq \{1\}$ and V/W is smooth, $\psi : \mathcal{D}(V)^W \hookrightarrow \mathcal{D}(V/W)$ is not surjective. Actually, if W acts faithfully on V and $S(V^*)^W = \mathbb{C}[p_1, \ldots, p_\ell]$ is a polynomial ring, it is not difficult to see that there does not exist any $d \in \mathcal{D}(V)^W$ such that $\psi(d) = \frac{\partial}{\partial p_i}$.

Example. The following case is obvious, but will prove useful in the sequel. Assume that $\dim V = 1$ and set

$$S(V^*) = \mathbb{C}[z], \qquad S(V) = \mathbb{C}[\partial_z].$$

Let $W = \{\pm 1\}$ act on V by multiplication. Then

$$\mathbf{S}(V^*)^W = \mathbb{C}[z^2], \quad \mathbf{S}(V) = \mathbb{C}[\partial_z^2], \quad \mathcal{D}(V)^W = \mathbb{C}[z^2, z\partial_z, \partial_z^2]^3.$$

Set $t = z^2$. Then $\mathcal{D}(V/W) = \mathbb{C}[t, \partial_t]$ and the morphism $\psi : \mathcal{D}(V)^W \hookrightarrow \mathcal{D}(V/W)$ is given by

$$\psi(z^2) = t$$
, $\psi(z\partial_z) = 2t\partial_t$, $\psi(\partial_z^2) = 4t\partial_t^2 + 2\partial_t$.

Note that $\partial_t \notin \text{Im } \psi$. We have $V' = V \setminus \{0\}$, and if we localize at the invariant function $t = z^2$, we obtain

$$\psi: \mathcal{D}(V)^W_{z^2} = \mathbb{C}[z^{\pm 2}, z^{-1}\partial_z] \overset{\leadsto}{\longrightarrow} \mathcal{D}(V/W)_t = \mathbb{C}[t^{\pm 1}, \partial_t],$$

since $\psi(\frac{1}{2}z^{-1}\partial_z) = \partial_t$. Thus $\mathfrak{D}(V')^W \cong \mathfrak{D}(V'/W)$.

2. The map δ : definition

Let G be a connected reductive algebraic group with maximal torus H. Set $\mathfrak{g} = \operatorname{Lie}(G)$, $\mathfrak{h} = \operatorname{Lie}(H)$ and denote by $W = W(\mathfrak{g}, \mathfrak{h})$ the associated Weyl group. Let R be the set of roots of \mathfrak{h} in \mathfrak{g} . Fix a basis B of R and let R^+ be the set of positive roots. We set $\mathfrak{n}^{\pm} = \bigoplus_{\{\pm \alpha \in R^+\}} \mathfrak{g}_{\alpha}$, $\mathfrak{g}_{\pm \alpha} = \mathbb{C}X_{\pm \alpha}$. If \mathfrak{z} is the centre of \mathfrak{g} and $\mathfrak{s} = [\mathfrak{g}, \mathfrak{g}]$, we have

$$\mathfrak{g} = \mathfrak{s} \oplus \mathfrak{z}, \quad \mathfrak{h} = \mathfrak{t} \oplus \mathfrak{z}, \quad \mathfrak{s} = \mathfrak{t} \oplus \mathfrak{n}^+ \oplus \mathfrak{n}^-$$

where \mathfrak{t} is a Cartan subalgebra of the semisimple Lie algebra \mathfrak{s} . We set $n = \dim \mathfrak{g}$, $\ell = \dim \mathfrak{h}$ and $k = \dim \mathfrak{t}$. As in §1, we denote by κ an invariant symmetric form on \mathfrak{g} . Recall that the discriminant of \mathfrak{g} is the invariant function d_{ℓ} defined by

$$\det(t\operatorname{Id} - \operatorname{ad} x) = t^n + \dots + (-1)^{\ell} d_{\ell}(x) t^{\ell}.$$

The set of generic⁴ elements is $\mathfrak{g}' = \{x \in \mathfrak{g} \mid d_{\ell}(x) \neq 0\}$. Then \mathfrak{g}' is the set of points where the morphism $p : \mathfrak{g} \twoheadrightarrow \mathfrak{g}/G$ is smooth.

Recall the fundamental result of Chevalley:

Theorem 2.1. There is a natural isomorphism $\mathfrak{h}/W \cong \mathfrak{g}/G$: the restriction of functions from \mathfrak{g} to \mathfrak{h} yields an isomorphism of algebras,

$$\phi: \mathcal{S}(\mathfrak{g}^*)^G \xrightarrow{\sim} \mathcal{S}(\mathfrak{h}^*)^W, \quad \phi(f) = f_{|\mathfrak{h}}.$$

Similarly, there exists an isomorphism $\phi : S(\mathfrak{g})^G \to S(\mathfrak{h})^W$, induced by the projection of \mathfrak{g} onto \mathfrak{h} given by the decomposition $\mathfrak{g} = \mathfrak{h} \oplus (\mathfrak{n}^+ \oplus \mathfrak{n}^-)$.

³Observe that $[z^2, \partial_z^2] = 4z\partial_z + 2$, and thus $\mathcal{D}(V)^W = \mathbb{C}[z^2, \partial_z^2]$.

⁴An element x is called *generic* if it is semisimple and dim $\mathfrak{g}^x = \ell$.

For sake of simplicity, all the isomorphisms related to the previous Chevalley isomorphisms will be denoted by the same symbol, ϕ .

Note that we may write $S(\mathfrak{g}^*)^G = \mathbb{C}[u_1, \dots, u_k, u_{k+1}, \dots, u_\ell]$, where $u_i \in S(\mathfrak{s}^*)^{\mathfrak{s}}$ for $i = 1, \dots, k$ and $u_j \in \mathfrak{z}^*$ for $i = k+1, \dots, \ell$ (hence $S(\mathfrak{z}^*) = \mathbb{C}[u_{k+1}, \dots, u_\ell]$). We set $p_j = u_{j|\mathfrak{h}}$ and we denote by $p : \mathfrak{h} \twoheadrightarrow \mathfrak{h}/W$ the associated morphism. Then $S(\mathfrak{h}^*)^W = S(\mathfrak{t}^*)^W \otimes S(\mathfrak{z}^*) = \mathbb{C}[p_1, \dots, p_\ell]$. Define an element of $S(\mathfrak{h}^*)$ by

$$\pi = \prod_{\alpha \in R^+} \alpha.$$

The following are well known, see [3, Proposition 3.13]:

• Let $\epsilon(w)$ be the signature of $w \in W$, then,

$$S(\mathfrak{h}^*)^W \pi = \{ f \in S(\mathfrak{h}^*) \mid \forall w \in W, w.f = \epsilon(w)f \};$$

- $\phi(d_{\ell}) = (\pm)\pi^2 \in \mathcal{S}(\mathfrak{h}^*)^W;$
- up to a nonzero constant, $\pi(x) = \det \operatorname{Jac}(p)(x)$ and p is étale at $h \in \mathfrak{h}$ if, and only if, $h \in \mathfrak{h}' = \{x \in \mathfrak{h} : \pi(x) \neq 0\}.$

Recall [16, Corollary 3.11] that if $x \in \mathfrak{g}$ is semisimple, then G^x is a connected reductive subgroup of G. One can conjugate x and assume that $x \in \mathfrak{h}$. If we set $\Gamma = \{\alpha \in B : \alpha(x) = 0\}$, then: $\mathfrak{g}^x = \mathfrak{h} \oplus \left(\sum_{\{\beta \in \mathbb{Z}\Gamma \cap R\}} \mathfrak{g}_{\beta}\right)$, $[x, \mathfrak{g}] = \bigoplus_{\{\beta \notin \mathbb{Z}\Gamma\}} \mathfrak{g}_{\beta}$.

The Chevalley isomorphism ϕ induces an isomorphism

$$\phi: \mathcal{D}(\mathfrak{g}/G) \xrightarrow{\sim} \mathcal{D}(\mathfrak{h}/W), \quad \phi(P)(f) = \phi(P(\phi^{-1}(f)))$$

for all $P \in \mathcal{D}(\mathfrak{g}/G)$, $f \in \mathcal{O}(\mathfrak{h}/W) = S(\mathfrak{h}^*)^W$. By composing with the natural morphism $\psi : \mathcal{D}(\mathfrak{g})^G \to \mathcal{D}(\mathfrak{g}/G)$, we obtain the morphism

$$r = \psi \circ \phi : \mathcal{D}(\mathfrak{g})^G \to \mathcal{D}(\mathfrak{h}/W), \quad r(P)(f) = \phi(P(\phi^{-1}(f))).$$

The element r(P) is called the radial component of P. It is clear that

$$\operatorname{Ker} r = \mathfrak{I} = \{ P \in \mathfrak{D}(\mathfrak{g})^G \, : \, P\big(\operatorname{S}(\mathfrak{g}^*)^G\big) = 0 \}.$$

Since the morphism $p:\mathfrak{h}' \to \mathfrak{h}'/W$ is étale, it follows from Proposition 1.1 that we can identify $\mathcal{D}(\mathfrak{h}')^W$ with $\mathcal{D}(\mathfrak{h}'/W)$ (observe that $\mathcal{D}(\mathfrak{h}') = \mathcal{O}(\mathfrak{h}') \otimes_{\mathcal{O}(\mathfrak{h}'/W)} \mathcal{D}(\mathfrak{h}'/W)$ and take the W-invariants). Therefore

$$\operatorname{Im} r \subset \mathcal{D}(\mathfrak{h}/W) \subset \mathcal{D}(\mathfrak{h}'/W) \equiv \mathcal{D}(\mathfrak{h}')^W \subset \mathcal{D}(\mathfrak{h}').$$

Inside $\mathcal{D}(\mathfrak{h}')$ we can consider the inner automorphism

$$\iota: D \mapsto \pi \circ D \circ \pi^{-1}$$
, i.e. $\iota(D)(f) = \pi D(\pi^{-1}f)$ for all $f \in \mathcal{O}(\mathfrak{h}')$.

From $w.\iota(D) = \pi \circ w.D \circ \pi^{-1}$, we get that $\iota(\mathcal{D}(\mathfrak{h}')^W) = \mathcal{D}(\mathfrak{h}')^W$.

Definition 2.2. The Harish-Chandra map $\delta : \mathcal{D}(\mathfrak{g})^G \to \mathcal{D}(\mathfrak{h}')^W$ is defined to be $\delta = \iota \circ r$, i.e.

$$\forall D \in \mathcal{D}(\mathfrak{g})^G, \, \forall f \in \mathfrak{O}(\mathfrak{h})^W, \quad \delta(D)(f) = \pi r(D)(\pi^{-1}f).$$

In the next two sections we will sketch a proof of the following result of Harish-Chandra.

Theorem 2.3. (1) Im $\delta \subseteq \mathcal{D}(\mathfrak{h})^W$.

(2) δ coincides with the Chevalley isomorphisms on $S(\mathfrak{g}^*)^G$ and $S(\mathfrak{g})^G$.

We end this section by the following slight generalization of the definition of δ . Let $U \subseteq \mathfrak{g}$ be a G-stable open subset. Set $\tilde{\mathfrak{h}} = U \cap \mathfrak{h}$ and $\tilde{\mathfrak{h}}' = U \cap \mathfrak{h}'$. Then the Chevalley isomorphism yields $U/G \stackrel{\sim}{\to} \hat{\mathfrak{h}}/W$, and we can define in a similar way the "radial component" of elements of $\mathcal{D}(U)^G$. We then have a morphism

$$r: \mathcal{D}(U)^G \to \mathcal{D}(\tilde{\mathfrak{h}}/W) \hookrightarrow \mathcal{D}(\tilde{\mathfrak{h}}'/W) \equiv \mathcal{D}(\tilde{\mathfrak{h}}')^W.$$

After composition with ι (i.e. conjugation by the restriction of π on $\tilde{\mathfrak{h}}'$), we obtain a morphism

$$\delta = \iota \circ r : \mathcal{D}(U)^G \to \mathcal{D}(\tilde{\mathfrak{h}}')^W$$

which extends the previously defined δ .

3. The map δ in the $\mathfrak{sl}(2)$ -case

In this section we assume that $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C}) = \mathbb{C}e + \mathbb{C}f + \mathbb{C}h$, where as usual $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Then $\mathfrak{h} = \mathbb{C}h$, $R = \{\pm \alpha\}$ where $\alpha(h) = 2$. We choose $\kappa(a, b) = \operatorname{tr}(ab)$, hence $\kappa(e, f) = 1$, $\kappa(h, h) = 2$. Let $\{x, y, z\}$ be the dual basis of $\{e, f, h\}$, thus $x = \kappa_f$, $y = \kappa_e$ and $z = \frac{1}{2}\kappa_h$. Furthermore $\partial(e) = \partial_y$, $\partial(f) = \partial_x$ and $\partial(h) = \partial_z$. Then

$$S(\mathfrak{g}^*)^G = \mathbb{C}[z^2 + xy], \qquad S(\mathfrak{g})^G = \mathbb{C}[\partial_z^2 + 4\partial_x\partial_y].$$

We set

$$\zeta = z^2 + xy, \ \omega = \partial_z^2 + 4\partial_x\partial_y, \ \varepsilon_{\mathfrak{g}} = x\partial_x + y\partial_y + z\partial_z, \ \varepsilon_{\mathfrak{h}} = z\partial_z.$$

Observe that $E_{\mathfrak{g}} := \varepsilon_{\mathfrak{g}} + 3/2 = [-\frac{1}{4}\zeta, \omega]$. Recall that $W = \{1, s\}$, where $s : h \mapsto -h$. Therefore we are in the situation of the example $W = \{\pm 1\}$ given in §1. Hence, if $t = z^2$,

$$\psi: \mathcal{D}(\mathfrak{h})^W = \mathbb{C}[z^2, \partial_z^2] \hookrightarrow \mathcal{D}(\mathfrak{h}/W) = \mathbb{C}[t, \partial_t]$$

is given by $\psi(z^2) = t$, $\psi(\partial_z^2) = 4t\partial_t^2 + 2\partial_t$. The Chevalley isomorphisms are determined by $\phi(\zeta) = z^2 = t$, $\phi(\omega) = \partial_z^2$. Recall that $r : \mathcal{D}(\mathfrak{g})^G \to \mathcal{D}(\mathfrak{h}/W)$.

Lemma 3.1. We have:

- (1) $\mathcal{D}(\mathfrak{g})^G = \mathbb{C}[\zeta, \omega] \cong U(\mathfrak{sl}(2));$ (2) $r(\zeta) = t, \ r(\omega) = 4t\partial_t^2 + 6\partial_t.$

Proof. (1) By an usual argument of associated graded ring, we will obtain generators of $\mathfrak{D}(\mathfrak{g})^G$ by computing

$$[\operatorname{gr} \mathfrak{D}(\mathfrak{g})]^G = \operatorname{S}(\mathfrak{g}^* \times \mathfrak{g})^G \equiv \operatorname{S}(\mathfrak{g}^* \times \mathfrak{g}^*)^G.$$

Here, G acts diagonally on $\mathfrak{g}^* \times \mathfrak{g}^*$ by g.(a,b) = (g.a,g.b) and we identify \mathfrak{g} with \mathfrak{g}^* through κ . Under this identification, $\partial_z \leftrightarrow 2z$, $\partial_x \leftrightarrow y$ and $\partial_y \leftrightarrow x$. Therefore gr $\mathcal{D}(\mathfrak{g}) \equiv$ $S(\mathfrak{g}^* \times \mathfrak{g}^*) = \mathbb{C}[U, V]$, where U and V are the generic matrices $U = \begin{bmatrix} z & x \\ y & -z \end{bmatrix}$, $V = \begin{bmatrix} \frac{1}{2}\partial_z & \partial_y \\ \partial_x & -\frac{1}{2}\partial_z \end{bmatrix}$.

Then, classical invariant theory gives that $S(\mathfrak{g}^* \times \mathfrak{g}^*)^G$ is generated by

$$\operatorname{tr}(U^2) = \zeta, \quad \operatorname{tr}(UV) = \varepsilon_{\mathfrak{a}}, \quad \operatorname{tr}(V^2) = \omega/4.$$

Thus $\mathcal{D}(\mathfrak{g})^G = \mathbb{C}[\zeta, \omega, E_{\mathfrak{g}}] = \mathbb{C}[\zeta, \omega]$. Now observe that

$$[E_{\mathfrak{g}}, -\zeta/4] = 2\zeta, \quad [E_{\mathfrak{g}}, \omega] = -2\omega, \quad [-\zeta/4, \omega] = E_{\mathfrak{g}}.$$

Therefore, there exists a surjective morphism $\nu: U(\mathfrak{sl}(2)) \twoheadrightarrow \mathcal{D}(\mathfrak{g})^G$, such that $\nu(e) =$ $-\frac{1}{4}\zeta$, $\nu(f)=\omega$ and $\nu(h)=E_{\mathfrak{g}}$. To prove that ν is injective⁵, one can either show that

⁵We leave the details to the reader.

GKdim $\mathcal{D}(\mathfrak{g})^G = \text{GKdim} \operatorname{gr} \mathcal{D}(\mathfrak{g})^G = \text{GKdim} U(\mathfrak{sl}(2)) = 3$, see Corollary 5.8 (note that the maximal dimension of a G-orbit in $\mathfrak{g} \times \mathfrak{g}$ is 3), or prove that, if Ω is the Casimir element of $U(\mathfrak{sl}(2))$, then $\nu(\Omega - c) \neq 0$ for all $c \in \mathbb{C}$.

(2) The equality $r(\zeta) = t$ is clear. It is easily seen that

$$r(\omega)(1) = 0$$
, $r(\omega)(t) = 6$, $r(\omega)(t^2) = 20t$.

Hence, $r(\omega) = 4t\partial_t^2 + 6\partial_t$ as desired.

Remark. Observe that $r(\omega) = \partial_z^2 + 4\partial_t \notin \mathcal{D}(\mathfrak{h})^W$, since $\partial_t \notin \mathcal{D}(\mathfrak{h})^W$ (see §1). Thus $\operatorname{Im} r \not\subset \mathcal{D}(\mathfrak{h})^W$.

Lemma 3.2. $\delta(\omega) = \partial_z^2$ and $\delta(\zeta) = z^2$.

Proof. In the notation of §2, we have $\pi = \alpha = 2z$ and $\mathfrak{h}' = \mathfrak{h} \setminus \{0\}$. Recall that we can identify $\mathcal{D}(\mathfrak{h}'/W) = \mathbb{C}[t^{\pm 1}, \partial_t]$ with $\mathcal{D}(\mathfrak{h}')^W = \mathbb{C}[z^{\pm 2}, \frac{1}{2}z^{-1}\partial_z]$. Now, since $z\partial_z z^{-1} = \partial_z - z^{-1}$ and $r(\omega) = 4t\partial_t^2 + 6\partial_t = \partial_z^2 + 2z^{-1}\partial_z$, we obtain

$$\delta(\omega) = \iota(r(\omega)) = (\partial_z - z^{-1})^2 + 2z^{-1}(\partial_z - z^{-1}) = \partial_z^2.$$

The second equality is obvious.

Proposition 3.3. (1) $\delta(\mathfrak{D}(\mathfrak{g})^G) = \mathfrak{D}(\mathfrak{h})^W$.

(2) δ coincides with the Chevalley isomorphisms on $S(\mathfrak{g}^*)^G$ and $S(\mathfrak{g})^G$.

Proof. The claims follow from Lemma 3.1 and Lemma 3.2.

Remark. From $\mathcal{D}(\mathfrak{g})^G \cong U(\mathfrak{sl}(2))$ we get that δ induces isomorphisms

$$\mathcal{D}(\mathfrak{h})^W \cong \mathcal{D}(\mathfrak{g})^G/\mathfrak{I} \cong U(\mathfrak{sl}(2))/(\Omega+\lambda),$$

where $\lambda \in \mathbb{C}$ and Ω is the Casimir element. It is not difficult to see that $\lambda = 3/4$.

4. The map δ in the general case

In this section we sketch the proof of Theorem 2.3 given by G. Schwarz [14]. We continue with the notation of $\S 2^6$.

Fix a coordinate basis $\{z_1,\ldots,z_\ell\}$ of \mathfrak{h}^* and set $\partial_i = \frac{\partial}{\partial z_i}$. Let $P \in \mathcal{D}(\mathfrak{g})^G$. We have, with the usual conventions,

$$\delta(P) = \sum_{m} c_m(z) \partial^m, \ c_m \in \mathfrak{O}(\mathfrak{h}') \text{ for all } m \in \mathbb{N}^{\ell}.$$

We want to show that $a_m \in \mathcal{O}(\mathfrak{h})$. Since $\mathcal{O}(\mathfrak{h}') = \mathcal{O}(\mathfrak{h})_{\pi}$, this is equivalent to showing that the a_m have no pole along the reflecting hyperplanes $\mathcal{H}_{\gamma} = \{h \in \mathfrak{h} : \gamma(h) = 0\}$ for $\gamma \in \mathbb{R}^+$.

Fix $\gamma \in R^+$. Choose $b \in \mathcal{H}_{\gamma}$, $b \notin \mathcal{H}_{\beta}$ for $\beta \in R^+ \setminus \{\gamma\}$. The idea is to prove that $\delta(P)$ is smooth in a neighborhood of b; this will be done by a "Luna's slice type argument". We have

$$\mathfrak{g}^b = \mathfrak{sl}(2)_{\gamma} \oplus \mathcal{H}_{\gamma}, \text{ where } \mathfrak{sl}(2)_{\gamma} = \mathbb{C}H_{\gamma} + \mathbb{C}X_{\gamma} + \mathbb{C}X_{-\gamma}.$$

The group G^b is reductive and we have a G^b -decomposition $\mathfrak{g} = \mathfrak{g}^b \oplus [b, \mathfrak{g}]$. Recall that, since $G.b \equiv G/G^b$ via the adjoint action, $T_b(G.b) = \mathfrak{g}/\mathfrak{g}^b \cong [\mathfrak{g}, b]$ is generated by the tangent vectors $\tau(\xi)_b = [b, \xi]$. Note also that $W(\mathfrak{g}^b, \mathfrak{h}) = W^b = \{1, s = s_\gamma\}$, $R(\mathfrak{g}^b, \mathfrak{h}) = \{\pm\gamma\}$.

Set $p = \dim G.b$ and define

$$U = \{ u \in \mathfrak{g} : \exists X_1, \dots, X_p \in \mathfrak{g}, \ \mathfrak{g} = \mathfrak{g}^b \oplus \langle \tau(X_1)_u, \dots, \tau(X_p)_u \rangle_{\mathbb{C}} \}.$$

⁶Note that we may, if necessary, assume that \mathfrak{g} is simple and that $G \subset GL(\mathfrak{g})$ is the adjoint group.

(a) U is an open neighbourhood of b. Indeed: Let $u \in U$ and let X_1, \ldots, X_p be such that $\mathfrak{g} = \mathfrak{g}^b \oplus \langle \tau(X_1)_u, \ldots, \tau(X_p)_u \rangle_{\mathbb{C}}$, then

$$U' = \{ u' \in \mathfrak{g} : \mathfrak{g} = \mathfrak{g}^b \oplus \langle \tau(X_1)_{u'}, \dots, \tau(X_p)_{u'} \rangle_{\mathbb{C}} \}$$

is an affine open neighbourhood of u and $U' \subseteq U$.

(b) U is G^b -stable. Let $u \in U$. Note first that, for all $g \in G$,

$$g.\tau(X_i)_u = g.[u, X_i] = [g.u, g.X_i] = \tau(g.X_i)_{g.u}.$$

When $g \in G^b$, we also have $g.\mathfrak{g}^b = \mathfrak{g}^b$. Hence

$$\mathfrak{g} = g.\mathfrak{g} = \mathfrak{g}^b \oplus g. \langle \tau(X_1)_u, \dots, \tau(X_p)_u \rangle_{\mathbb{C}} = \mathfrak{g}^b \oplus \langle \tau(g.X_1)_{g.u}, \dots, \tau(g.X_p)_{g.u} \rangle_{\mathbb{C}}.$$

This shows that $q.u \in U$.

(c) Let $t_1, \ldots, t_{\ell-1}$ be coordinate functions on \mathcal{H}_{γ} , and let $\{x, y, z\}$ be the dual basis of $\{X_{\gamma}, X_{-\gamma}, H_{\gamma}\}$. It follows from (a) and (b) that, on the open subset U,

$$\mathcal{D}(U) = \sum_{i,j,k \in \mathbb{N}, \mu \in \mathbb{N}^{\ell-1}} \mathcal{O}(U) \partial_x^i \partial_y^j \partial_z^k \partial_t^\mu + \mathcal{D}(U) \tau(\mathfrak{g}).$$

Therefore we can write $P = \tilde{P} + Q$ (on U), with $\tilde{P} \in \sum \mathcal{O}(U) \partial_x^i \partial_y^j \partial_z^k \partial_t^\mu$ and $Q \in \mathcal{D}(U) \tau(\mathfrak{g})$. Since $P \in \mathcal{D}(\mathfrak{g})^G \subset \mathcal{D}(U)^{G^b}$, and since G^b is reductive, we may as well assume that \tilde{P} and Q are G^b -invariant.

Set $\tilde{U} = U \cap \mathfrak{g}^b$, $\tilde{\mathfrak{h}} = U \cap \mathfrak{h}$ and $\tilde{\mathfrak{h}}' = U \cap \{h \in \mathfrak{h} : \gamma(h) \neq 0\}$. Denote by \tilde{r} and $\tilde{\delta} = \gamma \circ \tilde{r} \circ \gamma^{-1}$ the morphisms from $\mathcal{D}(\tilde{U})^{G^b}$ to $\mathcal{D}(\tilde{\mathfrak{h}}')^{W^b}$. From the $\mathfrak{sl}(2)$ -case we can deduce that $\operatorname{Im} \tilde{\delta} \subseteq \mathcal{D}(\tilde{\mathfrak{h}})^{W^b}$. Therefore $\tilde{\delta}(\tilde{P}) = \gamma \circ \tilde{r} \circ \gamma^{-1} \in \mathcal{D}(\tilde{\mathfrak{h}})^{W^b}$.

Note that, since $\tau(\mathfrak{g})$ kills the G-invariant functions, $P(f) = \tilde{P}(f)$ for all $f \in \mathcal{O}(U)^G$. In particular, since $\mathcal{O}(\tilde{\mathfrak{h}})^W \subset \mathcal{O}(\tilde{\mathfrak{h}})^{W^b}$, we have that $r(P) = \tilde{r}(\tilde{P})$ on $A := \mathcal{O}(\tilde{\mathfrak{h}})^W$. Set $\tilde{\pi} = \prod_{\{\gamma \neq \alpha \in R^+\}} \alpha$; then $\pi = \tilde{\pi}\gamma$ and $\tilde{\pi}^{\pm 1}$ is smooth on a neighbourhood of b. Now, write $\delta(P) = \tilde{\pi}\gamma r(P)\gamma^{-1}\tilde{\pi}^{-1}$. From the above we know that, on A, $\delta(P) = \tilde{\pi}(\gamma \tilde{r}(\tilde{P})\gamma^{-1})\tilde{\pi}^{-1}$. But, we have seen that $\tilde{\delta}(\tilde{P}) = \gamma \tilde{r} \gamma^{-1} \in \mathcal{D}(\tilde{\mathfrak{h}})^{W^b}$ and $\tilde{\pi}^{\pm 1}$ are smooth on a neighbourhood of b. Hence, the same is true of $\delta(P)$.

(d) To complete the proof of Theorem 2.3, it remains to show that δ coincide with the Chevalley isomorphisms. Recall that this is obvious, by construction, for δ on $S(\mathfrak{g}^*)^G$. We thus have to show that $\delta = \phi$ on $S(\mathfrak{g})^G$; this will be done by "Fourier transform". Without loss of generality we can reduce to the case when \mathfrak{g} is simple.

Choose coordinates on \mathfrak{g} such that $\kappa = -\frac{1}{2} \sum_{i=1}^{n} x_i^2$ and set

$$\omega = \frac{1}{2} \sum_{i=1}^{n} \partial_{x_i}^2, \quad \varepsilon_{\mathfrak{g}} = \sum_{i=1}^{n} x_i \partial_{x_i}.$$

Then, as in the $\mathfrak{sl}(2)$ -case, one checks that

$$[\kappa,\omega] = E_{\mathfrak{g}} := \varepsilon_{\mathfrak{g}} + n/2, \quad [E_{\mathfrak{g}},\kappa] = 2\kappa, \quad [E_{\mathfrak{g}},\omega] = -2\omega.$$

Hence, $\mathfrak{k} = \mathbb{C}\kappa + \mathbb{C}\omega + \mathbb{C}E_{\mathfrak{g}} \cong \mathfrak{sl}(2) = \mathbb{C}e + \mathbb{C}f + \mathbb{C}h$. Recall that $\operatorname{gr} \mathcal{D}(\mathfrak{g}) = \mathcal{O}(T^*\mathfrak{g}) \equiv \mathcal{O}(\mathfrak{g} \times \mathfrak{g})$. Since $\mathfrak{g} \times \mathfrak{g} = \mathfrak{g} \otimes_{\mathbb{C}} \mathbb{C}^2$, there is a natural action of $\operatorname{SL}(2)$ on $\mathfrak{g} \times \mathfrak{g}$, and therefore on $\operatorname{gr} \mathcal{D}(\mathfrak{g}) = \mathcal{O}(T^*\mathfrak{g})$. This action lifts to an $\operatorname{SL}(2)$ -action on $\mathcal{D}(\mathfrak{g})$. Tracing the identifications, one sees that $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2)$ acts on $\mathcal{D}(\mathfrak{g})$ in the following way

$$g.x_i = ax_i + c\partial_{x_i}, \qquad g.\partial_{x_j} = bx_j + d\partial_{x_j}.$$

Observe now that $[E_{\mathfrak{g}}, x_i] = x_i$, $[E_{\mathfrak{g}}, \partial_{x_i}] = -\partial_{x_i}$, $[\omega, x_i] = \partial_{x_i}$, $[\omega, \partial_{x_i}] = 0$, $[\kappa, x_i] = 0$, $[\kappa, \partial_{x_i}] = x_i$. It follows that, inside $\mathcal{D}(\mathfrak{g})$,

$$\exp(te) = \exp(t \operatorname{ad} \kappa), \quad \exp(tf) = \exp(t \operatorname{ad} \omega), \quad \exp(th) = \exp(t \operatorname{ad} E_{\mathfrak{g}}).$$

Hence, the adjoint action of \mathfrak{k} integrates to the $\mathrm{SL}(2)$ -action that we just described. Observe that, since $\kappa, \omega, E_{\mathfrak{g}}$ are G-invariant, the $\mathrm{SL}(2)$ -action commutes with the G-action. Consider now the "Weyl group element" $w = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \in \mathrm{SL}(2)$ (here $i = \sqrt{-1} \in \mathbb{C}$). It acts on $\mathcal{D}(\mathfrak{g})$ by $w.x_j = i\partial_{x_j}$, $w.\partial_{x_j} = ix_j$ for all $j = 1, \ldots, n$.

Let $\kappa_{\mathfrak{h}}$, $\omega_{\mathfrak{h}}$ and $\varepsilon_{\mathfrak{h}}$ be the analogous elements of $\mathfrak{D}(\mathfrak{h})^W$. We have

$$\delta(\kappa) = \kappa_{\mathfrak{h}}, \quad [\kappa_{\mathfrak{h}}, \omega_{\mathfrak{h}}] = E_{\mathfrak{h}} := \varepsilon_{\mathfrak{h}} + \ell/2.$$

Let $f \in S^p(\mathfrak{g}^*)^G$. Then, $\delta([\varepsilon_{\mathfrak{g}}, f]) = [\delta(\varepsilon_{\mathfrak{g}}), \phi(f)] = \delta(pf) = p\phi(f)$. This implies that $\delta(\varepsilon_{\mathfrak{g}}) = \varepsilon_{\mathfrak{h}} - c$ for some $c \in \mathbb{C}$. We know that $\delta(\omega) \in \mathcal{D}_2(\mathfrak{h})^W$. Note that

$$\delta([E_{\mathfrak{g}},\omega]) = [\delta(E_{\mathfrak{g}}),\delta(\omega)] = [\epsilon_{\mathfrak{h}},\delta(\omega)] = -2\delta(\omega).$$

In the appropriate coordinate basis of \mathfrak{h} , this forces

$$\delta(\omega) = \sum_{\{|\mu| - |\nu| = -2, |\nu| \le 2\}} a_{\mu,\nu} x^{\mu} \partial_x^{\nu}, \quad a_{\mu,\nu} \in \mathbb{C},$$

and it follows that

$$\delta(\omega) = \sum_{\nu} a_{\nu} \partial_{x}^{\nu} \in S^{2}(\mathfrak{h})^{W} = \mathbb{C}\omega_{\mathfrak{h}}.$$

Thus $\delta(\omega) = a\omega_{\mathfrak{h}}$ for some $a \in \mathbb{C}$. Then, $\delta([\kappa, \omega]) = [\kappa_{\mathfrak{h}}, a\omega_{\mathfrak{h}}] = \varepsilon_{\mathfrak{h}} - c + n/2$ implies that a = 1 and $c = \frac{1}{2}(n - \ell)$. Hence, we have shown

$$\delta(\kappa) = \kappa_{\mathfrak{h}}, \quad \delta(\omega) = \omega_{\mathfrak{h}}, \quad \delta(E_{\mathfrak{g}}) = E_{\mathfrak{h}}.$$

Recall that $\mathcal{D}(\mathfrak{g})$ and $\mathcal{D}(\mathfrak{h})$ have natural $\mathrm{SL}(2)$ -actions, which integrate the adjoint actions of $\mathbb{C}\kappa + \mathbb{C}\omega + \mathbb{C}E_{\mathfrak{g}}$ and $\mathbb{C}\kappa_{\mathfrak{h}} + \mathbb{C}\omega_{\mathfrak{h}} + \mathbb{C}E_{\mathfrak{h}}$ respectively. The above formulas prove that the map δ is $\mathrm{SL}(2)$ -equivariant. Let $P \in \mathrm{S}^m(\mathfrak{g})^G$. By definition of w, and the fact that the $\mathrm{SL}(2)$ -action commutes with the G-action, we obtain that $w.P \in \mathrm{S}^m(\mathfrak{g}^*)^G$. Therefore

$$w.\delta(P) = \delta(w.P) = (w.P)_{|h}$$

implies that

$$\delta(P) = w^{-1}.\delta(w.P) = w^{-1}(w.P)_{|h}.$$

The definition of w then shows that $w^{-1}(w.P)_{|\mathfrak{h}}$ is the projection of P onto $S^m(\mathfrak{h})^W$, as required.

5. Surjectivity of δ

We have shown that there exists a homomorphism

$$\delta: \mathcal{D}(\mathfrak{g})^G \to \mathcal{D}(\mathfrak{h})^W$$

with kernel

$$\mathfrak{I} = \{ P \in \mathfrak{D}(\mathfrak{g})^G \mid P(\mathfrak{O}(\mathfrak{g})^G) = 0 \}.$$

Evidently, Im δ contains the images of $S(\mathfrak{g}^*)^G$ and $S(\mathfrak{g})^G$ which, by Theorem 2.3 coincide with $S(\mathfrak{h}^*)^W$ and $S(\mathfrak{h})^W$. Denote by B the subalgebra of $\mathcal{D}(\mathfrak{h})^W$ generated by $S(\mathfrak{h}^*)^W$ and $S(\mathfrak{h})^W$. Two questions naturally arise.

(†) Is
$$\delta$$
 surjective?

Recall that δ is a filtered morphism. The second question is more precise: Is it true that $\delta(\mathcal{D}_m(\mathfrak{g})^G) = \mathcal{D}_m(\mathfrak{h})^W$ for all $m \in \mathbb{N}$? Equivalently:

(††) Is
$$\operatorname{gr}(\delta) : \operatorname{gr} \mathcal{D}(\mathfrak{g})^G \to \operatorname{gr} \mathcal{D}(\mathfrak{h})^W$$
 surjective?

If this is true, we shall say that δ is graded-surjective.

N. Wallach has shown [17] that (††) has a positive answer when g has no factor of type E_p , p = 6, 7, 8. In [7] it is shown that (†) is true in all cases. This follows from a general result about differential operators invariant under a finite group action:

Theorem 5.1. [7] Let V be a finite dimensional \mathbb{C} -vector space and W be a finite subgroup of GL(V). Then $\mathcal{D}(V)^W$ is generated by $S(V)^W$ and $S(V^*)^W$.

The proof of Theorem 5.1 is not difficult. In this section we shall give a proof in the case we are presently interested: $(V, W) = (\mathfrak{h}, W = \text{Weyl group})$. The idea of the proof is exactly the same, but, in this particular case, we will bring a little bit more of information.

We fix a coordinate basis $\{x_1,\ldots,x_\ell;\partial_1,\ldots,\partial_\ell\}$ of $\mathfrak{h}^*\times\mathfrak{h}^7$. In this situation we may also suppose that $\{\partial_1, \dots, \partial_\ell\}$ is an orthonormal basis, with respect to κ , on a real form

 $\mathfrak{h}_{\mathbb{R}}$ of \mathfrak{h} . Then, each $w \in W$ acts on \mathfrak{h} via an orthogonal matrix: $w.\partial_j = \sum_{i=1}^{\ell} w_{ij}\partial_i$. Recall that $\pi^2 \in B$ and that, up to a nonzero scalar (that we ignore), we have $\pi = 0$ det Jac(p), where Jac(p) = $\left[\frac{\partial p_i}{\partial x_j}\right] \in M_{\ell}(S(\mathfrak{h}^*))$. Moreover $\mathfrak{h}' = \{h : \pi(h) \neq 0\}$ is the set of points where $p:\mathfrak{h}\to\mathfrak{h}/W$ is étale. Define, as usual, the gradient vector field associated to the invariant function p_i by

$$\nabla(p_j) = \sum_{i=1}^{\ell} \partial_i(p_j)\partial_i, \quad j = 1, \dots, \ell.$$

Lemma 5.2. The following assertions hold:

- (1) $\nabla(p_j) \in [\operatorname{Der} \mathfrak{O}(\mathfrak{h})]^W \cap B;$
- (2) $\operatorname{Der} \mathcal{O}(\mathfrak{h}') = \bigoplus_{i=1}^{\ell} \mathcal{O}(\mathfrak{h}') \nabla(p_j);$ (3) $[\operatorname{Der} \mathcal{O}(\mathfrak{h}')]^W = \bigoplus_{i=1}^{\ell} \mathcal{O}(\mathfrak{h}')^W \nabla(p_j), \text{ and}$

$$[\operatorname{Der} \mathfrak{O}(\mathfrak{h})]^W = \bigoplus_{i=1}^{\ell} \mathfrak{O}(\mathfrak{h})^W \nabla(p_i)$$

is a free $\mathcal{O}(\mathfrak{h})^W$ -module.

Proof. (1) Note first that

$$w.\partial_j(p_k) = (w.\partial_j)(w.p_k) = (w.\partial_j)(p_k) = \sum_i w_{ij}\partial_i(p_k).$$

Therefore

$$w.\nabla(p_k) = \sum_{j} w.\partial_j(p_k) \, w.\partial_j = \sum_{i,j,s} w_{ij} \partial_i(p_k) \, w_{sj} \partial_s$$
$$= \sum_{i,s} (\sum_{j} w_{ij} w_{sj}) \partial_i(p_k) \partial_s = \sum_{i,s} \delta_{is} \partial_i(p_k) \, \partial_s$$
$$= \nabla(p_k).$$

Hence, $\nabla(p_k)$ is W-invariant. Recall that $\omega_{\mathfrak{h}} = \frac{1}{2} \sum_i \partial_i^2 \in S^2(\mathfrak{h})^W$. Note that

$$[\omega_{\mathfrak{h}}, p_j] = \frac{1}{2} \sum_i [\partial_i^2, p_j] = \nabla(p_j) + \frac{1}{2} \omega_{\mathfrak{h}}(p_j).$$

Thus, $\nabla(p_i) = [\omega_{\mathfrak{h}}, p_i] - \frac{1}{2}\omega_{\mathfrak{h}}(p_i) \in B$.

⁷The elements of \mathfrak{h} are identified with \mathbb{C} -linear derivations with constant coefficients on $S(\mathfrak{h}^*)$, hence $\partial_i = \frac{\partial}{\partial x_i}$.

(2) Denote by $[a_{ij}] \in \mathcal{M}_{\ell}(\mathcal{O}(\mathfrak{h})_{\pi})$ the inverse matrix of Jac(p). Then, $\pi[a_{ij}] \in \mathcal{M}_{\ell}(\mathcal{O}(\mathfrak{h}))$ and

$$\sum_{m} a_{mk} \nabla(p_m) = \sum_{i} (\sum_{m} a_{mk} \partial_i(p_m)) \partial_i = \sum_{i} \delta_{ik} \partial_i = \partial_k.$$

Hence, $\operatorname{Der} \mathcal{O}(\mathfrak{h}') = \bigoplus_k \mathcal{O}(\mathfrak{h}') \partial_k = \bigoplus_k \mathcal{O}(\mathfrak{h}') \nabla(p_k)$. Observe that we have also shown that

(5.1)
$$\pi \operatorname{Der} \mathcal{O}(\mathfrak{h}) = \bigoplus_{m} \mathcal{O}(\mathfrak{h}) \nabla(p_m).$$

(3) The first claim is consequence of (2) by taking W-invariants. Let $d \in \text{Der } \mathcal{O}(\mathfrak{h})^W$. From (5.1), we get that $\pi d = \sum_m \varphi_m \nabla(p_m)$ for some $\varphi_m \in \mathcal{O}(\mathfrak{h})$. Thus, for all $w \in W$,

$$w.(\pi d) = w.\pi \, w.d = \epsilon(w)\pi d = \sum_m w.\varphi_m \nabla(p_m).$$

It follows that $w.\varphi_m = \epsilon(w)\varphi_m$, and therefore $\varphi_m = \pi\gamma_m$ for some $\gamma_m \in \mathcal{O}(\mathfrak{h})^W$. Hence, $d = \sum_j \gamma_j \nabla(p_j) \in \bigoplus_j \mathcal{O}(\mathfrak{h})^W \nabla(p_j)$, as required.

Recall that, since the elements of $\mathcal{O}(\mathfrak{h})$ act locally nilpotently on $\mathcal{D}(\mathfrak{h})$, we can localize at any Öre subset of $\mathcal{O}(\mathfrak{h})$.

Proposition 5.3. We have: $B_{\pi^2} = \mathfrak{D}(\mathfrak{h})_{\pi^2}^W = \mathfrak{O}(\mathfrak{h})_{\pi^2}^W [\nabla(p_1), \dots, \nabla(p_\ell)].$

Proof. Recall that

$$\mathfrak{D}(\mathfrak{h})_{\pi^2}^W = \mathfrak{D}(\mathfrak{h}'/W) = [\mathfrak{D}(\mathfrak{h})_{\pi}]^W = \mathfrak{O}(\mathfrak{h}')^W [\operatorname{Der} \mathfrak{O}(\mathfrak{h}'/W)].$$

But, since $p:\mathfrak{h}' \to \mathfrak{h}'/W$ is étale, we obtain from Lemma 5.2(3) that

$$\operatorname{Der} \mathfrak{O}(\mathfrak{h}'/W) = [\operatorname{Der} \mathfrak{O}(\mathfrak{h}')]^W = \bigoplus_{j=1}^{\ell} \mathfrak{O}(\mathfrak{h}')^W \nabla(p_j).$$

Hence, using Lemma 5.2(1),

$$\mathfrak{D}(\mathfrak{h})_{\pi^2}^W \subseteq \mathfrak{O}(\mathfrak{h})_{\pi^2}^W [\nabla(p_1), \dots, \nabla(p_\ell)] \subseteq B_{\pi^2}.$$

The other inclusion being obvious, we have the desired equalities.

We filter $\mathcal{D}(\mathfrak{h})$ and its subspaces by the order of differential operators. In particular, if $B_m = \mathcal{D}_m(\mathfrak{h}) \cap B$, we obtain

$$\operatorname{gr} B = \bigoplus B_m / B_{m-1} \hookrightarrow \operatorname{gr} \mathcal{D}(\mathfrak{h})^W = \mathcal{O}(\mathfrak{h} \times \mathfrak{h}^*)^W = \operatorname{S}(\mathfrak{h}^* \times \mathfrak{h})^W \subset \operatorname{S}(\mathfrak{h}^* \times \mathfrak{h})$$

where the group W acts diagonally.

Lemma 5.4. The ring B is a noetherian domain, and $\mathfrak{D}(\mathfrak{h})^W$ is a finitely generated (left and right) B-module.

Proof. Clearly, $B \supseteq S(\mathfrak{h}^*)^W \otimes_{\mathbb{C}} S(\mathfrak{h})^W = S(\mathfrak{h}^* \times \mathfrak{h})^{W \times W}$. It is well known, since the group $W \times W$ is finite, that $S(\mathfrak{h}^* \times \mathfrak{h})$ is a finite module over the finitely generated algebra $S(\mathfrak{h}^* \times \mathfrak{h})^{W \times W}$. It follows easily that $\operatorname{gr} B$ is a finitely generated \mathbb{C} -algebra and that $S(\mathfrak{h}^* \times \mathfrak{h})^W$ is a finitely generated (gr B)-module. A routine argument then yields the claim.

Lemma 5.5. Let $B \subseteq A$ be two noetherian domains. Assume that A is simple and finitely generated as a left or right B-module. Then, if A and B have the same fraction field, we have A = B.

Proof. Set $L = \{b \in B \mid bA \subseteq B\}$. Since A is a finitely generated right B-module, and $\operatorname{Frac}(A) = \operatorname{Frac}(B)$, L is nonzero. Similarly, $L' = \{b \in B \mid Ab \subseteq B\} \neq 0$. Since L' and L are, respectively, left and right ideals of A, L'L is a two-sided ideal of A. But A being a domain, $L'L \neq 0$. Therefore $A = L'L \subseteq B$, and A = B as required.

Theorem 5.6. The homomorphism $\delta : \mathcal{D}(\mathfrak{g})^G \to \mathcal{D}(\mathfrak{h})^W$ is surjective.

Proof. We apply Lemma 5.5 to $B = \operatorname{Im} \delta \subseteq A = \mathcal{D}(\mathfrak{h})^W$. Recall [10] that A is simple. The theorem then follows from Proposition 5.3 and Lemma 5.4.

The previous theorem shows that (\dagger) has a positive answer, but does not give the graded surjectivity of δ . In the next sections we will see that question $(\dagger\dagger)$ is closely related to geometric questions about the commuting variety of \mathfrak{g} . Before going into this interpretation, we have to remark that the graded surjectivity of δ is easy once we have localized at the discriminant⁸. Indeed:

Proposition 5.7. The map $\delta: \mathcal{D}(\mathfrak{g})_{d_{\theta}}^{G} \to \mathcal{D}(\mathfrak{h})_{\pi^{2}}^{W}$ is graded-surjective.

Proof. Fix an orthonormal basis of \mathfrak{g} with respect to κ and denote the associated coordinate system on $\mathfrak{g}^* \times \mathfrak{g}$ by $\{x_1, \ldots, x_n; \partial_1, \ldots, \partial_n\}$. Assume that the numbering is chosen such that $\{x_1, \ldots, x_\ell; \partial_1, \ldots, \partial_\ell\}$ is the previous coordinate system on $\mathfrak{h}^* \times \mathfrak{h}$.

Define the gradient vector field of $u_j \in \mathcal{O}(\mathfrak{g})^G$, by $\nabla(u_j) = \sum_{k=1}^n \partial(u_k)\partial_k$. Recall that $r: \mathcal{D}(\mathfrak{g})^G \to \mathcal{D}(\mathfrak{h}/W)$. It is easily checked that

$$r(\nabla(u_j)) = \nabla(p_j), \quad j = 1, \dots, \ell.$$

We have seen in Proposition 5.3 that $\mathcal{D}(\mathfrak{h})_{\pi^2}^W = \mathcal{O}(\mathfrak{h})_{\pi^2}^W [\nabla(p_1), \dots, \nabla(p_\ell)]$, hence

$$\operatorname{gr} \mathcal{D}(\mathfrak{h})_{\pi^2}^W = \operatorname{gr} \mathcal{D}(\mathfrak{h}')^W = \mathbb{C}[p_1, \dots, p_\ell, \pi^{-2}, \operatorname{gr}(\nabla(p_1)), \dots, \operatorname{gr}(\nabla(p_\ell))].$$

Therefore, with obvious notation,

$$\operatorname{gr}_m \mathfrak{D}(\mathfrak{h})_{\pi^2}^W = \sum_{|k|=m} \mathbb{C}[p_1, \dots, p_\ell, \pi^{-2}] \nabla(p)^k.$$

Recall that $\delta(P) = \pi r(P)\pi^{-1}$; it follows that $\operatorname{gr}(\delta) = \operatorname{gr}(r)$. Since $\phi(u_j) = p_j$, $\phi(d_\ell) = \pi^2$ and $\operatorname{gr}(\delta)(\nabla(u_j)) = \operatorname{gr}(\nabla(u_j))$, we obtain from the above description of $\operatorname{gr}_m \mathcal{D}(\mathfrak{h})_{\pi^2}^W$ that $\operatorname{gr}(\delta) : \operatorname{gr} \mathcal{D}(\mathfrak{g})_{d_\ell}^G \to \operatorname{gr} \mathcal{D}(\mathfrak{h})_{\pi^2}^W$ is surjective.

Set $A = \mathcal{D}(\mathfrak{g})^G/\mathfrak{I}$. Recall that we can identify $\mathcal{D}(\mathfrak{g})$ and $\mathcal{D}(\mathfrak{g})^G$ with $\mathcal{O}(\mathfrak{g} \times \mathfrak{g})$ and $\mathcal{O}(\mathfrak{g} \times \mathfrak{g})^G$ respectively. Let \mathbf{q} be the kernel of the graded morphism

$$\operatorname{gr}(\delta) : \operatorname{gr} \mathfrak{D}(\mathfrak{g})^G \to \operatorname{gr} \mathfrak{D}(\mathfrak{h})^W.$$

Hence, $\operatorname{gr} \mathfrak{I} \subseteq \mathbf{q}$ and \mathbf{q} is prime. Since $\operatorname{gr} \mathfrak{I}$ and \mathbf{q} are contained in $\mathfrak{O}(\mathfrak{g} \times \mathfrak{g})^G$, they define affine subvarieties $\mathcal{V}(\mathbf{q}) \subseteq \mathcal{V}(\operatorname{gr} \mathfrak{I}) \subseteq (\mathfrak{g} \times \mathfrak{g})/G$.

Corollary 5.8. One has⁹:

- (1) GKdim $\mathcal{D}(\mathfrak{g})^G = \dim(\mathfrak{g} \times \mathfrak{g})/G = n + \ell k;$
- (2) GKdim $A = GKdim \operatorname{gr} A = GKdim \mathfrak{D}(\mathfrak{h})^W = 2\ell$;
- (3) height(gr \mathfrak{I}) = height(\mathbf{q}) = $n \ell k$.

⁸In the rest of this section we do not assume that the surjectivity of δ has been proved.

⁹Recall that dim $\mathfrak{g} = n$, $\ell = \operatorname{rk} \mathfrak{g} = \dim \mathfrak{h}$, $\mathfrak{g} = \mathfrak{s} \oplus \mathfrak{z}$, $\mathfrak{h} = \mathfrak{z} \oplus \mathfrak{t}$ and $k = \dim \mathfrak{t}$ (hence dim $\mathfrak{z} = \ell - k$). The heights of the ideals in (3) are computed in $\mathfrak{O}(\mathfrak{g} \times \mathfrak{g})^G$.

Proof. (1) Clearly, if S is the connected semisimple subgroup of G such that $Lie(S) = \mathfrak{s}$, we have

$$(\mathfrak{g} \times \mathfrak{g})/G \cong ((\mathfrak{s} \times \mathfrak{s})/S) \times (\mathfrak{z} \times \mathfrak{z}).$$

The maximal dimension of an S-orbit in $\mathfrak{s} \times \mathfrak{s}$ is $n - \ell + k$: pick $(x, y) \in \mathfrak{s} \times \mathfrak{s}$, with x generic and y regular nilpotent; then \mathfrak{s}^x is a Cartan subalgebra of \mathfrak{s} and \mathfrak{s}^y is contained in the nilpotent cone of \mathfrak{s} . Hence, $\mathfrak{s}^x \cap \mathfrak{s}^y = 0$ and $\dim S(x, y) = \dim \mathfrak{s} = n - \ell + k$. Therefore, $\dim(\mathfrak{g} \times \mathfrak{g})/G = n - \ell + k + 2(\ell - k) = n + \ell - k$.

(2) From Proposition 5.7, we deduce that there is a filtered isomorphism $A_{d_{\ell}} \cong \mathcal{D}(\mathfrak{h})_{\pi^2}^W$. The localization at d_{ℓ} commutes with gr, hence

$$\operatorname{gr}(\mathfrak{D}(\mathfrak{g})_{d_{\ell}}^{G}/\mathfrak{I}_{d_{\ell}}) = \operatorname{gr} A_{d_{\ell}} = (\operatorname{gr} A)_{d_{\ell}} \stackrel{\sim}{\longrightarrow} \operatorname{gr} \mathfrak{D}(\mathfrak{h})_{\pi^{2}}^{W}.$$

From $\operatorname{Ker}(\operatorname{gr}(\delta):\operatorname{gr}\mathcal{D}(\mathfrak{g})_{d_{\ell}}^{G}\to\operatorname{gr}\mathcal{D}(\mathfrak{h})_{\pi^{2}}^{W})=\mathbf{q}_{d_{\ell}}$, it follows that $\mathbf{q}_{d_{\ell}}=(\operatorname{gr}\mathfrak{I})_{d_{\ell}}$ and $(\mathfrak{O}(\mathfrak{g}\times\mathfrak{g})^{G}/\mathbf{q})_{d_{\ell}}\cong\mathfrak{O}(\mathfrak{h}\times\mathfrak{h})_{\pi^{2}}^{W}$. Observe that, since $\mathfrak{O}(\mathfrak{g}\times\mathfrak{g})/\mathbf{q}$ is a domain,

$$\operatorname{GKdim} \operatorname{gr} A_{d_{\ell}} = \operatorname{GKdim} \left(\mathfrak{O}(\mathfrak{g} \times \mathfrak{g})^G / \mathbf{q} \right)_{d_{\ell}} = \operatorname{GKdim} \mathfrak{O}(\mathfrak{g} \times \mathfrak{g}) / \mathbf{q} = 2\ell.$$

Note that d_{ℓ} is a nonzero divisor in A: $\delta(d_{\ell}) = \pi^2$ is a nonzero element of the domain $\mathcal{D}(\mathfrak{h})^W$, and $\delta: A \to \mathcal{D}(\mathfrak{h})^W$ is injective by definition of \mathfrak{I} . Moreover, d_{ℓ} acts locally ad-nilpotently on A. Therefore, by [6, Lemma 4.7, page 49], GKdim $A = GKdim A_{d_{\ell}}$. Hence,

$$\operatorname{GKdim} A = \operatorname{GKdim} A_{d_{\ell}} = \operatorname{GKdim} \mathfrak{D}(\mathfrak{h})_{\pi^{2}}^{W} = \operatorname{GKdim} \mathfrak{D}(\mathfrak{h})^{W} = 2\ell.$$

Now, by [6, Lemma 6.5, page 75] and the previous remarks,

$$2\ell = \operatorname{GKdim} \mathcal{O}(\mathfrak{g} \times \mathfrak{g})/\mathbf{q} \leq \operatorname{GKdim} \operatorname{gr} A \leq \operatorname{GKdim} A = 2\ell.$$

Thus $\operatorname{GKdim} \mathcal{O}(\mathfrak{g} \times \mathfrak{g})/\mathbf{q} = \operatorname{GKdim} \operatorname{gr} A = \operatorname{GKdim} A = 2\ell$.

(3) Since $\mathcal{O}(\mathfrak{g} \times \mathfrak{g})^G$ is a finitely generated domain,

height(gr
$$\mathfrak{I}$$
) = GKdim $\mathfrak{O}(\mathfrak{g} \times \mathfrak{g})^G$ – GKdim gr $A = n + \ell - k - 2\ell = n - \ell - k$.

Similarly,

height(
$$\mathbf{q}$$
) = GKdim $\mathcal{O}(\mathfrak{g} \times \mathfrak{g})^G$ – GKdim $\mathcal{O}(\mathfrak{g} \times \mathfrak{g})^G/\mathbf{q} = n - \ell - k$

as desired. \Box

Remark. Corollary 5.8(3) shows that \mathbf{q} is a minimal prime ideal over $\operatorname{gr} \mathcal{I}$, and that $\dim \mathcal{V}(\operatorname{gr} \mathcal{I}) = \dim \mathcal{V}(\mathbf{q}) = 2\ell$.

Corollary 5.9. The following are equivalent:

- (a) δ is graded-surjective;
- (b) δ is surjective and gr \mathcal{I} is a prime ideal.

Proof. (a) \Rightarrow (b) The hypothesis says that $\operatorname{gr}(\delta) : \operatorname{gr} \mathcal{D}(\mathfrak{g})^G \to \operatorname{gr} \mathcal{D}(\mathfrak{h})^W$ is surjective. Thus δ is surjective. We have to show that $\operatorname{Ker} \operatorname{gr}(\delta) = \operatorname{gr} \mathfrak{I}$. Let $a \in \mathcal{D}_m(\mathfrak{g})^G$ be such that $0 = \operatorname{gr}(\delta(a)) \in \operatorname{gr}_m \mathcal{D}(\mathfrak{h})^W$, i.e. $\delta(a) \in \mathcal{D}_{m-1}(\mathfrak{h})^W$. Since $\mathcal{D}_{m-1}(\mathfrak{h})^W = \delta(\mathcal{D}_{m-1}(\mathfrak{g})^G)$, we obtain $a \in \mathcal{D}_{m-1}(\mathfrak{g})^G + \mathfrak{I}$. Hence, $\operatorname{gr}(a) \in \operatorname{gr} \mathfrak{I}$ as required.

(b) \Rightarrow (a) Since $\operatorname{gr} \mathfrak{I} = \mathbf{q}$, $\operatorname{gr}(\delta)$ yields an injection: $\operatorname{gr} \mathfrak{D}(\mathfrak{g})^G/\operatorname{gr} \mathfrak{I} \hookrightarrow \operatorname{gr} \mathfrak{D}(\mathfrak{h})^W$. Let $b \in \mathfrak{D}_m(\mathfrak{h})^W$. Then, $b = \delta(a)$ for some $a \in \mathfrak{D}_p(\mathfrak{g})^G$. If $p \leq m$ we are done; otherwise, $\operatorname{gr}(\delta)(\operatorname{gr}_p(a)) = \operatorname{gr}_p(b) = 0$. Hence, $\operatorname{gr}_p(a) \in \operatorname{gr} \mathfrak{I}$ and therefore $a \in \mathfrak{I} + \mathfrak{D}_{p-1}(\mathfrak{g})^G$. By induction we get that $b = \delta(a')$ for some $a' \in \mathfrak{D}_m(\mathfrak{g})^G$, proving the graded surjectivity of δ .

¹⁰Since S is semisimple, $\dim(\mathfrak{s} \times \mathfrak{s})/S = 2\dim\mathfrak{s} - \max\{\dim S.(x,y); x,y \in \mathfrak{s}\}.$

6. The commuting variety of g

The commuting variety of \mathfrak{g} is the closed subvariety of $\mathfrak{g} \times \mathfrak{g}$ defined by

$$\mathfrak{C}(\mathfrak{g}) = \{(x, y) \in \mathfrak{g} \times \mathfrak{g} \mid [x, y] = 0\}.$$

Note that $\mathcal{C}(\mathfrak{g})$ is a G-subvariety of $\mathfrak{g} \times \mathfrak{g}$ under the diagonal (adjoint) action of G.

Remark. In general, i.e. for an arbitrary Lie algebra, $\mathcal{C}(\mathfrak{g})$ is not irreducible. Take, for example, the 3-dimensional solvable Lie algebra $\mathfrak{g} = \mathbb{C}u + \mathbb{C}v + \mathbb{C}w$, where the nonzero brackets are

$$[u, v] = v, \qquad [u, w] = w.$$

Let $\{x, y, z\}$ be the dual basis of $\{u, v, w\}$ and set $\mathcal{O}(\mathfrak{g} \times \mathfrak{g}) = \mathbb{C}[x, y, z] \otimes_{\mathbb{C}} \mathbb{C}[x', y', z']$. Then,

$$\mathfrak{C}(\mathfrak{g}) = \mathcal{V}(xy' - x'y, xz' - x'z)$$

is 4-dimensional and has two irreducible components

$$\mathcal{V}(x,x') = (\mathbb{C}v + \mathbb{C}w) \times (\mathbb{C}v + \mathbb{C}w), \quad \mathcal{V}(xy' - x'y, xz' - x'z, y'z - yz').$$

But, when \mathfrak{g} is reductive, we have the following result.

Theorem 6.1. [12] The variety $C(\mathfrak{g})$ is irreducible. Indeed,

$$\mathfrak{C}(\mathfrak{g}) = \overline{G.(\mathfrak{h} \times \mathfrak{h})}.$$

Remark. The study of $\mathcal{C}(\mathfrak{g})$ reduces easily to the case when \mathfrak{g} is semisimple: Write $\mathfrak{g} = \mathfrak{s} \oplus \mathfrak{z}$, where \mathfrak{s} is semisimple and \mathfrak{z} is the centre, then

$$\mathcal{C}(\mathfrak{g}) = \mathcal{C}(\mathfrak{s}) \times (\mathfrak{z} \times \mathfrak{z}),$$

where we have identified $\mathfrak{g} \times \mathfrak{g}$ with $(\mathfrak{s} \times \mathfrak{s}) \times (\mathfrak{z} \times \mathfrak{z})$. Therefore we shall assume in this section that \mathfrak{g} is semisimple, and that G is the adjoint group.

Denote by **p** the prime ideal of $\mathcal{O}(\mathfrak{g} \times \mathfrak{g}) = \mathcal{S}(\mathfrak{g}^* \times \mathfrak{g}^*)$ such that $\mathcal{C}(\mathfrak{g}) = \mathcal{V}(\mathbf{p})$. Clearly, $(x,y) \in \mathcal{C}(\mathfrak{g})$ is and only if $\kappa(a,[x,y]) = 0$ for all $a \in \mathfrak{g}$. Let $\sigma_a \in \mathcal{O}(\mathfrak{g} \times \mathfrak{g})$ be the function $(x,y) \mapsto \kappa(a,[x,y])$, and define the ideal

$$\mathbf{a} = (\sigma_a ; a \in \mathfrak{g}).$$

Thus, $\sqrt{\mathbf{a}} = \mathbf{p}$ and $\mathfrak{C}(\mathfrak{g})/G = \mathcal{V}(\mathbf{p}^G) = \mathcal{V}(\mathbf{a}^G)$. The main questions concerning $\mathfrak{C}(\mathfrak{g})$ are the following:

- Is $\mathbf{a} = \mathbf{p}$? If true, this would imply that $\mathcal{J} = \mathcal{D}(\mathfrak{g})\tau(\mathfrak{g})^{11}$.
- Is $\mathcal{C}(\mathfrak{g})$ normal? Cohen-Macaulay?
- Is $\mathcal{C}(\mathfrak{g})/G$ normal? Cohen-Macaulay? We shall relate the normality of $\mathcal{C}(\mathfrak{g})/G$ to the graded-surjectivity of δ in the next section.

We need to know the dimension of $C(\mathfrak{g})$; this computation is implicit in [12], for sake of completeness we indicate a proof.

Lemma 6.2. dim $\mathcal{C}(\mathfrak{g}) = \dim \mathfrak{g} + \operatorname{rk} \mathfrak{g}$.

¹¹Actually, $\mathcal{J} = \mathcal{D}(\mathfrak{g})\tau(\mathfrak{g})$ has been proved [8]. The equality $\mathbf{a} = \mathbf{p}$ would imply a stronger result: $\operatorname{gr} \mathcal{J} = \operatorname{gr} \mathcal{D}(\mathfrak{g})\tau(\mathfrak{g})$.

Proof. Let $\eta: \mathfrak{g} \times \mathfrak{g} \twoheadrightarrow \mathfrak{g}$ be the first projection. Since $\eta(\mathfrak{C}(\mathfrak{g})) = \mathfrak{g}$, we have a surjective morphism: $\eta: \mathfrak{C}(\mathfrak{g}) \twoheadrightarrow \mathfrak{g}$. Note that, for all $u = (x, x') \in \mathfrak{C}(\mathfrak{g})$,

$$\eta^{-1}(\eta(u)) = \{(x,y) : y \in \mathfrak{g}^x\} \cong \mathfrak{g}^x$$

is an irreducible variety.

By a standard result, see [15, Theorem 4.1.6], there exists a non-empty open subset $U \subseteq \mathcal{C}(\mathfrak{g})$ such that, for all $u \in U$,

$$\dim U = \dim \mathcal{C}(\mathfrak{g}) = \dim \mathfrak{g} + \dim \eta^{-1}(\eta(u)).$$

Since $(\mathfrak{g}' \times \mathfrak{g}) \cap \mathcal{C}(\mathfrak{g})$ is a non-empty open subset of $\mathcal{C}(\mathfrak{g})$, we can pick $u = (x, y) \in U$ with $x \in \mathfrak{g}'$. Then \mathfrak{g}^x is a Cartan subalgebra of \mathfrak{g} . Hence $\dim \mathcal{C}(\mathfrak{g}) = n + \ell$.

Again, the situation is easy after localization at the discriminant $d_{\ell} \in \mathcal{O}(\mathfrak{g}) \equiv \mathcal{O}(\mathfrak{g}) \otimes_{\mathbb{C}} 1 \subset \mathcal{O}(\mathfrak{g} \times \mathfrak{g}) = \mathcal{O}(\mathfrak{g}) \otimes_{\mathbb{C}} \mathcal{O}(\mathfrak{g}).$

Lemma 6.3. $a_{d_{\ell}} = p_{d_{\ell}}$.

Proof. Let $(x,y) \in \mathfrak{g} \times \mathfrak{g}$ and $v \in \mathfrak{g}$. The differential of σ_v at (x,y), that we denote by $d\sigma_v(x,y) \in T^*_{(x,y)}(\mathfrak{g} \times \mathfrak{g})$, is given by

$$\forall (a,b) \in \mathfrak{g} \times \mathfrak{g}, \ d\sigma_v(x,y)(a,b) = \frac{d}{dt}_{|t=0} \sigma_v(x+ta,y+tb) = \kappa(v,[x,b]+[a,y]).$$

It follows that $d\sigma_v(x,y) = 0$ if, and only if, $v \in ([x,\mathfrak{g}] + [y,\mathfrak{g}])^{\perp} = \mathfrak{g}^x \cap \mathfrak{g}^y$, where \perp denotes the orthogonal with respect to κ . Therefore, the linear map

$$\vartheta: \mathfrak{g} \to T^*_{(x,y)}(\mathfrak{g} \times \mathfrak{g}), \quad v \mapsto d\sigma_v(x,y),$$

has rank $n - \dim(\mathfrak{g}^x \cap \mathfrak{g}^y)$.

Now, suppose that $(x,y) \in \mathcal{C}(\mathfrak{g}) \cap (\mathfrak{g}' \times \mathfrak{g})$. Then $y \in \mathfrak{g}^x$ and \mathfrak{g}^x is a Cartan subalgebra of \mathfrak{g} . Thus, $\mathfrak{g}^y \supseteq \mathfrak{g}^x$ and $\operatorname{rk} \vartheta = n - \ell$. Let $v_1, \ldots, v_{n-\ell} \in \mathfrak{g}$ be such that $d\sigma_{v_1}(x,y), \ldots, d\sigma_{v_{n-\ell}}(x,y)$ are linearly independent. Denote by (A,\mathbf{m}) the local ring of $\mathfrak{g} \times \mathfrak{g}$ at the point (x,y); recall that $T^*_{(x,y)}(\mathfrak{g} \times \mathfrak{g}) \equiv \mathbf{m}/\mathbf{m}^2$. Since (A,\mathbf{m}) is a regular local ring, the functions $\sigma_{v_1}, \ldots, \sigma_{v_{n-\ell}} \in \mathbf{m}$ can be included in a regular system of parameters. In particular, they generate an ideal of height $n-\ell$ in A. Note that they also belong to $\mathbf{a}_{(x,y)} \subseteq \mathbf{p}_{(x,y)}$, and that height $(\mathbf{p}_{(x,y)}) = \operatorname{height}(\mathbf{p}) = \operatorname{codim} \mathcal{C}(\mathfrak{g}) = n - \ell$. Hence,

$$(\sigma_{v_1},\ldots,\sigma_{v_{n-\ell}})=\mathbf{a}_{(x,y)}=\mathbf{p}_{(x,y)}.$$

Since $(x,y) \in \mathcal{C}(\mathfrak{g}) \cap (\mathfrak{g}' \times \mathfrak{g}) = \mathcal{C}(\mathfrak{g})_{d_{\ell}}$ was arbitrary, we obtain that $\mathbf{a}_{d_{\ell}} = \mathbf{p}_{d_{\ell}}$.

Remark. The proof of Lemma 6.3 shows that, if $(x,y) \in \mathcal{C}(\mathfrak{g})$ and $\dim(\mathfrak{g}^x \cap \mathfrak{g}^y) = \mathrm{rk}\,\mathfrak{g}$, then (x,y) is a smooth point of $\mathcal{C}(\mathfrak{g})$. Hence, $\mathcal{C}(\mathfrak{g}) \cap (\mathfrak{g}' \times \mathfrak{g})$ is a smooth open subset of $\mathcal{C}(\mathfrak{g})$.

Recall the following theorem:

Theorem 6.4. [13, Theorem 3.2] Let $(x,y) \in \mathfrak{g} \times \mathfrak{g}$. Then, the orbit G.(x,y) is closed if and only if the algebraic hull of the Lie subalgebra of \mathfrak{g} generated by x and y is reductive in \mathfrak{g} .

Since we are, here, interested in orbits in $\mathcal{C}(\mathfrak{g})$, we will give a proof of Theorem 6.4 in this particular case.

Lemma 6.5. Let $(x,y) \in C(\mathfrak{g})$. Then, G.(x,y) is closed if and only if x and y are semisimple.

Proof. Recall the Jordan-Chevalley decomposition of $x \in \mathfrak{g}$: $x = x_s + x_n$, x_s semisimple, x_n nilpotent, $[x_s, x_n] = 0$. Note that ad x_s and ad x_n are polynomials in ad x. Thus, [x, y] = 0 if and only if $[x_s, y_s] = [x_s, y_n] = [x_n, y_s] = [x_n, y_n] = 0$. Since x_s, y_s are commuting semisimple elements, we may assume (after conjugacy) that $x_s, y_s \in \mathfrak{h}$. Observe that $\mathfrak{t} = \mathfrak{g}^{x_s} \cap \mathfrak{g}^{y_s}$ is a reductive Lie algebra in \mathfrak{g} , see §2. Denote by $K \subseteq G$ the adjoint group of \mathfrak{t} . Furthermore, $x_n, y_n \in [\mathfrak{t}, \mathfrak{t}]$ are nilpotent, see [4, §3 Remark 9]; since they commute, there exists a maximal nilpotent subalgebra \mathfrak{u} of \mathfrak{t} containing x_n and y_n . Then, it easy to show that there is a one-parameter subgroup, $\lambda : \mathbb{C}^* \to K$, such that $\lim_{t\to 0} \lambda(t).z = 0$ for all $z \in \mathfrak{u}$.

Now assume that G.(x,y) is closed. Then $\lim_{t\to 0} \lambda(t).(x,y) = (x_s,y_s)$, and therefore $(x_s,y_s) \in G.(x,y)$. This shows that x,y are semisimple.

Conversely, assume that $x,y \in \mathfrak{g}$ are commuting semisimple elements. We may suppose (after conjugacy) that $x,y \in \mathfrak{h}$. Thus the stabilizer $G^{(x,y)} = G^x \cap G^y$ contains H. Then [5, III.2.5, Folgerung 3] gives that G.(x,y) is closed. (The proof goes as follows. Let B = NH be a Borel subgroup. Since N is unipotent, Z = B.(x,y) = N.(x,y) is closed. Recall now the well known fact: Let P be a parabolic subgroup of G and Z be a P-stable closed subset of some G-variety V, then, G.Z is closed. (Set $\varphi: G \times V \xrightarrow{\sim} G \times V$, $\varphi((g,v)) = (g,g.v)$, $\eta: G \times V \xrightarrow{\sim} G/P \times V$, $\eta((g,v)) = (\bar{g},v)$, and $\varpi: G \times V \xrightarrow{\sim} V$, $\varpi((g,v)) = v$. Since $\varphi(G \times Z)$ is closed, $\eta(\varphi(G \times Z))$ is closed if and only if $\varphi(G \times Z) = \eta^{-1}(\eta(\varphi(G \times Z)))$, which is clear. Then, since G/P is complete, $G.Z = \varpi(\varphi(G \times Z))$ is closed.)

Set $N = N_G(H)$, so that W = N/H. We have a natural surjective morphism

$$\mu: \mathfrak{X} = G \times_N (\mathfrak{h} \times \mathfrak{h}) \to G.(\mathfrak{h} \times \mathfrak{h}), \quad [g, (h_1, h_2)] \mapsto (g.h_1, g.h_2).$$

By Theorem 6.1, μ induces a dominant morphism from \mathcal{X} to $\mathcal{C}(\mathfrak{g})$. Furthermore, dim $\mathcal{X} = \dim G + 2\dim \mathfrak{h} - \dim N = n + \ell$.

Theorem 6.6. Set $\mathfrak{X}' = G \times_N (\mathfrak{h}' \times \mathfrak{h})$ and $\mathfrak{S} = \{(x, y) \in \mathfrak{C}(\mathfrak{g}) \mid x \in \mathfrak{g}'\}$. Then,

- (1) $\mu: \mathfrak{X}' \to \mathfrak{S}$ is an isomorphism;
- (2) μ is a birational morphism from \mathfrak{X} to $\mathfrak{C}(\mathfrak{g})$.

Proof. (1) If $x \in \mathfrak{g}'$, x is conjugate to an element of \mathfrak{h}' , say $x = g.x_1$. Let $(x,y) \in \mathcal{S}$ and set $y = g.y_1$. Then $[x,y] = [x_1,y_1] = 0$, hence $y_1 \in \mathfrak{g}^{x_1} = \mathfrak{h}$. It follows that $(x,y) = g.(x_1,y_1) \in \mu(\mathcal{X}')$. Hence, $\mu: \mathcal{X}' \to \mathcal{S}$ is surjective. Suppose that $[g,(h_1,h_2)], [g',(h'_1,h'_2)] \in \mathcal{X}'$ and satisfy $g.h_i = g.h'_i$ for i = 1,2. Then $h_i = g^{-1}g'.h'_i$; in particular, the two generic elements h_1, h'_1 are G-conjugate. This implies that h_1 and h'_1 are W-conjugate. Indeed, there exists $n \in N$ such that $h'_1 = n.h_1$. Therefore $h_1 = g^{-1}g'n.h_1$, forcing $t := g^{-1}g'n \in H$. We obtain that $g^{-1}g' = tn^{-1} \in N$ and

$$[g', (h'_1, h'_2)] = [gtn^{-1}, (h'_1, h'_2)] = [g, tn^{-1}(h'_1, h'_2)] = [g, (h_1, h_2)].$$

This proves that μ restricted to \mathfrak{X}' is bijective. We know that \mathfrak{S} is contained in the set of smooth points of $\mathfrak{C}(\mathfrak{g})$ (see the remark after Lemma 6.3). Therefore $\mu_{|\mathfrak{X}'}$ is an isomorphism.

(2) Since \mathfrak{X}' and \mathfrak{S} are non-empty open subsets of the irreducible varieties \mathfrak{X} and $\mathfrak{C}(\mathfrak{g})$ respectively, the result follows from (1).

The previous theorem says that $\mathfrak{h} \times \mathfrak{h}$ is a rational section of the action of G on $\mathfrak{C}(\mathfrak{g})$, see [11, II.2.5, II.2.8].

The group G acts on \mathfrak{X} by left translation and we have a natural isomorphism

$$\mathfrak{X}/G \cong (\mathfrak{h} \times \mathfrak{h})/W$$
.

The G-equivariant morphism μ then induces $\mu : (\mathfrak{h} \times \mathfrak{h})/W \to \mathfrak{C}(\mathfrak{g})/G$. This morphism μ will be called the Chevalley restriction map; it is easily seen that μ is given by restriction

of functions:

$$\mu: (\mathfrak{h} \times \mathfrak{h})/W \longrightarrow \mathfrak{C}(\mathfrak{g})/G; \quad \mu: W.(x,y) \mapsto G.(x,y).$$

The comorphism of μ is

$$\mu^{\sharp}: \mathcal{O}(\mathcal{C}(\mathfrak{g}))^G \to \mathcal{O}(\mathfrak{h} \times \mathfrak{h})^W, \quad \mu^{\sharp}(f) = f_{|\mathfrak{h} \times \mathfrak{h}}.$$

Since $\mathcal{C}(\mathfrak{g}) = \overline{G.(\mathfrak{h} \times \mathfrak{h})}$, it is clear that a function f on $\mathcal{C}(\mathfrak{g})$ is determined by its values on $G.(\mathfrak{h} \times \mathfrak{h})$. If f is G-invariant, it is therefore determined by $f_{|\mathfrak{h} \times \mathfrak{h}}$. Hence, $\mu^{\sharp} : \mathcal{O}(\mathcal{C}(\mathfrak{g}))^{G} \to \mathcal{O}(\mathfrak{h} \times \mathfrak{h})^{W}$ is injective, i.e. μ is dominant.

The open question is to show that $\mathfrak{h} \times \mathfrak{h}$ is a *Chevalley section* [11, II.3.8], i.e. μ^{\sharp} : $\mathcal{O}(\mathcal{C}(\mathfrak{g}))^G \cong \mathcal{O}(\mathfrak{h} \times \mathfrak{h})^W$. The next result shows that μ is at least bijective.

Theorem 6.7. The morphism $\mu : (\mathfrak{h} \times \mathfrak{h})/W \longrightarrow \mathfrak{C}(\mathfrak{g})/G$ is bijective and is the normalization of $\mathfrak{C}(\mathfrak{g})/G$.

Proof. 1. μ is surjective. Let $(x,y) \in \mathcal{C}(\mathfrak{g})$ be such that G.(x,y) is closed in $\mathcal{C}(\mathfrak{g})$ (hence in $\mathfrak{g} \times \mathfrak{g}$). Then, by Lemma 6.5, x and y are commuting semisimple elements. Therefore they are contained in a Cartan subalgebra \mathfrak{h}_1 of \mathfrak{g} . By conjugacy of the Cartan subalgebras, we can find $g \in G$ such that $g.\mathfrak{h}_1 = \mathfrak{h}$. Thus, $g.(x,y) = (g.x,g.y) \in \mathfrak{h} \times \mathfrak{h}$. This proves the surjectivity of μ .

- 2. μ is injective. Recall the following well-known facts, cf. [4] for example.
 - (1) If $x \in \mathfrak{g}$ is semisimple, then G^x is a connected reductive subgroup of G.
 - (2) If $y \in \mathfrak{h}$, then $G.y \cap \mathfrak{h} = W.y$.

We shall denote by $\dot{w} \in N = N_G(H)$ a representative element of $w \in W$. We have to show that: if $x, x', y, y' \in \mathfrak{h}$ are such that g.x = x', g.y = y' for some $g \in G$, then there exists $\dot{u} \in N$ such that $x' = \dot{u}.x, y' = \dot{u}.y$. Since $x' \in G.x \cap \mathfrak{h}$ and $y' \in G.y \cap \mathfrak{h}$, we know from (2) that $x' = \dot{w}_1.x, y' = \dot{w}_2.y$ for some $w_1, w_2 \in W$. Set $y'' = \dot{w}_1^{-1}.y', g' = \dot{w}_1^{-1}g$. We have g'.x = x, g'.y = y''; thus, G.(x,y) = (x,y''). Therefore, it is enough to show that there exists $w \in W^x$ such that y'' = w.y. Indeed, y'' = w.y implies $y' = \dot{w}_1\dot{w}.y$ and we have $x' = \dot{w}_1\dot{w}.x$. Thus, the result follows by setting $\dot{u} = \dot{w}_1\dot{w}$.

Therefore we may, and we do, assume that x = x', $g \in G^x$, $y' = g.y \in \mathfrak{h}$. The proof of the injectivity of μ reduces then to show that

$$x, y \in \mathfrak{h} \implies G^x.y \cap \mathfrak{h} = W^x.y.$$

Observe that $H \subset G^x$. Therefore \mathfrak{h} is Cartan subalgebra of \mathfrak{g}^x . Futhermore, cf. (1), G^x is a connected reductive subgroup of G. Since $H \subseteq N \cap G^x = N_{G^x}(H)$, the Weyl group of G^x is W^x (with respect to the choice of the Cartan \mathfrak{h}). Now, use (2) in the connected reductive group G^x to get $G^x.y \cap \mathfrak{h} = W^x.y$.

By [2, Theorem 4.6], μ is then birational. Since $(\mathfrak{h} \times \mathfrak{h})/W$ is a normal variety, the result follows.

Remark. The fact that μ is the normalization of $\mathcal{C}(\mathfrak{g})$ is a corollary of [9, Proposition 2.2]¹². Recall [9, Lemme 1.8] that, if $\varphi: \mathcal{X} \to \mathcal{Y}$ is a surjective birational morphism between affine irreducible varieties, and if \mathcal{Y} is normal, then φ is an isomorphism. Therefore, the open problem of whether $\mu: (\mathfrak{h} \times \mathfrak{h})/W \to \mathcal{C}(\mathfrak{g})/G$ is an isomorphism, is equivalent to showing that $\mathcal{C}(\mathfrak{g})/G$ is normal, cf. Corollary 7.2.

¹²Apply this proposition to $M = \mathfrak{g} \times \mathfrak{g}$.

7. Graded-surjectivity of δ

We begin with a preliminary remark. Recall that the map $\delta: \mathcal{D}(\mathfrak{g})^G \to \mathcal{D}(\mathfrak{h})^W$ is equal to $\iota \circ r$, where $r: \mathcal{D}(\mathfrak{g})^G \to \mathcal{D}(\mathfrak{h}')^W$ is the "radial component" map. We noticed that, when we restrict to the generic elements,

$$\operatorname{gr}(\delta) = \operatorname{gr}(r) : \mathcal{O}(\mathfrak{g}' \times \mathfrak{g})^G = \mathcal{O}((\mathfrak{g}' \times \mathfrak{g})/G) \longrightarrow \mathcal{O}(\mathfrak{h}' \times \mathfrak{h})^W = \mathcal{O}((\mathfrak{h}' \times \mathfrak{h})/W).$$

From the definition of r, it is immediate that $\operatorname{gr}(r)$ is induced by restriction of functions: $\operatorname{gr}(r)(f) = f_{|\mathfrak{h}' \times \mathfrak{h}}$. Since $(\mathfrak{g}' \times \mathfrak{g})/G$ is open and dense in $(\mathfrak{g} \times \mathfrak{g})/G$, it follows that $\operatorname{gr}(\delta)$ is also given by restriction of functions.

Proposition 7.1. With the notation of §6, we have

- (1) $\mathbf{q} = \mathbf{p}^G$ and $\mathfrak{C}(\mathfrak{g})/G = \mathcal{V}(\operatorname{gr} \mathfrak{I});$
- (2) $\mathbf{p}_{d_{\ell}}^{G} = \operatorname{gr} \mathfrak{I}_{d_{\ell}} \text{ and } \mathfrak{I}_{d_{\ell}} = (\mathfrak{D}(\mathfrak{g}))\tau(\mathfrak{g}))_{d_{\ell}}^{G}$

Proof. (1) Note first that, since $\mathcal{V}(\mathbf{a}) = \mathcal{C}(\mathfrak{g})$, $\mathcal{C}(\mathfrak{g})/G = \mathcal{V}(\mathbf{p}^G) = \mathcal{V}(\mathbf{a}^G)$. Moreover, $\mathbf{a} \subseteq \operatorname{gr} \mathcal{J}$ implies $\mathbf{a}^G \subset (\operatorname{gr} \mathcal{J})^G = \operatorname{gr} \mathcal{I}$. Therefore,

$$\mathcal{V}(\mathbf{q}) \subseteq \mathcal{V}(\operatorname{gr} \mathfrak{I}) \subseteq \mathcal{V}(\mathbf{a}^G) = \mathfrak{C}(\mathfrak{g})/G.$$

By Corollary 5.8 and Theorem 6.7, $\dim \mathfrak{C}(\mathfrak{g})/G = \dim \mathfrak{V}(\mathbf{q}) = 2\ell$. Hence,

$$\mathcal{V}(\mathbf{q}) = \mathcal{V}(\operatorname{gr} \mathfrak{I}) = \mathfrak{C}(\mathfrak{q})/G = \mathcal{V}(\mathbf{p}^G).$$

This proves the claims.

(2) We have seen (cf. the proof of Corollary 5.8) that $\mathbf{q}_{d_{\ell}} = \operatorname{gr} \mathfrak{I}_{d_{\ell}}$. Thus, the first assertion follows from (1). By Lemma 6.3, $\mathbf{a}_{d_{\ell}}^{G} = \mathbf{p}_{d_{\ell}}^{G}$ (recall that d_{ℓ} is invariant) and therefore, $\mathbf{a}_{d_{\ell}}^{G} = \operatorname{gr} \mathfrak{I}_{d_{\ell}}$. Since $\mathbf{a}^{G} \subseteq (\operatorname{gr} \mathcal{D}(\mathfrak{g})\tau(\mathfrak{g}))^{G} \subseteq \operatorname{gr} \mathfrak{I}$, we obtain the equality $(\operatorname{gr} \mathcal{D}(\mathfrak{g})\tau(\mathfrak{g}))^{G}_{d_{\ell}} = \operatorname{gr} \mathfrak{I}_{d_{\ell}}$. Hence $(\mathcal{D}(\mathfrak{g})\tau(\mathfrak{g}))^{G}_{d_{\ell}} = \mathfrak{I}_{d_{\ell}}$.

Corollary 7.2. The following are equivalent:

- (a) δ is graded-surjective;
- (b) $\mathcal{C}(\mathfrak{g})/G$ is a normal variety;
- (c) the Chevalley restriction map $\mu:(\mathfrak{h}\times\mathfrak{h})/W\to \mathfrak{C}(\mathfrak{g})/G$ is an isomorphism, i.e. $\mathfrak{O}(\mathfrak{C}(\mathfrak{g}))^G \cong \mathfrak{O}(\mathfrak{h}\times\mathfrak{h})^W$.

Proof. By Proposition 7.1 and the preliminary remark, the comorphism of $\operatorname{gr}(\delta) : \mathcal{O}(\mathfrak{g} \times \mathfrak{g})^G / \operatorname{gr} \mathfrak{I} \to \mathcal{O}(\mathfrak{h} \times \mathfrak{h})^W$ is the map, $(\mathfrak{h} \times \mathfrak{h})/W \to \mathcal{V}(\operatorname{gr} \mathfrak{I}) = \mathcal{C}(\mathfrak{g})/G$, induced by restriction of functions.

- (b) \Leftrightarrow (c) is consequence of Theorem 6.7.
- (a) \Rightarrow (c) If δ is graded-surjective, then $\operatorname{gr} \mathfrak{I} = \mathbf{q} = \mathbf{p}^G$ by Corollary 5.9. Hence, $\operatorname{gr}(\delta) : \mathfrak{O}(\mathfrak{g} \times \mathfrak{g})^G/\mathbf{p}^G \xrightarrow{\sim} \mathfrak{O}(\mathfrak{h} \times \mathfrak{h})^W$ and (c) follows.
- (c) \Rightarrow (a) If the Chevalley restriction map is an isomorphism, we deduce that $gr(\delta)$ gives an isomorphism $\mathcal{O}(\mathfrak{g} \times \mathfrak{g})^G/\mathbf{p}^G \xrightarrow{\sim} \mathcal{O}(\mathfrak{h} \times \mathfrak{h})^W$. In particular, $gr(\delta)$ is surjective. Hence the result.

The (equivalent) conditions of Corollary 7.2 hold when $\mathfrak{g} = \mathfrak{gl}(n,\mathbb{C})$. As explained in [1], this follows from the fact that, in this case, $\mathcal{O}(\mathfrak{h} \times \mathfrak{h})^W$ is well understood. Recall that when $\mathfrak{g} = \mathfrak{gl}(n,\mathbb{C})$, one can choose $\mathfrak{h} = \{\operatorname{diag}(\lambda_1,\ldots,\lambda_n) \in \operatorname{M}_n(\mathbb{C})\}$ as a Cartan subalgebra. Then, the Weyl group $W = W(\mathfrak{g},\mathfrak{h})$ identifies with the symmetric group \mathfrak{S}_n acting on \mathfrak{h} by permutation of the entries:

$$w.\operatorname{diag}(\lambda_1,\ldots,\lambda_n)=\operatorname{diag}(\lambda_{w^{-1}(1)},\ldots,\lambda_{w^{-1}(n)}).$$

Set $\mathcal{O}(\mathfrak{h} \times \mathfrak{h}) = \mathbb{C}[X_1, \dots, X_n] \otimes_{\mathbb{C}} \mathbb{C}[Y_1, \dots, Y_n]$. Thus W acts on $\mathcal{O}(\mathfrak{h} \times \mathfrak{h})$ by $w.X_j = X_{w(j)}$, $w.Y_j = Y_{w(j)}$.

For every $r, s \in \mathbb{N}$, define the "polarized power sums" $p_{r,s} \in \mathcal{O}(\mathfrak{h} \times \mathfrak{h})$ by

$$p_{r,s} = \sum_{i=1}^{n} X_i^r Y_i^s.$$

Clearly, $p_{r,s}$ is W-invariant. One has the following result, due to H. Weyl:

Theorem 7.3. [18] $\mathfrak{O}(\mathfrak{h} \times \mathfrak{h})^W$ is generated by the polynomials $p_{r,s}$.

Corollary 7.4. Assume that $\mathfrak{g} = \mathfrak{gl}(n,\mathbb{C})$. Then, the Chevalley restriction map $\mu : (\mathfrak{h} \times \mathfrak{h})/W \to \mathfrak{C}(\mathfrak{g})/G$ is an isomorphism.

Proof. We have already noticed in §6 that $\mu^{\sharp}: \mathcal{O}(\mathfrak{C}(\mathfrak{g}))^G \to \mathcal{O}(\mathfrak{h} \times \mathfrak{h})^W$ is injective. It remains to show that μ^{\sharp} is surjective. By Theorem 7.3, this is equivalent to showing that $p_{r,s} \in \text{Im } \mu^{\sharp}$. Consider the polynomial function $u_{r,s}$ on $\mathfrak{g} \times \mathfrak{g}$ defined by

$$u_{r,s}(x,y) = \operatorname{tr}(x^r y^s).$$

Then, $u_{r,s}$ is G-invariant and induces a function $u_{r,s} \in \mathcal{O}(\mathcal{C}(\mathfrak{g}))^G$. Obviously, $u_{r,s|\mathfrak{h}\times\mathfrak{h}} = p_{r,s}$; hence the result.

Remark. When \mathfrak{g} is of type B_n or G_2 , then Theorem 7.3 has an analog and the same proof yields Corollary 7.4. For \mathfrak{g} of type D_n and F_4 , Theorem 7.3 fails, but Wallach [17] has shown that Corollary 7.4 is true. Therefore, it remains to investigate the types $\mathsf{E}_6, \mathsf{E}_7$ and E_8 .

References

- [1] M. D. Haiman, Conjectures on the Quotient Ring by Diagonal Invariants, *Journal of Algebraic Combinatorics*, 3 (1994), 17-76.
- [2] J. E. Humphreys, Linear Algebraic Groups, Springer Verlag, New York/Heidelberg/Berlin, 1975.
- [3] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.
- [4] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math., 85 (1963), 327-404.
- [5] H. Kraft, Geometrische Methoden in der Invariantentheorie, Vieweg, Braunschweig/Wiesbaden, 1984.
- [6] G. R. Krause and T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Pitman, Boston, 1985.
- [7] T. Levasseur and J. T. Stafford, Invariant differential operators and an homomorphism of Harish-Chandra, J. Amer. Math. Soc., 8 (1995), 365-372.
- [8] T. Levasseur and J. T. Stafford, The kernel of an homomorphism of Harish-Chandra, Ann. Sci. Ecole Norm. Sup., (1995), to appear.
- [9] D. Luna, Adhérences d'orbites et invariants, Invent. Math., 29 (1975), 231-238.
- [10] S. Montgomery, Fixed Rings of Finite Automorphism Groups of Associative Rings, Lecture Notes in Mathematics 818, Springer-Verlag, Berlin/New York, 1980.
- [11] V. L. Popov and E. B. Vinberg, Invariant Theory, in Alebraic Geometry IV, A. N. Parshin and I. R. Shafarevich (Eds), Springer-Verlag, Berlin/Heidelberg/New York, 1991.
- [12] R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math., 38 (1979), 311-322.
- [13] R. W. Richardson, Simultaneous Conjugacy of n-tuples in Lie Algebras and Algebraic Groups, Canadian Math. Soc., Conference Proceedings, 6 (1986), 377-387.
- [14] G. W. Schwarz, On a homomorphism of Harish-Chandra, preprint (1995).
- [15] T. A. Springer, Linear Algebraic Groups, Birkhäuser, Boston, 1981.
- [16] R. Steinberg, Torsion in reductive groups, Adv. in Math., 15 (1975), 63-92.
- [17] N. Wallach, Invariant differential operators on a reductive Lie algebra and Weyl group representations, J. Amer. Math. Soc., 6 (1993), 779-816.

[18] H. Weyl, *The Classical Groups, Their Invariants and Representations*, Princeton University Press, Princeton, 1949.