DIFFERENTIAL OPERATORS ON A REDUCTIVE LIE ALGEBRA

Thierry Levasseur

Lectures given at the University of Washington, Seattle
July, 1995

1. Differential operators

Let X be an affine complex algebraic variety. Denote by $\mathcal{O}(X)$ the algebra of regular functions, and by $\mathcal{D}(X)$ the algebra of differential operators (on X). Recall that $\mathcal{D}(X)$ is a filtered \mathbb{C}-algebra (by the order of differential operators): one defines, inductively,

$$
\mathcal{D}_{0}(X)=\mathcal{O}(X), \quad \mathcal{D}_{m}(X)=\left\{P \in \operatorname{End}_{\mathbb{C}}(\mathcal{O}(X)):[P, \mathcal{O}(X)] \subset \mathcal{D}_{m-1}(X)\right\}
$$

Then $\mathcal{D}(X)=\bigcup_{m} \mathcal{D}_{m}(X)$ and we denote by

$$
\operatorname{gr} \mathcal{D}(X)=\bigoplus_{m} \mathcal{D}_{m}(X) / \mathcal{D}_{m-1}(X)
$$

the associated graded algebra. The principal symbol of an element $P \in \mathcal{D}(\mathcal{X})$ is denoted by $\operatorname{gr}(P)$.

Assume that X is smooth. Then, $\mathcal{D}(X)$ is generated by $\mathcal{O}(X)$ and $\operatorname{Der} \mathcal{O}(X)$ (the module of \mathbb{C}-linear derivations on $\mathcal{O}(X)$). Furthermore, $\operatorname{gr} \mathcal{D}(X)=\mathrm{S}_{\mathcal{O}(X)}(\operatorname{Der} \mathcal{O}(X))$. Here $\mathrm{S}_{\mathcal{O}(X)}(\operatorname{Der} \mathcal{O}(X))$ is the symmetric algebra of the module $\operatorname{Der} \mathcal{O}(X)$, that we identify with $\mathcal{O}\left(T^{*} X\right)$, the ring of regular functions on the cotangent bundle of \mathcal{X}.

For any affine algebraic subvariety $X \subset \mathbb{C}^{n}$, let $\mathcal{A}(X)$ the radical ideal defining X. Conversely if $E \subset \mathcal{O}\left(\mathbb{C}^{n}\right)$ is a subset, let $\mathcal{V}(E) \subseteq \mathbb{C}^{n}$ be the variety of zeroes of E. In particular, for any subset E of $\mathcal{D}(\mathfrak{g}), \mathcal{V}(\operatorname{gr} E)$ is an affine subvariety of $T^{*} X$.

Let y be a smooth affine algebraic variety, and $\varphi: X \rightarrow y$ be a morphism. Recall that φ is étale at $x \in \mathcal{X}$, if φ yields an isomorphism $d_{x} \varphi: T_{x} \mathcal{X} \leadsto T_{\varphi(x)} y$. The following result is classical.

Proposition 1.1. Assume that $\varphi: X \rightarrow y$ is étale. Then, for all $m \in \mathbb{N}$, one has natural identifications

$$
\mathcal{O}(X) \otimes_{\mathcal{O}(y)} \mathrm{S}^{m}(\operatorname{Der} \mathcal{O}(y)) \xrightarrow{\longrightarrow} \mathrm{S}^{m}(\operatorname{Der} \mathcal{O}(X)), \quad \mathcal{O}(X) \otimes_{\mathcal{O}(y)} \mathcal{D}_{m}(y) \xrightarrow{\sim} \mathcal{D}_{m}(X)
$$

Remark. Assume that $\mathcal{X}=V$ is an n-dimensional complex vector space. Then $\mathcal{D}(V)$ is a Weyl algebra on $2 n$ generators. We have $\mathcal{O}(V)=\mathrm{S}\left(V^{*}\right)$ and we will identify $\mathrm{S}(V)$ with the algebra of constant coefficient differential operators. If we fix a coordinate basis $\left\{x_{i}, \partial_{i} ; 1 \leq i \leq n\right\}$, we then have

$$
\mathrm{S}(V)=\mathbb{C}\left[\partial_{1}, \ldots, \partial_{n}\right]=\mathbb{C}[\partial(v) ; v \in V]
$$

where $\partial(v)$ is the derivation given by $\left.\partial(v)(f)(x)=\frac{d}{d t} \right\rvert\, t=0 ~ f(x+t v)$. Note that $\mathcal{D}(V)=$ $\mathrm{S}\left(V^{*}\right) \otimes_{\mathbb{C}} \mathrm{S}(V)$ as an $\mathcal{O}(V)$-module.

Let G be a complex reductive algebraic group with Lie algebra \mathfrak{g}. Assume that X is a G-variety ${ }^{1}$. We denote by X / G the affine variety whose ring of regular functions is the ring of invariants $\mathcal{O}(X)^{G}$. Recall that X / G can be identified with the variety of closed orbits in X and that we have a natural surjective morphism $p: X \rightarrow X / G$. For $x \in X$ we denote by G^{x} its stabilizer in G and we set $\mathfrak{g}^{x}=\operatorname{Lie}\left(G^{x}\right)$. Recall (Matsushima's theorem) that if $G . x$ is closed, then G^{x} is reductive.

[^0]The action of G induces a morphism of Lie algebras $\tau_{X}: \mathfrak{g} \rightarrow \operatorname{Der} \mathcal{O}(X)$, given by $\tau_{X}(\xi)(f)=\frac{d}{d t \mid t=0}(\exp (t \xi) \cdot f)$.

Example. Consider the adjoint action of G on its Lie algebra \mathfrak{g}. Set (for simplicity) $\tau_{\mathfrak{g}}=\tau$ in this case. Since \mathfrak{g} is reductive, we can fix a nondegenerate invariant bilinear symmetric form κ on \mathfrak{g}. Then \mathfrak{g} and \mathfrak{g}^{*} can be identified through κ by $x \mapsto \kappa_{x}=\kappa(, x)$. It follows easily that $\tau(\xi)\left(\kappa_{x}\right)=\kappa_{[\xi, x]}$, for all $\xi \in \mathfrak{g}$. The elements of $\mathcal{O}(\mathfrak{g}) \tau(\mathfrak{g})$ will be called "adjoint vector fields" on \mathfrak{g}. An easy computation also shows that the principal symbol of $\tau(\xi)$, denoted by $\sigma(\xi)$, is the function on $T^{*} \mathfrak{g}=\mathfrak{g} \times \mathfrak{g}^{*} \equiv \mathfrak{g} \times \mathfrak{g}$, given by $\sigma(\xi)(a, b)=\kappa([b, a], \xi)$ for all $a, b \in \mathfrak{g}$.

In this situation an orbit $G . x$ is closed if and only if G^{x} is reductive, if and only if x is semisimple.

Return now to the general situation. The group G acts on $\mathcal{D}(X)$ by $(g . P)(f)=$ $g .\left(P\left(g^{-1} . f\right)\right)$ for all $g \in G, P \in \mathcal{D}(X)$ and $f \in \mathcal{O}(X)$. It is not difficult to see that this G-action is rational and that $G \cdot \mathcal{D}_{m}(X) \subseteq \mathcal{D}_{m}(X)$ for all m. Denote by $\mathcal{D}(X)^{G}$ the ring of invariant differential operators, that we filter by the $\mathcal{D}_{m}(X)^{G}$. Since G is reductive, it follows that

$$
\operatorname{gr}\left[\mathcal{D}(X)^{G}\right]=[\operatorname{gr} \mathcal{D}(X)]^{G}=\mathcal{O}\left(T^{*} X\right)^{G}=\mathcal{O}\left(T^{*} X / G\right) .
$$

By restriction we obtain a morphism

$$
\psi: \mathcal{D}(X)^{G} \rightarrow \mathcal{D}(X / G), \quad \psi(P)(f)=P(f) \text { for all } f \in \mathcal{O}(X / G) .
$$

It is clear that $\psi\left(\mathcal{D}_{m}(X)^{G}\right) \subseteq \mathcal{D}_{m}(X / G)$. Note that $\mathcal{O}(X)^{G} \subseteq\left\{f \in \mathcal{O}(X): \tau_{X}(\mathfrak{g})(f)=0\right\}$, with equality when G is connected. Moreover the differential of the action of G on $\mathcal{D}(X)$ is given by: $\xi \cdot P=[\tau x(\xi), P]$ for all $\xi \in \mathfrak{g}, P \in \mathcal{D}(X)$. Set

$$
\mathcal{J}(X)=\left\{D \in \mathcal{D}(X): D\left(\mathcal{O}(X)^{G}\right)=0\right\}, \quad \mathcal{J}(X)=\mathcal{J}(X) \cap \mathcal{D}(X)^{G} .
$$

Clearly $\operatorname{Ker} \psi=\mathcal{J}(X)$ and $\mathcal{J}(X) \supseteq \mathcal{D}(X) \tau_{\mathcal{X}}(\mathfrak{g})$.
Assume now that $G=W$ is a finite sugroup of $\mathrm{GL}(V)$, where V is a complex vector space of dimension ℓ. Then, the morphism $p: V \rightarrow V / W$ is finite and every orbit is closed. Define a W-stable open subset of V by

$$
V^{\prime}:=\{v \in V \mid p \text { étale at } v\} .
$$

Hence, $V^{\prime}=\left\{v \in V \mid \mathrm{rk}_{v} p=\ell\right.$ and $p(v)$ is a smooth point $\}$.
Note that if the action of W is not faithful, we may decompose $V=V_{W} \oplus V^{W}$ so that $V / W=\left(V_{W} / W\right) \oplus V^{W}$ and $\left(V_{W}\right)^{W}=0$. Therefore the analysis of the situation always reduces to the case of a faithful action of W on V. In this case, it is a classical result that $V^{\prime}=\left\{v \in V \mid W^{v}=\{1\}\right\}$.

Recall that $\mathcal{D}(V)$ is a simple ring, and, since W is finite, $\mathcal{D}(V)^{W}$ is also simple [10]. Hence $\psi: \mathcal{D}(V)^{W} \hookrightarrow \mathcal{D}(V / W)$ is an embedding. The following result is well known ${ }^{2}$.

Theorem 1.2. The following are equivalent
(1) ψ is a (filtered) isomorphism;
(2) $\operatorname{codim}\left(V \backslash V^{\prime}\right) \geq 2$;
(3) W does not contain any pseudoreflection $(\neq 1)$.

[^1]Recall that V / W is smooth if and only if W is generated by pseudoreflections. Therefore, if $W \neq\{1\}$ and V / W is smooth, $\psi: \mathcal{D}(V)^{W} \hookrightarrow \mathcal{D}(V / W)$ is not surjective. Actually, if W acts faithfully on V and $\mathrm{S}\left(V^{*}\right)^{W}=\mathbb{C}\left[p_{1}, \ldots, p_{\ell}\right]$ is a polynomial ring, it is not difficult to see that there does not exist any $d \in \mathcal{D}(V)^{W}$ such that $\psi(d)=\frac{\partial}{\partial p_{i}}$.

Example. The following case is obvious, but will prove useful in the sequel. Assume that $\operatorname{dim} V=1$ and set

$$
\mathrm{S}\left(V^{*}\right)=\mathbb{C}[z], \quad \mathrm{S}(V)=\mathbb{C}\left[\partial_{z}\right]
$$

Let $W=\{ \pm 1\}$ act on V by multiplication. Then

$$
\mathrm{S}\left(V^{*}\right)^{W}=\mathbb{C}\left[z^{2}\right], \quad \mathrm{S}(V)=\mathbb{C}\left[\partial_{z}^{2}\right], \quad \mathcal{D}(V)^{W}=\mathbb{C}\left[z^{2}, z \partial_{z}, \partial_{z}^{2}\right]^{3}
$$

Set $t=z^{2}$. Then $\mathcal{D}(V / W)=\mathbb{C}\left[t, \partial_{t}\right]$ and the morphism $\psi: \mathcal{D}(V)^{W} \hookrightarrow \mathcal{D}(V / W)$ is given by

$$
\psi\left(z^{2}\right)=t, \quad \psi\left(z \partial_{z}\right)=2 t \partial_{t}, \quad \psi\left(\partial_{z}^{2}\right)=4 t \partial_{t}^{2}+2 \partial_{t}
$$

Note that $\partial_{t} \notin \operatorname{Im} \psi$. We have $V^{\prime}=V \backslash\{0\}$, and if we localize at the invariant function $t=z^{2}$, we obtain

$$
\psi: \mathcal{D}(V)_{z^{2}}^{W}=\mathbb{C}\left[z^{ \pm 2}, z^{-1} \partial_{z}\right] \xrightarrow{\sim} \mathcal{D}(V / W)_{t}=\mathbb{C}\left[t^{ \pm 1}, \partial_{t}\right]
$$

since $\psi\left(\frac{1}{2} z^{-1} \partial_{z}\right)=\partial_{t}$. Thus $\mathcal{D}\left(V^{\prime}\right)^{W} \xrightarrow{\longrightarrow} \mathcal{D}\left(V^{\prime} / W\right)$.

2. The map $\delta:$ DEfinition

Let G be a connected reductive algebraic group with maximal torus H. Set $\mathfrak{g}=\operatorname{Lie}(G)$, $\mathfrak{h}=\operatorname{Lie}(H)$ and denote by $W=W(\mathfrak{g}, \mathfrak{h})$ the associated Weyl group. Let R be the set of roots of \mathfrak{h} in \mathfrak{g}. Fix a basis B of R and let R^{+}be the set of positive roots. We set $\mathfrak{n}^{ \pm}=\oplus_{\left\{ \pm \alpha \in R^{+}\right\}} \mathfrak{g}_{\alpha}, \mathfrak{g}_{ \pm \alpha}=\mathbb{C} X_{ \pm \alpha}$. If \mathfrak{z} is the centre of \mathfrak{g} and $\mathfrak{s}=[\mathfrak{g}, \mathfrak{g}]$, we have

$$
\mathfrak{g}=\mathfrak{s} \oplus \mathfrak{z}, \quad \mathfrak{h}=\mathfrak{t} \oplus \mathfrak{z}, \quad \mathfrak{s}=\mathfrak{t} \oplus \mathfrak{n}^{+} \oplus \mathfrak{n}^{-}
$$

where \mathfrak{t} is a Cartan subalgebra of the semisimple Lie algebra \mathfrak{s}. We set $n=\operatorname{dim} \mathfrak{g}, \ell=\operatorname{dim} \mathfrak{h}$ and $k=\operatorname{dim} \mathfrak{t}$. As in $\S 1$, we denote by κ an invariant symmetric form on \mathfrak{g}. Recall that the discriminant of \mathfrak{g} is the invariant function d_{ℓ} defined by

$$
\operatorname{det}(t \operatorname{Id}-\operatorname{ad} x)=t^{n}+\cdots+(-1)^{\ell} d_{\ell}(x) t^{\ell}
$$

The set of generic ${ }^{4}$ elements is $\mathfrak{g}^{\prime}=\left\{x \in \mathfrak{g} \mid d_{\ell}(x) \neq 0\right\}$. Then \mathfrak{g}^{\prime} is the set of points where the morphism $p: \mathfrak{g} \rightarrow \mathfrak{g} / G$ is smooth.

Recall the fundamental result of Chevalley:
Theorem 2.1. There is a natural isomorphism $\mathfrak{h} / W \xrightarrow{ } \mathfrak{g} / G$: the restriction of functions from \mathfrak{g} to \mathfrak{h} yields an isomorphism of algebras,

$$
\phi: \mathrm{S}\left(\mathfrak{g}^{*}\right)^{G} \leadsto \mathrm{~S}\left(\mathfrak{h}^{*}\right)^{W}, \quad \phi(f)=f_{\mid \mathfrak{h}} .
$$

Similarly, there exists an isomorphism $\phi: \mathrm{S}(\mathfrak{g})^{G} \rightarrow \mathrm{~S}(\mathfrak{h})^{W}$, induced by the projection of \mathfrak{g} onto \mathfrak{h} given by the decomposition $\mathfrak{g}=\mathfrak{h} \oplus\left(\mathfrak{n}^{+} \oplus \mathfrak{n}^{-}\right)$.

[^2]For sake of simplicity, all the isomorphisms related to the previous Chevalley isomorphisms will be denoted by the same symbol, ϕ.

Note that we may write $\mathrm{S}\left(\mathfrak{g}^{*}\right)^{G}=\mathbb{C}\left[u_{1}, \ldots, u_{k}, u_{k+1}, \ldots, u_{\ell}\right]$, where $u_{i} \in \mathrm{~S}\left(\mathfrak{s}^{*}\right)^{\mathfrak{s}}$ for $i=1, \ldots, k$ and $u_{j} \in \mathfrak{z}^{*}$ for $i=k+1, \ldots, \ell$ (hence $S\left(\mathfrak{z}^{*}\right)=\mathbb{C}\left[u_{k+1}, \ldots, u_{\ell}\right]$). We set $p_{j}=u_{j \mid \mathfrak{h}}$ and we denote by $p: \mathfrak{h} \rightarrow \mathfrak{h} / W$ the associated morphism. Then $\mathrm{S}\left(\mathfrak{h}^{*}\right)^{W}=$ $\mathrm{S}\left(\mathfrak{t}^{*}\right)^{W} \otimes \mathrm{~S}\left(\mathfrak{z}^{*}\right)=\mathbb{C}\left[p_{1}, \ldots, p_{\ell}\right]$. Define an element of $\mathrm{S}\left(\mathfrak{h}^{*}\right)$ by

$$
\pi=\prod_{\alpha \in R^{+}} \alpha
$$

The following are well known, see [3, Proposition 3.13]:

- Let $\epsilon(w)$ be the signature of $w \in W$, then,

$$
\mathrm{S}\left(\mathfrak{h}^{*}\right)^{W} \pi=\left\{f \in \mathrm{~S}\left(\mathfrak{h}^{*}\right) \mid \forall w \in W, w \cdot f=\epsilon(w) f\right\}
$$

- $\phi\left(d_{\ell}\right)=(\pm) \pi^{2} \in \mathrm{~S}\left(\mathfrak{h}^{*}\right)^{W}$;
- up to a nonzero constant, $\pi(x)=\operatorname{det} \operatorname{Jac}(p)(x)$ and p is étale at $h \in \mathfrak{h}$ if, and only if, $h \in \mathfrak{h}^{\prime}=\{x \in \mathfrak{h}: \pi(x) \neq 0\}$.
Recall [16, Corollary 3.11] that if $x \in \mathfrak{g}$ is semisimple, then G^{x} is a connected reductive subgroup of G. One can conjugate x and assume that $x \in \mathfrak{h}$. If we set $\Gamma=\{\alpha \in B$: $\alpha(x)=0\}$, then: $\mathfrak{g}^{x}=\mathfrak{h} \oplus\left(\sum_{\{\beta \in \mathbb{Z} \Gamma \cap R\}} \mathfrak{g}_{\beta}\right),[x, \mathfrak{g}]=\oplus_{\{\beta \notin \mathbb{Z} \Gamma\}} \mathfrak{g}_{\beta}$.

The Chevalley isomorphism ϕ induces an isomorphism

$$
\phi: \mathcal{D}(\mathfrak{g} / G) \xrightarrow{\sim} \mathcal{D}(\mathfrak{h} / W), \quad \phi(P)(f)=\phi\left(P\left(\phi^{-1}(f)\right)\right)
$$

for all $P \in \mathcal{D}(\mathfrak{g} / G), f \in \mathcal{O}(\mathfrak{h} / W)=\mathrm{S}\left(\mathfrak{h}^{*}\right)^{W}$. By composing with the natural morphism $\psi: \mathcal{D}(\mathfrak{g})^{G} \rightarrow \mathcal{D}(\mathfrak{g} / G)$, we obtain the morphism

$$
r=\psi \circ \phi: \mathcal{D}(\mathfrak{g})^{G} \rightarrow \mathcal{D}(\mathfrak{h} / W), \quad r(P)(f)=\phi\left(P\left(\phi^{-1}(f)\right)\right)
$$

The element $r(P)$ is called the radial component of P. It is clear that

$$
\operatorname{Ker} r=\mathcal{J}=\left\{P \in \mathcal{D}(\mathfrak{g})^{G}: P\left(\mathrm{~S}\left(\mathfrak{g}^{*}\right)^{G}\right)=0\right\}
$$

Since the morphism $p: \mathfrak{h}^{\prime} \rightarrow \mathfrak{h}^{\prime} / W$ is étale, it follows from Proposition 1.1 that we can identify $\mathcal{D}\left(\mathfrak{h}^{\prime}\right)^{W}$ with $\mathcal{D}\left(\mathfrak{h}^{\prime} / W\right)$ (observe that $\mathcal{D}\left(\mathfrak{h}^{\prime}\right)=\mathcal{O}\left(\mathfrak{h}^{\prime}\right) \otimes_{\mathcal{O}\left(\mathfrak{h}^{\prime} / W\right)} \mathcal{D}\left(\mathfrak{h}^{\prime} / W\right)$ and take the W-invariants). Therefore

$$
\operatorname{Im} r \subset \mathcal{D}(\mathfrak{h} / W) \subset \mathcal{D}\left(\mathfrak{h}^{\prime} / W\right) \equiv \mathcal{D}\left(\mathfrak{h}^{\prime}\right)^{W} \subset \mathcal{D}\left(\mathfrak{h}^{\prime}\right)
$$

Inside $\mathcal{D}\left(\mathfrak{h}^{\prime}\right)$ we can consider the inner automorphism

$$
\iota: D \mapsto \pi \circ D \circ \pi^{-1}, \text { i.e. } \iota(D)(f)=\pi D\left(\pi^{-1} f\right) \text { for all } f \in \mathcal{O}\left(\mathfrak{h}^{\prime}\right)
$$

From $w \cdot \iota(D)=\pi \circ w \cdot D \circ \pi^{-1}$, we get that $\iota\left(\mathcal{D}\left(\mathfrak{h}^{\prime}\right)^{W}\right)=\mathcal{D}\left(\mathfrak{h}^{\prime}\right)^{W}$.
Definition 2.2. The Harish-Chandra map $\delta: \mathcal{D}(\mathfrak{g})^{G} \rightarrow \mathcal{D}\left(\mathfrak{h}^{\prime}\right)^{W}$ is defined to be $\delta=\iota \circ r$, i.e.

$$
\forall D \in \mathcal{D}(\mathfrak{g})^{G}, \forall f \in \mathcal{O}(\mathfrak{h})^{W}, \quad \delta(D)(f)=\pi r(D)\left(\pi^{-1} f\right)
$$

In the next two sections we will sketch a proof of the following result of Harish-Chandra.
Theorem 2.3. (1) $\operatorname{Im} \delta \subseteq \mathcal{D}(\mathfrak{h})^{W}$.
(2) δ coincides with the Chevalley isomorphisms on $\mathrm{S}\left(\mathfrak{g}^{*}\right)^{G}$ and $\mathrm{S}(\mathfrak{g})^{G}$.

We end this section by the following slight generalization of the definition of δ. Let $U \subseteq \mathfrak{g}$ be a G-stable open subset. Set $\tilde{\mathfrak{h}}=U \cap \mathfrak{h}$ and $\tilde{\mathfrak{h}}^{\prime}=U \cap \mathfrak{h}^{\prime}$. Then the Chevalley isomorphism yields $U / G \xrightarrow{\sim} \tilde{\mathfrak{h}} / W$, and we can define in a similar way the "radial component" of elements of $\mathcal{D}(U)^{G}$. We then have a morphism

$$
r: \mathcal{D}(U)^{G} \rightarrow \mathcal{D}(\tilde{\mathfrak{h}} / W) \hookrightarrow \mathcal{D}\left(\tilde{\mathfrak{h}}^{\prime} / W\right) \equiv \mathcal{D}\left(\tilde{\mathfrak{h}}^{\prime}\right)^{W}
$$

After composition with ι (i.e. conjugation by the restriction of π on $\tilde{\mathfrak{h}}^{\prime}$), we obtain a morphism

$$
\delta=\iota \circ r: \mathcal{D}(U)^{G} \rightarrow \mathcal{D}\left(\tilde{\mathfrak{h}}^{\prime}\right)^{W}
$$

which extends the previously defined δ.

3. The map δ IN THE $\mathfrak{s l}(2)$-CASE

In this section we assume that $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})=\mathbb{C} e+\mathbb{C} f+\mathbb{C} h$, where as usual $e=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, $f=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), h=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Then $\mathfrak{h}=\mathbb{C} h, R=\{ \pm \alpha\}$ where $\alpha(h)=2$. We choose $\kappa(a, b)=$ $\operatorname{tr}(a b)$, hence $\kappa(e, f)=1, \kappa(h, h)=2$. Let $\{x, y, z\}$ be the dual basis of $\{e, f, h\}$, thus $x=\kappa_{f}, y=\kappa_{e}$ and $z=\frac{1}{2} \kappa_{h}$. Furthermore $\partial(e)=\partial_{y}, \partial(f)=\partial_{x}$ and $\partial(h)=\partial_{z}$. Then

$$
\mathrm{S}\left(\mathfrak{g}^{*}\right)^{G}=\mathbb{C}\left[z^{2}+x y\right], \quad \mathrm{S}(\mathfrak{g})^{G}=\mathbb{C}\left[\partial_{z}^{2}+4 \partial_{x} \partial_{y}\right]
$$

We set

$$
\zeta=z^{2}+x y, \omega=\partial_{z}^{2}+4 \partial_{x} \partial_{y}, \quad \varepsilon_{\mathfrak{g}}=x \partial_{x}+y \partial_{y}+z \partial_{z}, \quad \varepsilon_{\mathfrak{h}}=z \partial_{z}
$$

Observe that $E_{\mathfrak{g}}:=\varepsilon_{\mathfrak{g}}+3 / 2=\left[-\frac{1}{4} \zeta, \omega\right]$.
Recall that $W=\{1, s\}$, where $s: h \mapsto-h$. Therefore we are in the situation of the example $W=\{ \pm 1\}$ given in $\S 1$. Hence, if $t=z^{2}$,

$$
\psi: \mathcal{D}(\mathfrak{h})^{W}=\mathbb{C}\left[z^{2}, \partial_{z}^{2}\right] \hookrightarrow \mathcal{D}(\mathfrak{h} / W)=\mathbb{C}\left[t, \partial_{t}\right]
$$

is given by $\psi\left(z^{2}\right)=t, \psi\left(\partial_{z}^{2}\right)=4 t \partial_{t}^{2}+2 \partial_{t}$. The Chevalley isomorphisms are determined by $\phi(\zeta)=z^{2}=t, \phi(\omega)=\partial_{z}^{2}$. Recall that $r: \mathcal{D}(\mathfrak{g})^{G} \rightarrow \mathcal{D}(\mathfrak{h} / W)$.

Lemma 3.1. We have:
(1) $\mathcal{D}(\mathfrak{g})^{G}=\mathbb{C}[\zeta, \omega] \cong U(\mathfrak{s l}(2))$;
(2) $r(\zeta)=t, r(\omega)=4 t \partial_{t}^{2}+6 \partial_{t}$.

Proof. (1) By an usual argument of associated graded ring, we will obtain generators of $\mathcal{D}(\mathfrak{g})^{G}$ by computing

$$
[\operatorname{gr} \mathcal{D}(\mathfrak{g})]^{G}=\mathrm{S}\left(\mathfrak{g}^{*} \times \mathfrak{g}\right)^{G} \equiv \mathrm{~S}\left(\mathfrak{g}^{*} \times \mathfrak{g}^{*}\right)^{G}
$$

Here, G acts diagonally on $\mathfrak{g}^{*} \times \mathfrak{g}^{*}$ by $g .(a, b)=(g . a, g . b)$ and we identify \mathfrak{g} with \mathfrak{g}^{*} through κ. Under this identification, $\partial_{z} \leftrightarrow 2 z, \partial_{x} \leftrightarrow y$ and $\partial_{y} \leftrightarrow x$. Therefore $\operatorname{gr} \mathcal{D}(\mathfrak{g}) \equiv$ $\mathrm{S}\left(\mathfrak{g}^{*} \times \mathfrak{g}^{*}\right)=\mathbb{C}[U, V]$, where U and V are the generic matrices $U=\left[\begin{array}{cc}z & x \\ y & -z\end{array}\right], V=\left[\begin{array}{cc}\frac{1}{2} \partial_{z} & \partial_{y} \\ \partial_{x} & -\frac{1}{2} \partial_{z}\end{array}\right]$. Then, classical invariant theory gives that $\mathrm{S}\left(\mathfrak{g}^{*} \times \mathfrak{g}^{*}\right)^{G}$ is generated by

$$
\operatorname{tr}\left(U^{2}\right)=\zeta, \quad \operatorname{tr}(U V)=\varepsilon_{\mathfrak{g}}, \quad \operatorname{tr}\left(V^{2}\right)=\omega / 4
$$

Thus $\mathcal{D}(\mathfrak{g})^{G}=\mathbb{C}\left[\zeta, \omega, E_{\mathfrak{g}}\right]=\mathbb{C}[\zeta, \omega]$. Now observe that

$$
\left[E_{\mathfrak{g}},-\zeta / 4\right]=2 \zeta, \quad\left[E_{\mathfrak{g}}, \omega\right]=-2 \omega, \quad[-\zeta / 4, \omega]=E_{\mathfrak{g}}
$$

Therefore, there exists a surjective morphism $\nu: U(\mathfrak{s l}(2)) \rightarrow \mathcal{D}(\mathfrak{g})^{G}$, such that $\nu(e)=$ $-\frac{1}{4} \zeta, \nu(f)=\omega$ and $\nu(h)=E_{\mathfrak{g}}$. To prove that ν is injective ${ }^{5}$, one can either show that

[^3]$\operatorname{GKdim} \mathcal{D}(\mathfrak{g})^{G}=G K \operatorname{dim} \operatorname{gr} \mathcal{D}(\mathfrak{g})^{G}=\operatorname{GK} \operatorname{dim} U(\mathfrak{s l}(2))=3$, see Corollary 5.8 (note that the maximal dimension of a G-orbit in $\mathfrak{g} \times \mathfrak{g}$ is 3), or prove that, if Ω is the Casimir element of $U(\mathfrak{s l}(2))$, then $\nu(\Omega-c) \neq 0$ for all $c \in \mathbb{C}$.
(2) The equality $r(\zeta)=t$ is clear. It is easily seen that
$$
r(\omega)(1)=0, \quad r(\omega)(t)=6, \quad r(\omega)\left(t^{2}\right)=20 t
$$

Hence, $r(\omega)=4 t \partial_{t}^{2}+6 \partial_{t}$ as desired.
Remark . Observe that $r(\omega)=\partial_{z}^{2}+4 \partial_{t} \notin \mathcal{D}(\mathfrak{h})^{W}$, since $\partial_{t} \notin \mathcal{D}(\mathfrak{h})^{W}$ (see $\S 1$). Thus $\operatorname{Im} r \not \subset \mathcal{D}(\mathfrak{h})^{W}$.

Lemma 3.2. $\delta(\omega)=\partial_{z}^{2}$ and $\delta(\zeta)=z^{2}$.
Proof. In the notation of $\S 2$, we have $\pi=\alpha=2 z$ and $\mathfrak{h}^{\prime}=\mathfrak{h} \backslash\{0\}$. Recall that we can identify $\mathcal{D}\left(\mathfrak{h}^{\prime} / W\right)=\mathbb{C}\left[t^{ \pm 1}, \partial_{t}\right]$ with $\mathcal{D}\left(\mathfrak{h}^{\prime}\right)^{W}=\mathbb{C}\left[z^{ \pm 2}, \frac{1}{2} z^{-1} \partial_{z}\right]$. Now, since $z \partial_{z} z^{-1}=$ $\partial_{z}-z^{-1}$ and $r(\omega)=4 t \partial_{t}^{2}+6 \partial_{t}=\partial_{z}^{2}+2 z^{-1} \partial_{z}$, we obtain

$$
\delta(\omega)=\iota(r(\omega))=\left(\partial_{z}-z^{-1}\right)^{2}+2 z^{-1}\left(\partial_{z}-z^{-1}\right)=\partial_{z}^{2} .
$$

The second equality is obvious.
Proposition 3.3. (1) $\delta\left(\mathcal{D}(\mathfrak{g})^{G}\right)=\mathcal{D}(\mathfrak{h})^{W}$.
(2) δ coincides with the Chevalley isomorphisms on $\mathrm{S}\left(\mathfrak{g}^{*}\right)^{G}$ and $\mathrm{S}(\mathfrak{g})^{G}$.

Proof. The claims follow from Lemma 3.1 and Lemma 3.2.
Remark . From $\mathcal{D}(\mathfrak{g})^{G} \cong U(\mathfrak{s l}(2))$ we get that δ induces isomorphisms

$$
\mathcal{D}(\mathfrak{h})^{W} \cong \mathcal{D}(\mathfrak{g})^{G} / \mathcal{J} \cong U(\mathfrak{s l}(2)) /(\Omega+\lambda)
$$

where $\lambda \in \mathbb{C}$ and Ω is the Casimir element. It is not difficult to see that $\lambda=3 / 4$.

4. The map δ In the general case

In this section we sketch the proof of Theorem 2.3 given by G. Schwarz [14]. We continue with the notation of $\S 2^{6}$.

Fix a coordinate basis $\left\{z_{1}, \ldots, z_{\ell}\right\}$ of \mathfrak{h}^{*} and set $\partial_{i}=\frac{\partial}{\partial z_{i}}$. Let $P \in \mathcal{D}(\mathfrak{g})^{G}$. We have, with the usual conventions,

$$
\delta(P)=\sum_{m} c_{m}(z) \partial^{m}, \quad c_{m} \in \mathcal{O}\left(\mathfrak{h}^{\prime}\right) \text { for all } m \in \mathbb{N}^{\ell}
$$

We want to show that $a_{m} \in \mathcal{O}(\mathfrak{h})$. Since $\mathcal{O}\left(\mathfrak{h}^{\prime}\right)=\mathcal{O}(\mathfrak{h})_{\pi}$, this is equivalent to showing that the a_{m} have no pole along the reflecting hyperplanes $\mathcal{H}_{\gamma}=\{h \in \mathfrak{h}: \gamma(h)=0\}$ for $\gamma \in R^{+}$.

Fix $\gamma \in R^{+}$. Choose $b \in \mathcal{H}_{\gamma}, b \notin \mathcal{H}_{\beta}$ for $\beta \in R^{+} \backslash\{\gamma\}$. The idea is to prove that $\delta(P)$ is smooth in a neighborhood of b; this will be done by a "Luna's slice type argument". We have

$$
\mathfrak{g}^{b}=\mathfrak{s l}(2)_{\gamma} \oplus \mathcal{H}_{\gamma}, \quad \text { where } \mathfrak{s l}(2)_{\gamma}=\mathbb{C} H_{\gamma}+\mathbb{C} X_{\gamma}+\mathbb{C} X_{-\gamma}
$$

The group G^{b} is reductive and we have a G^{b}-decomposition $\mathfrak{g}=\mathfrak{g}^{b} \oplus[b, \mathfrak{g}]$. Recall that, since $G . b \equiv G / G^{b}$ via the adjoint action, $T_{b}(G . b)=\mathfrak{g} / \mathfrak{g}^{b} \cong[\mathfrak{g}, b]$ is generated by the tangent vectors $\tau(\xi)_{b}=[b, \xi]$. Note also that $W\left(\mathfrak{g}^{b}, \mathfrak{h}\right)=W^{b}=\left\{1, s=s_{\gamma}\right\}, R\left(\mathfrak{g}^{b}, \mathfrak{h}\right)=\{ \pm \gamma\}$.

Set $p=\operatorname{dim} G . b$ and define

$$
U=\left\{u \in \mathfrak{g}: \exists X_{1}, \ldots, X_{p} \in \mathfrak{g}, \mathfrak{g}=\mathfrak{g}^{b} \oplus\left\langle\tau\left(X_{1}\right)_{u}, \ldots, \tau\left(X_{p}\right)_{u}\right\rangle_{\mathbb{C}}\right\}
$$

[^4](a) U is an open neighbourhood of b. Indeed: Let $u \in U$ and let X_{1}, \ldots, X_{p} be such that $\mathfrak{g}=\mathfrak{g}^{b} \oplus\left\langle\tau\left(X_{1}\right)_{u}, \ldots, \tau\left(X_{p}\right)_{u}\right\rangle_{\mathbb{C}}$, then
$$
U^{\prime}=\left\{u^{\prime} \in \mathfrak{g}: \mathfrak{g}=\mathfrak{g}^{b} \oplus\left\langle\tau\left(X_{1}\right)_{u^{\prime}}, \ldots, \tau\left(X_{p}\right)_{u^{\prime}}\right\rangle_{\mathbb{C}}\right\}
$$
is an affine open neighbourhood of u and $U^{\prime} \subseteq U$.
(b) U is G^{b}-stable. Let $u \in U$. Note first that, for all $g \in G$,
$$
g \cdot \tau\left(X_{i}\right)_{u}=g \cdot\left[u, X_{i}\right]=\left[g \cdot u, g \cdot X_{i}\right]=\tau\left(g \cdot X_{i}\right)_{g \cdot u} .
$$

When $g \in G^{b}$, we also have $g \cdot \mathfrak{g}^{b}=\mathfrak{g}^{b}$. Hence

$$
\mathfrak{g}=g \cdot \mathfrak{g}=\mathfrak{g}^{b} \oplus g \cdot\left\langle\tau\left(X_{1}\right)_{u}, \ldots, \tau\left(X_{p}\right)_{u}\right\rangle_{\mathbb{C}}=\mathfrak{g}^{b} \oplus\left\langle\tau\left(g \cdot X_{1}\right)_{g \cdot u}, \ldots, \tau\left(g \cdot X_{p}\right)_{g \cdot u}\right\rangle_{\mathbb{C}}
$$

This shows that $g . u \in U$.
(c) Let $t_{1}, \ldots, t_{\ell-1}$ be coordinate functions on \mathcal{H}_{γ}, and let $\{x, y, z\}$ be the dual basis of $\left\{X_{\gamma}, X_{-\gamma}, H_{\gamma}\right\}$. It follows from (a) and (b) that, on the open subset U,

$$
\mathcal{D}(U)=\sum_{i, j, k \in \mathbb{N}, \mu \in \mathbb{N}^{\ell-1}} \mathcal{O}(U) \partial_{x}^{i} \partial_{y}^{j} \partial_{z}^{k} \partial_{t}^{\mu}+\mathcal{D}(U) \tau(\mathfrak{g})
$$

Therefore we can write $P=\tilde{P}+Q$ (on U), with $\tilde{P} \in \sum \mathcal{O}(U) \partial_{x}^{i} \partial_{y}^{j} \partial_{z}^{k} \partial_{t}^{\mu}$ and $Q \in \mathcal{D}(U) \tau(\mathfrak{g})$. Since $P \in \mathcal{D}(\mathfrak{g})^{G} \subset \mathcal{D}(U)^{G^{b}}$, and since G^{b} is reductive, we may as well assume that \tilde{P} and Q are G^{b}-invariant.

Set $\tilde{U}=U \cap \mathfrak{g}^{b}, \tilde{\mathfrak{h}}=U \cap \mathfrak{h}$ and $\tilde{\mathfrak{h}}^{\prime}=U \cap\{h \in \mathfrak{h}: \gamma(h) \neq 0\}$. Denote by \tilde{r} and $\tilde{\delta}=\gamma \circ \tilde{r} \circ \gamma^{-1}$ the morphisms from $\mathcal{D}(\tilde{U})^{G^{b}}$ to $\mathcal{D}\left(\tilde{\mathfrak{h}}^{\prime}\right)^{W^{b}}$. From the $\mathfrak{s l}(2)$-case we can deduce that $\operatorname{Im} \tilde{\delta} \subseteq \mathcal{D}(\tilde{\mathfrak{h}})^{W^{b}}$. Therefore $\left.\tilde{\delta}(\tilde{P})=\gamma \circ \tilde{r} \circ \gamma^{-1} \in \mathcal{D}(\tilde{\mathfrak{h}})\right)^{W^{b}}$.

Note that, since $\tau(\mathfrak{g})$ kills the G-invariant functions, $P(f)=\tilde{P}(f)$ for all $f \in \mathcal{O}(U)^{G}$. In particular, since $\mathcal{O}(\tilde{\mathfrak{h}})^{W} \subset \mathcal{O}(\tilde{\mathfrak{h}})^{W^{b}}$, we have that $r(P)=\tilde{r}(\tilde{P})$ on $A:=\mathcal{O}(\tilde{\mathfrak{h}})^{W}$. Set $\tilde{\pi}=\prod_{\left\{\gamma \neq \alpha \in R^{+}\right\}} \alpha$; then $\pi=\tilde{\pi} \gamma$ and $\tilde{\pi}^{ \pm 1}$ is smooth on a neighbourhood of b. Now, write $\delta(P)=\tilde{\pi} \gamma r(P) \gamma^{-1} \tilde{\pi}^{-1}$. From the above we know that, on $A, \delta(P)=\tilde{\pi}\left(\gamma \tilde{r}(\tilde{P}) \gamma^{-1}\right) \tilde{\pi}^{-1}$. But, we have seen that $\tilde{\delta}(\tilde{P})=\gamma \tilde{r} \gamma^{-1} \in \mathcal{D}(\tilde{\mathfrak{h}})^{W^{b}}$ and $\tilde{\pi}^{ \pm 1}$ are smooth on a neighbourhood of b. Hence, the same is true of $\delta(P)$.
(d) To complete the proof of Theorem 2.3, it remains to show that δ coincide with the Chevalley isomorphisms. Recall that this is obvious, by construction, for δ on $\mathrm{S}\left(\mathfrak{g}^{*}\right)^{G}$. We thus have to show that $\delta=\phi$ on $\mathrm{S}(\mathfrak{g})^{G}$; this will be done by "Fourier transform". Without loss of generality we can reduce to the case when \mathfrak{g} is simple.

Choose coordinates on \mathfrak{g} such that $\kappa=-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}$ and set

$$
\omega=\frac{1}{2} \sum_{i=1}^{n} \partial_{x_{i}}^{2}, \quad \varepsilon_{\mathfrak{g}}=\sum_{i=1}^{n} x_{i} \partial_{x_{i}} .
$$

Then, as in the $\mathfrak{s l}(2)$-case, one checks that

$$
[\kappa, \omega]=E_{\mathfrak{g}}:=\varepsilon_{\mathfrak{g}}+n / 2, \quad\left[E_{\mathfrak{g}}, \kappa\right]=2 \kappa, \quad\left[E_{\mathfrak{g}}, \omega\right]=-2 \omega
$$

Hence, $\mathfrak{k}=\mathbb{C} \kappa+\mathbb{C} \omega+\mathbb{C} E_{\mathfrak{g}} \cong \mathfrak{s l}(2)=\mathbb{C} e+\mathbb{C} f+\mathbb{C} h$. Recall that gr $\mathcal{D}(\mathfrak{g})=\mathcal{O}\left(T^{*} \mathfrak{g}\right) \equiv$ $\mathcal{O}(\mathfrak{g} \times \mathfrak{g})$. Since $\mathfrak{g} \times \mathfrak{g}=\mathfrak{g} \otimes_{\mathbb{C}} \mathbb{C}^{2}$, there is a natural action of $\operatorname{SL}(2)$ on $\mathfrak{g} \times \mathfrak{g}$, and therefore on $\operatorname{gr} \mathcal{D}(\mathfrak{g})=\mathcal{O}\left(T^{*} \mathfrak{g}\right)$. This action lifts to an $\operatorname{SL}(2)$-action on $\mathcal{D}(\mathfrak{g})$. Tracing the identifications, one sees that $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2)$ acts on $\mathcal{D}(\mathfrak{g})$ in the following way

$$
g \cdot x_{i}=a x_{i}+c \partial_{x_{i}}, \quad g \cdot \partial_{x_{j}}=b x_{j}+d \partial_{x_{j}}
$$

Observe now that $\left[E_{\mathfrak{g}}, x_{i}\right]=x_{i},\left[E_{\mathfrak{g}}, \partial_{x_{i}}\right]=-\partial_{x_{i}},\left[\omega, x_{i}\right]=\partial_{x_{i}},\left[\omega, \partial_{x_{i}}\right]=0,\left[\kappa, x_{i}\right]=0$, $\left[\kappa, \partial_{x_{i}}\right]=x_{i}$. It follows that, inside $\mathcal{D}(\mathfrak{g})$,

$$
\exp (t e)=\exp (t \operatorname{ad} \kappa), \quad \exp (t f)=\exp (t \operatorname{ad} \omega), \quad \exp (t h)=\exp \left(t \operatorname{ad} E_{\mathfrak{g}}\right)
$$

Hence, the adjoint action of \mathfrak{k} integrates to the $\mathrm{SL}(2)$-action that we just described. Observe that, since $\kappa, \omega, E_{\mathfrak{g}}$ are G-invariant, the $\mathrm{SL}(2)$-action commutes with the G-action. Consider now the "Weyl group element" $w=\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right) \in \operatorname{SL}(2)$ (here $i=\sqrt{-1} \in \mathbb{C}$). It acts on $\mathcal{D}(\mathfrak{g})$ by $w \cdot x_{j}=i \partial_{x_{j}}, w \cdot \partial_{x_{j}}=i x_{j}$ for all $j=1, \ldots, n$.

Let $\kappa_{\mathfrak{h}}, \omega_{\mathfrak{h}}$ and $\varepsilon_{\mathfrak{h}}$ be the analogous elements of $\mathcal{D}(\mathfrak{h})^{W}$. We have

$$
\delta(\kappa)=\kappa_{\mathfrak{h}}, \quad\left[\kappa_{\mathfrak{h}}, \omega_{\mathfrak{h}}\right]=E_{\mathfrak{h}}:=\varepsilon_{\mathfrak{h}}+\ell / 2
$$

Let $f \in \mathrm{~S}^{p}\left(\mathfrak{g}^{*}\right)^{G}$. Then, $\delta\left(\left[\varepsilon_{\mathfrak{g}}, f\right]\right)=\left[\delta\left(\varepsilon_{\mathfrak{g}}\right), \phi(f)\right]=\delta(p f)=p \phi(f)$. This implies that $\delta\left(\varepsilon_{\mathfrak{g}}\right)=\varepsilon_{\mathfrak{h}}-c$ for some $c \in \mathbb{C}$. We know that $\delta(\omega) \in \mathcal{D}_{2}(\mathfrak{h})^{W}$. Note that

$$
\delta\left(\left[E_{\mathfrak{g}}, \omega\right]\right)=\left[\delta\left(E_{\mathfrak{g}}\right), \delta(\omega)\right]=\left[\epsilon_{\mathfrak{h}}, \delta(\omega)\right]=-2 \delta(\omega)
$$

In the appropriate coordinate basis of \mathfrak{h}, this forces

$$
\delta(\omega)=\sum_{\{|\mu|-|\nu|=-2,|\nu| \leq 2\}} a_{\mu, \nu} x^{\mu} \partial_{x}^{\nu}, \quad a_{\mu, \nu} \in \mathbb{C}
$$

and it follows that

$$
\delta(\omega)=\sum_{\nu} a_{\nu} \partial_{x}^{\nu} \in \mathrm{S}^{2}(\mathfrak{h})^{W}=\mathbb{C} \omega_{\mathfrak{h}} .
$$

Thus $\delta(\omega)=a \omega_{\mathfrak{h}}$ for some $a \in \mathbb{C}$. Then, $\delta([\kappa, \omega])=\left[\kappa_{\mathfrak{h}}, a \omega_{\mathfrak{h}}\right]=\varepsilon_{\mathfrak{h}}-c+n / 2$ implies that $a=1$ and $c=\frac{1}{2}(n-\ell)$. Hence, we have shown

$$
\delta(\kappa)=\kappa_{\mathfrak{h}}, \quad \delta(\omega)=\omega_{\mathfrak{h}}, \quad \delta\left(E_{\mathfrak{g}}\right)=E_{\mathfrak{h}} .
$$

Recall that $\mathcal{D}(\mathfrak{g})$ and $\mathcal{D}(\mathfrak{h})$ have natural $\operatorname{SL}(2)$-actions, which integrate the adjoint actions of $\mathbb{C} \kappa+\mathbb{C} \omega+\mathbb{C} E_{\mathfrak{g}}$ and $\mathbb{C} \kappa_{\mathfrak{h}}+\mathbb{C} \omega_{\mathfrak{h}}+\mathbb{C} E_{\mathfrak{h}}$ respectively. The above formulas prove that the map δ is $\mathrm{SL}(2)$-equivariant. Let $P \in \mathrm{~S}^{m}(\mathfrak{g})^{G}$. By definition of w, and the fact that the $\mathrm{SL}(2)$-action commutes with the G-action, we obtain that $w \cdot P \in \mathrm{~S}^{m}\left(\mathfrak{g}^{*}\right)^{G}$. Therefore

$$
w \cdot \delta(P)=\delta(w \cdot P)=(w \cdot P)_{\mid \mathfrak{h}}
$$

implies that

$$
\delta(P)=w^{-1} \cdot \delta(w \cdot P)=w^{-1}(w \cdot P)_{\mid \mathfrak{h}} .
$$

The definition of w then shows that $w^{-1}(w \cdot P)_{\mid \mathfrak{h}}$ is the projection of P onto $S^{m}(\mathfrak{h})^{W}$, as required.

5. SURJECTIVITY OF δ

We have shown that there exists a homomorphism

$$
\delta: \mathcal{D}(\mathfrak{g})^{G} \rightarrow \mathcal{D}(\mathfrak{h})^{W}
$$

with kernel

$$
\mathcal{J}=\left\{P \in \mathcal{D}(\mathfrak{g})^{G} \mid P\left(\mathcal{O}(\mathfrak{g})^{G}\right)=0\right\}
$$

Evidently, $\operatorname{Im} \delta$ contains the images of $\mathrm{S}\left(\mathfrak{g}^{*}\right)^{G}$ and $\mathrm{S}(\mathfrak{g})^{G}$ which, by Theorem 2.3 coincide with $\mathrm{S}\left(\mathfrak{h}^{*}\right)^{W}$ and $\mathrm{S}(\mathfrak{h})^{W}$. Denote by B the subalgebra of $\mathcal{D}(\mathfrak{h})^{W}$ generated by $\mathrm{S}\left(\mathfrak{h}^{*}\right)^{W}$ and $\mathrm{S}(\mathfrak{h})^{W}$. Two questions naturally arise.

Is δ surjective?
Recall that δ is a filtered morphism. The second question is more precise: Is it true that $\delta\left(\mathcal{D}_{m}(\mathfrak{g})^{G}\right)=\mathcal{D}_{m}(\mathfrak{h})^{W}$ for all $m \in \mathbb{N}$? Equivalently:

$$
\text { Is } \operatorname{gr}(\delta): \operatorname{gr} \mathcal{D}(\mathfrak{g})^{G} \rightarrow \operatorname{gr} \mathcal{D}(\mathfrak{h})^{W} \text { surjective? }
$$

If this is true, we shall say that δ is graded-surjective.
N. Wallach has shown [17] that $(\dagger \dagger)$ has a positive answer when \mathfrak{g} has no factor of type $\mathrm{E}_{p}, p=6,7,8$. In [7] it is shown that (\dagger) is true in all cases. This follows from a general result about differential operators invariant under a finite group action:

Theorem 5.1. [7] Let V be a finite dimensional \mathbb{C}-vector space and W be a finite subgroup of $\mathrm{GL}(V)$. Then $\mathcal{D}(V)^{W}$ is generated by $\mathrm{S}(V)^{W}$ and $\mathrm{S}\left(V^{*}\right)^{W}$.

The proof of Theorem 5.1 is not difficult. In this section we shall give a proof in the case we are presently interested: $(V, W)=(\mathfrak{h}, W=$ Weyl group). The idea of the proof is exactly the same, but, in this particular case, we will bring a little bit more of information.

We fix a coordinate basis $\left\{x_{1}, \ldots, x_{\ell} ; \partial_{1}, \ldots, \partial_{\ell}\right\}$ of $\mathfrak{h}^{*} \times \mathfrak{h}^{7}$. In this situation we may also suppose that $\left\{\partial_{1}, \ldots, \partial_{\ell}\right\}$ is an orthonormal basis, with respect to κ, on a real form $\mathfrak{h}_{\mathbb{R}}$ of \mathfrak{h}. Then, each $w \in W$ acts on \mathfrak{h} via an orthogonal matrix: $w \cdot \partial_{j}=\sum_{i=1}^{\ell} w_{i j} \partial_{i}$.

Recall that $\pi^{2} \in B$ and that, up to a nonzero scalar (that we ignore), we have $\pi=$ $\operatorname{det} \operatorname{Jac}(p)$, where $\operatorname{Jac}(p)=\left[\frac{\partial p_{i}}{\partial x_{j}}\right] \in \mathrm{M}_{\ell}\left(\mathrm{S}\left(\mathfrak{h}^{*}\right)\right)$. Moreover $\mathfrak{h}^{\prime}=\{h: \pi(h) \neq 0\}$ is the set of points where $p: \mathfrak{h} \rightarrow \mathfrak{h} / W$ is étale. Define, as usual, the gradient vector field associated to the invariant function p_{j} by

$$
\nabla\left(p_{j}\right)=\sum_{i=1}^{\ell} \partial_{i}\left(p_{j}\right) \partial_{i}, \quad j=1, \ldots, \ell
$$

Lemma 5.2. The following assertions hold:
(1) $\nabla\left(p_{j}\right) \in[\operatorname{Der} \mathcal{O}(\mathfrak{h})]^{W} \cap B$;
(2) $\operatorname{Der} \mathcal{O}\left(\mathfrak{h}^{\prime}\right)=\bigoplus_{i=1}^{\ell} \mathcal{O}\left(\mathfrak{h}^{\prime}\right) \nabla\left(p_{j}\right)$;
(3) $\left[\operatorname{Der} \mathcal{O}\left(\mathfrak{h}^{\prime}\right)\right]^{W}=\bigoplus_{i=1}^{\ell} \mathcal{O}\left(\mathfrak{h}^{\prime}\right)^{W} \nabla\left(p_{j}\right)$, and

$$
[\operatorname{Der} \mathcal{O}(\mathfrak{h})]^{W}=\bigoplus_{i=1}^{\ell} \mathcal{O}(\mathfrak{h})^{W} \nabla\left(p_{j}\right)
$$

is a free $\mathcal{O}(\mathfrak{h})^{W}$-module.
Proof. (1) Note first that

$$
w \cdot \partial_{j}\left(p_{k}\right)=\left(w \cdot \partial_{j}\right)\left(w \cdot p_{k}\right)=\left(w \cdot \partial_{j}\right)\left(p_{k}\right)=\sum_{i} w_{i j} \partial_{i}\left(p_{k}\right)
$$

Therefore

$$
\begin{aligned}
w \cdot \nabla\left(p_{k}\right) & =\sum_{j} w \cdot \partial_{j}\left(p_{k}\right) w \cdot \partial_{j}=\sum_{i, j, s} w_{i j} \partial_{i}\left(p_{k}\right) w_{s j} \partial_{s} \\
& =\sum_{i, s}\left(\sum_{j} w_{i j} w_{s j}\right) \partial_{i}\left(p_{k}\right) \partial_{s}=\sum_{i, s} \delta_{i s} \partial_{i}\left(p_{k}\right) \partial_{s} \\
& =\nabla\left(p_{k}\right)
\end{aligned}
$$

Hence, $\nabla\left(p_{k}\right)$ is W-invariant. Recall that $\omega_{\mathfrak{h}}=\frac{1}{2} \sum_{i} \partial_{i}^{2} \in \mathrm{~S}^{2}(\mathfrak{h})^{W}$. Note that

$$
\left[\omega_{\mathfrak{h}}, p_{j}\right]=\frac{1}{2} \sum_{i}\left[\partial_{i}^{2}, p_{j}\right]=\nabla\left(p_{j}\right)+\frac{1}{2} \omega_{\mathfrak{h}}\left(p_{j}\right)
$$

Thus, $\nabla\left(p_{j}\right)=\left[\omega_{\mathfrak{h}}, p_{j}\right]-\frac{1}{2} \omega_{\mathfrak{h}}\left(p_{j}\right) \in B$.

[^5](2) Denote by $\left[a_{i j}\right] \in \mathrm{M}_{\ell}\left(\mathcal{O}(\mathfrak{h})_{\pi}\right)$ the inverse matrix of $\operatorname{Jac}(p)$. Then, $\pi\left[a_{i j}\right] \in \mathrm{M}_{\ell}(\mathcal{O}(\mathfrak{h}))$ and
$$
\sum_{m} a_{m k} \nabla\left(p_{m}\right)=\sum_{i}\left(\sum_{m} a_{m k} \partial_{i}\left(p_{m}\right)\right) \partial_{i}=\sum_{i} \delta_{i k} \partial_{i}=\partial_{k} .
$$

Hence, Der $\mathcal{O}\left(\mathfrak{h}^{\prime}\right)=\bigoplus_{k} \mathcal{O}\left(\mathfrak{h}^{\prime}\right) \partial_{k}=\bigoplus_{k} \mathcal{O}\left(\mathfrak{h}^{\prime}\right) \nabla\left(p_{k}\right)$. Observe that we have also shown that

$$
\begin{equation*}
\pi \operatorname{Der} \mathcal{O}(\mathfrak{h})=\bigoplus_{m} \mathcal{O}(\mathfrak{h}) \nabla\left(p_{m}\right) \tag{5.1}
\end{equation*}
$$

(3) The first claim is consequence of (2) by taking W-invariants. Let $d \in \operatorname{Der} \mathcal{O}(\mathfrak{h})^{W}$. From (5.1), we get that $\pi d=\sum_{m} \varphi_{m} \nabla\left(p_{m}\right)$ for some $\varphi_{m} \in \mathcal{O}(\mathfrak{h})$. Thus, for all $w \in W$,

$$
w \cdot(\pi d)=w \cdot \pi w \cdot d=\epsilon(w) \pi d=\sum_{m} w \cdot \varphi_{m} \nabla\left(p_{m}\right)
$$

It follows that $w \cdot \varphi_{m}=\epsilon(w) \varphi_{m}$, and therefore $\varphi_{m}=\pi \gamma_{m}$ for some $\gamma_{m} \in \mathcal{O}(\mathfrak{h})^{W}$. Hence, $d=\sum_{j} \gamma_{j} \nabla\left(p_{j}\right) \in \bigoplus_{j} \mathcal{O}(\mathfrak{h})^{W} \nabla\left(p_{j}\right)$, as required.

Recall that, since the elements of $\mathcal{O}(\mathfrak{h})$ act locally nilpotently on $\mathcal{D}(\mathfrak{h})$, we can localize at any Öre subset of $\mathcal{O}(\mathfrak{h})$.

Proposition 5.3. We have: $B_{\pi^{2}}=\mathcal{D}(\mathfrak{h}) \pi_{\pi^{2}}^{W}=\mathcal{O}(\mathfrak{h})_{\pi^{2}}^{W}\left[\nabla\left(p_{1}\right), \ldots, \nabla\left(p_{\ell}\right)\right]$.
Proof. Recall that

$$
\mathcal{D}(\mathfrak{h})_{\pi^{2}}^{W}=\mathcal{D}\left(\mathfrak{h}^{\prime} / W\right)=\left[\mathcal{D}(\mathfrak{h})_{\pi}\right]^{W}=\mathcal{O}\left(\mathfrak{h}^{\prime}\right)^{W}\left[\operatorname{Der} \mathcal{O}\left(\mathfrak{h}^{\prime} / W\right)\right] .
$$

But, since $p: \mathfrak{h}^{\prime} \rightarrow \mathfrak{h}^{\prime} / W$ is étale, we obtain from Lemma 5.2(3) that

$$
\operatorname{Der} \mathcal{O}\left(\mathfrak{h}^{\prime} / W\right)=\left[\operatorname{Der} \mathcal{O}\left(\mathfrak{h}^{\prime}\right)\right]^{W}=\bigoplus_{i=1}^{\ell} \mathcal{O}\left(\mathfrak{h}^{\prime}\right)^{W} \nabla\left(p_{j}\right) .
$$

Hence, using Lemma 5.2(1),

$$
\mathcal{D}(\mathfrak{h})_{\pi^{2}}^{W} \subseteq \mathcal{O}(\mathfrak{h})_{\pi^{2}}^{W}\left[\nabla\left(p_{1}\right), \ldots, \nabla\left(p_{\ell}\right)\right] \subseteq B_{\pi^{2}}
$$

The other inclusion being obvious, we have the desired equalities.
We filter $\mathcal{D}(\mathfrak{h})$ and its subspaces by the order of differential operators. In particular, if $B_{m}=\mathcal{D}_{m}(\mathfrak{h}) \cap B$, we obtain

$$
\operatorname{gr} B=\bigoplus B_{m} / B_{m-1} \hookrightarrow \operatorname{gr} \mathcal{D}(\mathfrak{h})^{W}=\mathcal{O}\left(\mathfrak{h} \times \mathfrak{h}^{*}\right)^{W}=\mathrm{S}\left(\mathfrak{h}^{*} \times \mathfrak{h}\right)^{W} \subset \mathrm{~S}\left(\mathfrak{h}^{*} \times \mathfrak{h}\right)
$$

where the group W acts diagonally.
Lemma 5.4. The ring B is a noetherian domain, and $\mathcal{D}(\mathfrak{h})^{W}$ is a finitely generated (left and right) B-module.
Proof. Clearly, $B \supseteq \mathrm{~S}\left(\mathfrak{h}^{*}\right)^{W} \otimes_{\mathbb{C}} \mathrm{S}(\mathfrak{h})^{W}=\mathrm{S}\left(\mathfrak{h}^{*} \times \mathfrak{h}\right)^{W \times W}$. It is well known, since the group $W \times W$ is finite, that $S\left(\mathfrak{h}^{*} \times \mathfrak{h}\right)$ is a finite module over the finitely generated algebra $\mathrm{S}\left(\mathfrak{h}^{*} \times \mathfrak{h}\right)^{W \times W}$. It follows easily that $\mathrm{gr} B$ is a finitely generated \mathbb{C}-algebra and that $\mathrm{S}\left(\mathfrak{h}^{*} \times \mathfrak{h}\right)^{W}$ is a finitely generated $(\operatorname{gr} B)$-module. A routine argument then yields the claim.

Lemma 5.5. Let $B \subseteq A$ be two noetherian domains. Assume that A is simple and finitely generated as a left or right B-module. Then, if A and B have the same fraction field, we have $A=B$.

Proof. Set $L=\{b \in B \mid b A \subseteq B\}$. Since A is a finitely generated right B-module, and $\operatorname{Frac}(A)=\operatorname{Frac}(B), L$ is nonzero. Similarly, $L^{\prime}=\{b \in B \mid A b \subseteq B\} \neq 0$. Since L^{\prime} and L are, respectively, left and right ideals of $A, L^{\prime} L$ is a two-sided ideal of A. But A being a domain, $L^{\prime} L \neq 0$. Therefore $A=L^{\prime} L \subseteq B$, and $A=B$ as required.

Theorem 5.6. The homomorphism $\delta: \mathcal{D}(\mathfrak{g})^{G} \rightarrow \mathcal{D}(\mathfrak{h})^{W}$ is surjective.
Proof. We apply Lemma 5.5 to $B=\operatorname{Im} \delta \subseteq A=\mathcal{D}(\mathfrak{h})^{W}$. Recall [10] that A is simple. The theorem then follows from Proposition 5.3 and Lemma 5.4.

The previous theorem shows that (\dagger) has a positive answer, but does not give the graded surjectivity of δ. In the next sections we will see that question ($\dagger \dagger$) is closely related to geometric questions about the commuting variety of \mathfrak{g}. Before going into this interpretation, we have to remark that the graded surjectivity of δ is easy once we have localized at the discriminant ${ }^{8}$. Indeed:

Proposition 5.7. The map $\delta: \mathcal{D}(\mathfrak{g})_{d_{\ell}}^{G} \rightarrow \mathcal{D}(\mathfrak{h})_{\pi^{2}}^{W}$ is graded-surjective.
Proof. Fix an orthonormal basis of \mathfrak{g} with respect to κ and denote the associated coordinate system on $\mathfrak{g}^{*} \times \mathfrak{g}$ by $\left\{x_{1}, \ldots, x_{n} ; \partial_{1}, \ldots, \partial_{n}\right\}$. Assume that the numbering is chosen such that $\left\{x_{1}, \ldots, x_{\ell} ; \partial_{1}, \ldots, \partial_{\ell}\right\}$ is the previous coordinate system on $\mathfrak{h}^{*} \times \mathfrak{h}$.

Define the gradient vector field of $u_{j} \in \mathcal{O}(\mathfrak{g})^{G}$, by $\nabla\left(u_{j}\right)=\sum_{k=1}^{n} \partial\left(u_{k}\right) \partial_{k}$. Recall that $r: \mathcal{D}(\mathfrak{g})^{G} \rightarrow \mathcal{D}(\mathfrak{h} / W)$. It is easily checked that

$$
r\left(\nabla\left(u_{j}\right)\right)=\nabla\left(p_{j}\right), \quad j=1, \ldots, \ell
$$

We have seen in Proposition 5.3 that $\mathcal{D}(\mathfrak{h})_{\pi^{2}}^{W}=\mathcal{O}(\mathfrak{h}) \pi_{\pi^{2}}^{W}\left[\nabla\left(p_{1}\right), \ldots, \nabla\left(p_{\ell}\right)\right]$, hence

$$
\operatorname{gr} \mathcal{D}(\mathfrak{h})_{\pi^{2}}^{W}=\operatorname{gr} \mathcal{D}\left(\mathfrak{h}^{\prime}\right)^{W}=\mathbb{C}\left[p_{1}, \ldots, p_{\ell}, \pi^{-2}, \operatorname{gr}\left(\nabla\left(p_{1}\right)\right), \ldots, \operatorname{gr}\left(\nabla\left(p_{\ell}\right)\right)\right]
$$

Therefore, with obvious notation,

$$
\operatorname{gr}_{m} \mathcal{D}(\mathfrak{h})_{\pi^{2}}^{W}=\sum_{|k|=m} \mathbb{C}\left[p_{1}, \ldots, p_{\ell}, \pi^{-2}\right] \nabla(p)^{k}
$$

Recall that $\delta(P)=\pi r(P) \pi^{-1}$; it follows that $\operatorname{gr}(\delta)=\operatorname{gr}(r)$. Since $\phi\left(u_{j}\right)=p_{j}, \phi\left(d_{\ell}\right)=\pi^{2}$ and $\operatorname{gr}(\delta)\left(\nabla\left(u_{j}\right)\right)=\operatorname{gr}\left(\nabla\left(u_{j}\right)\right)$, we obtain from the above description of $\operatorname{gr}_{m} \mathcal{D}(\mathfrak{h})_{\pi^{2}}^{W}$ that $\operatorname{gr}(\delta): \operatorname{gr} \mathcal{D}(\mathfrak{g})_{d_{\ell}}^{G} \rightarrow \operatorname{gr} \mathcal{D}(\mathfrak{h})_{\pi^{2}}^{W}$ is surjective.

Set $A=\mathcal{D}(\mathfrak{g})^{G} / \mathcal{J}$. Recall that we can identify $\mathcal{D}(\mathfrak{g})$ and $\mathcal{D}(\mathfrak{g})^{G}$ with $\mathcal{O}(\mathfrak{g} \times \mathfrak{g})$ and $\mathcal{O}(\mathfrak{g} \times \mathfrak{g})^{G}$ respectively. Let \mathbf{q} be the kernel of the graded morphism

$$
\operatorname{gr}(\delta): \operatorname{gr} \mathcal{D}(\mathfrak{g})^{G} \rightarrow \operatorname{grD}(\mathfrak{h})^{W}
$$

Hence, $\operatorname{gr} \mathcal{J} \subseteq \mathbf{q}$ and \mathbf{q} is prime. Since $\operatorname{gr} \mathcal{J}$ and \mathbf{q} are contained in $\mathcal{O}(\mathfrak{g} \times \mathfrak{g})^{G}$, they define affine subvarieties $\mathcal{V}(\mathbf{q}) \subseteq \mathcal{V}(\operatorname{gr} \mathcal{J}) \subseteq(\mathfrak{g} \times \mathfrak{g}) / G$.

Corollary 5.8. One has ${ }^{9}$:
(1) $\operatorname{GKdim} \mathcal{D}(\mathfrak{g})^{G}=\operatorname{dim}(\mathfrak{g} \times \mathfrak{g}) / G=n+\ell-k$;
(2) GKdim $A=\mathrm{GK} \operatorname{dim} \operatorname{gr} A=\mathrm{GK} \operatorname{dim} \mathcal{D}(\mathfrak{h})^{W}=2 \ell$;
(3) $\operatorname{height}(\operatorname{grJ})=\operatorname{height}(\mathbf{q})=n-\ell-k$.

[^6]Proof. (1) Clearly, if S is the connected semisimple subgroup of G such that $\operatorname{Lie}(S)=\mathfrak{s}$, we have

$$
(\mathfrak{g} \times \mathfrak{g}) / G \cong((\mathfrak{s} \times \mathfrak{s}) / S) \times(\mathfrak{z} \times \mathfrak{z}) .
$$

The maximal dimension of an S-orbit in $\mathfrak{s} \times \mathfrak{s}$ is $n-\ell+k$: pick $(x, y) \in \mathfrak{s} \times \mathfrak{s}$, with x generic and y regular nilpotent; then \mathfrak{s}^{x} is a Cartan subalgebra of \mathfrak{s} and \mathfrak{s}^{y} is contained in the nilpotent cone of \mathfrak{s}. Hence, $\mathfrak{s}^{x} \cap \mathfrak{s}^{y}=0$ and ${ }^{10} \operatorname{dim} S .(x, y)=\operatorname{dim} \mathfrak{s}=n-\ell+k$. Therefore, $\operatorname{dim}(\mathfrak{g} \times \mathfrak{g}) / G=n-\ell+k+2(\ell-k)=n+\ell-k$.
(2) From Proposition 5.7, we deduce that there is a filtered isomorphism $A_{d_{\ell}} \cong \mathcal{D}(\mathfrak{h})_{\pi^{2}}^{W}$. The localization at d_{ℓ} commutes with gr, hence

$$
\operatorname{gr}\left(\mathcal{D}(\mathfrak{g})_{d_{\ell}}^{G} / \mathcal{J}_{d_{\ell}}\right)=\operatorname{gr} A_{d_{\ell}}=(\operatorname{gr} A)_{d_{\ell}} \simeq \operatorname{gr} \mathcal{D}(\mathfrak{h})_{\pi^{2}}^{W} .
$$

From $\operatorname{Ker}\left(\operatorname{gr}(\delta): \operatorname{gr} \mathcal{D}(\mathfrak{g})_{d_{\ell}}^{G} \rightarrow \operatorname{gr} \mathcal{D}(\mathfrak{h})_{\pi^{2}}^{W}\right)=\mathbf{q}_{d_{\ell}}$, it follows that $\mathbf{q}_{d_{\ell}}=(\operatorname{grJ})_{d_{\ell}}$ and $(\mathcal{O}(\mathfrak{g} \times$ $\left.\mathfrak{g})^{G} / \mathbf{q}\right)_{d_{\ell}} \cong \mathcal{O}(\mathfrak{h} \times \mathfrak{h})_{\pi^{2}}^{W}$. Observe that, since $\mathcal{O}(\mathfrak{g} \times \mathfrak{g}) / \mathbf{q}$ is a domain,

$$
\operatorname{GKdimgr} A_{d_{\ell}}=\operatorname{GKdim}\left(\mathcal{O}(\mathfrak{g} \times \mathfrak{g})^{G} / \mathbf{q}\right)_{d_{\ell}}=\operatorname{GKdim} \mathcal{O}(\mathfrak{g} \times \mathfrak{g}) / \mathbf{q}=2 \ell .
$$

Note that d_{ℓ} is a nonzero divisor in $A: \delta\left(d_{\ell}\right)=\pi^{2}$ is a nonzero element of the domain $\mathcal{D}(\mathfrak{h})^{W}$, and $\delta: A \rightarrow \mathcal{D}(\mathfrak{h})^{W}$ is injective by definition of \mathcal{J}. Moreover, d_{ℓ} acts locally ad-nilpotently on A. Therefore, by [6, Lemma 4.7, page 49], GKdim $A=$ GKdim $A_{d_{\ell}}$. Hence,

$$
\operatorname{GKdim} A=\operatorname{GKdim} A_{d_{\ell}}=\operatorname{GKdim} \mathcal{D}(\mathfrak{h})_{\pi^{2}}^{W}=\operatorname{GKdim} \mathcal{D}(\mathfrak{h})^{W}=2 \ell .
$$

Now, by [6, Lemma 6.5, page 75] and the previous remarks,

$$
2 \ell=\operatorname{GKdim} \mathcal{O}(\mathfrak{g} \times \mathfrak{g}) / \mathbf{q} \leq \mathrm{GK} \operatorname{dim} \mathrm{gr} A \leq \mathrm{GK} \operatorname{dim} A=2 \ell .
$$

Thus GKdim $\mathcal{O}(\mathfrak{g} \times \mathfrak{g}) / \mathbf{q}=\mathrm{GK} \operatorname{dim} \mathrm{gr} A=\mathrm{GK} \operatorname{dim} A=2 \ell$.
(3) Since $\mathcal{O}(\mathfrak{g} \times \mathfrak{g})^{G}$ is a finitely generated domain,

$$
\operatorname{height}(\mathrm{gr} \mathcal{J})=\operatorname{GKdim} \mathcal{O}(\mathfrak{g} \times \mathfrak{g})^{G}-\mathrm{GK} \operatorname{dim} \operatorname{gr} A=n+\ell-k-2 \ell=n-\ell-k
$$

Similarly,

$$
\operatorname{height}(\mathbf{q})=\operatorname{GKdim} \mathcal{O}(\mathfrak{g} \times \mathfrak{g})^{G}-\operatorname{GKdim} \mathcal{O}(\mathfrak{g} \times \mathfrak{g})^{G} / \mathbf{q}=n-\ell-k
$$

as desired.
Remark. Corollary 5.8(3) shows that \mathbf{q} is a minimal prime ideal over $\operatorname{gr} \mathcal{J}$, and that $\operatorname{dim} \mathcal{V}(\operatorname{gr} \mathcal{J})=\operatorname{dim} \mathcal{V}(\mathbf{q})=2 \ell$.
Corollary 5.9. The following are equivalent:
(a) δ is graded-surjective;
(b) δ is surjective and grJ is a prime ideal.

Proof. (a) \Rightarrow (b) The hypothesis says that $\operatorname{gr}(\delta): \operatorname{gr} \mathcal{D}(\mathfrak{g})^{G} \rightarrow \operatorname{gr} \mathcal{D}(\mathfrak{h})^{W}$ is surjective. Thus δ is surjective. We have to show that $\operatorname{Ker} \operatorname{gr}(\delta)=\operatorname{gr} \mathcal{J}$. Let $a \in \mathcal{D}_{m}(\mathfrak{g})^{G}$ be such that $0=\operatorname{gr}(\delta(a)) \in \operatorname{gr}_{m} \mathcal{D}(\mathfrak{h})^{W}$, i.e. $\delta(a) \in \mathcal{D}_{m-1}(\mathfrak{h})^{W}$. Since $\mathcal{D}_{m-1}(\mathfrak{h})^{W}=\delta\left(\mathcal{D}_{m-1}(\mathfrak{g})^{G}\right)$, we obtain $a \in \mathcal{D}_{m-1}(\mathfrak{g})^{G}+\mathcal{J}$. Hence, $\operatorname{gr}(a) \in \operatorname{gr} \mathcal{J}$ as required.
$(\mathrm{b}) \Rightarrow$ (a) Since $\operatorname{gr} \mathcal{J}=\mathbf{q}, \operatorname{gr}(\delta)$ yields an injection: $\operatorname{gr} \mathcal{D}(\mathfrak{g})^{G} / \operatorname{grJ} \hookrightarrow \operatorname{gr} \mathcal{D}(\mathfrak{h})^{W}$. Let $b \in \mathcal{D}_{m}(\mathfrak{h})^{W}$. Then, $b=\delta(a)$ for some $a \in \mathcal{D}_{p}(\mathfrak{g})^{G}$. If $p \leq m$ we are done; otherwise, $\operatorname{gr}(\delta)\left(\operatorname{gr}_{p}(a)\right)=\operatorname{gr}_{p}(b)=0$. Hence, $\operatorname{gr}_{p}(a) \in \operatorname{gr\mathcal {I}}$ and therefore $a \in \mathcal{J}+\mathcal{D}_{p-1}(\mathfrak{g})^{G}$. By induction we get that $b=\delta\left(a^{\prime}\right)$ for some $a^{\prime} \in \mathcal{D}_{m}(\mathfrak{g})^{G}$, proving the graded surjectivity of δ.

[^7]
6. The commuting variety of \mathfrak{g}

The commuting variety of \mathfrak{g} is the closed subvariety of $\mathfrak{g} \times \mathfrak{g}$ defined by

$$
\mathcal{C}(\mathfrak{g})=\{(x, y) \in \mathfrak{g} \times \mathfrak{g} \mid[x, y]=0\}
$$

Note that $\mathcal{C}(\mathfrak{g})$ is a G-subvariety of $\mathfrak{g} \times \mathfrak{g}$ under the diagonal (adjoint) action of G.
Remark. In general, i.e. for an arbitrary Lie algebra, $\mathcal{C}(\mathfrak{g})$ is not irreducible. Take, for example, the 3-dimensional solvable Lie algebra $\mathfrak{g}=\mathbb{C} u+\mathbb{C} v+\mathbb{C} w$, where the nonzero brackets are

$$
[u, v]=v, \quad[u, w]=w
$$

Let $\{x, y, z\}$ be the dual basis of $\{u, v, w\}$ and set $\mathcal{O}(\mathfrak{g} \times \mathfrak{g})=\mathbb{C}[x, y, z] \otimes_{\mathbb{C}} \mathbb{C}\left[x^{\prime}, y^{\prime}, z^{\prime}\right]$. Then,

$$
\mathcal{C}(\mathfrak{g})=\mathcal{V}\left(x y^{\prime}-x^{\prime} y, x z^{\prime}-x^{\prime} z\right)
$$

is 4-dimensional and has two irreducible components

$$
\mathcal{V}\left(x, x^{\prime}\right)=(\mathbb{C} v+\mathbb{C} w) \times(\mathbb{C} v+\mathbb{C} w), \quad \mathcal{V}\left(x y^{\prime}-x^{\prime} y, x z^{\prime}-x^{\prime} z, y^{\prime} z-y z^{\prime}\right)
$$

But, when \mathfrak{g} is reductive, we have the following result.
Theorem 6.1. [12] The variety $\mathcal{C}(\mathfrak{g})$ is irreducible. Indeed,

$$
\mathcal{C}(\mathfrak{g})=\overline{G .(\mathfrak{h} \times \mathfrak{h})} .
$$

Remark . The study of $\mathcal{C}(\mathfrak{g})$ reduces easily to the case when \mathfrak{g} is semisimple: Write $\mathfrak{g}=\mathfrak{s} \oplus \mathfrak{z}$, where \mathfrak{s} is semisimple and \mathfrak{z} is the centre, then

$$
\mathcal{C}(\mathfrak{g})=\mathcal{C}(\mathfrak{s}) \times(\mathfrak{z} \times \mathfrak{z}),
$$

where we have identified $\mathfrak{g} \times \mathfrak{g}$ with $(\mathfrak{s} \times \mathfrak{s}) \times(\mathfrak{z} \times \mathfrak{z})$. Therefore we shall assume in this section that \mathfrak{g} is semisimple, and that G is the adjoint group.

Denote by \mathbf{p} the prime ideal of $\mathcal{O}(\mathfrak{g} \times \mathfrak{g})=S\left(\mathfrak{g}^{*} \times \mathfrak{g}^{*}\right)$ such that $\mathcal{C}(\mathfrak{g})=\mathcal{V}(\mathbf{p})$. Clearly, $(x, y) \in \mathcal{C}(\mathfrak{g})$ is and only if $\kappa(a,[x, y])=0$ for all $a \in \mathfrak{g}$. Let $\sigma_{a} \in \mathcal{O}(\mathfrak{g} \times \mathfrak{g})$ be the function $(x, y) \mapsto \kappa(a,[x, y])$, and define the ideal

$$
\mathbf{a}=\left(\sigma_{a} ; a \in \mathfrak{g}\right)
$$

Thus, $\sqrt{\mathbf{a}}=\mathbf{p}$ and $\mathcal{C}(\mathfrak{g}) / G=\mathcal{V}\left(\mathbf{p}^{G}\right)=\mathcal{V}\left(\mathbf{a}^{G}\right)$. The main questions concerning $\mathcal{C}(\mathfrak{g})$ are the following:

- Is $\mathbf{a}=\mathbf{p}$? If true, this would imply that $\mathcal{J}=\mathcal{D}(\mathfrak{g}) \tau(\mathfrak{g})^{11}$.
- Is $\mathcal{C}(\mathfrak{g})$ normal? Cohen-Macaulay?
- Is $\mathcal{C}(\mathfrak{g}) / G$ normal? Cohen-Macaulay? We shall relate the normality of $\mathcal{C}(\mathfrak{g}) / G$ to the graded-surjectivity of δ in the next section.
We need to know the dimension of $\mathcal{C}(\mathfrak{g})$; this computation is implicit in [12], for sake of completeness we indicate a proof.

Lemma 6.2. $\operatorname{dim} \mathcal{C}(\mathfrak{g})=\operatorname{dim} \mathfrak{g}+\operatorname{rk} \mathfrak{g}$.

[^8]Proof. Let $\eta: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ be the first projection. Since $\eta(\mathcal{C}(\mathfrak{g}))=\mathfrak{g}$, we have a surjective morphism: $\eta: \mathcal{C}(\mathfrak{g}) \rightarrow \mathfrak{g}$. Note that, for all $u=\left(x, x^{\prime}\right) \in \mathcal{C}(\mathfrak{g})$,

$$
\eta^{-1}(\eta(u))=\left\{(x, y): y \in \mathfrak{g}^{x}\right\} \cong \mathfrak{g}^{x}
$$

is an irreducible variety.
By a standard result, see [15, Theorem 4.1.6], there exists a non-empty open subset $U \subseteq \mathcal{C}(\mathfrak{g})$ such that, for all $u \in U$,

$$
\operatorname{dim} U=\operatorname{dim} \mathcal{C}(\mathfrak{g})=\operatorname{dim} \mathfrak{g}+\operatorname{dim} \eta^{-1}(\eta(u))
$$

Since $\left(\mathfrak{g}^{\prime} \times \mathfrak{g}\right) \cap \mathcal{C}(\mathfrak{g})$ is a non-empty open subset of $\mathcal{C}(\mathfrak{g})$, we can pick $u=(x, y) \in U$ with $x \in \mathfrak{g}^{\prime}$. Then \mathfrak{g}^{x} is a Cartan subalgebra of \mathfrak{g}. Hence $\operatorname{dim} \mathcal{C}(\mathfrak{g})=n+\ell$.

Again, the situation is easy after localization at the discriminant $d_{\ell} \in \mathcal{O}(\mathfrak{g}) \equiv \mathcal{O}(\mathfrak{g}) \otimes_{\mathbb{C}} 1 \subset$ $\mathcal{O}(\mathfrak{g} \times \mathfrak{g})=\mathcal{O}(\mathfrak{g}) \otimes_{\mathbb{C}} \mathcal{O}(\mathfrak{g})$.

Lemma 6.3. $\mathbf{a}_{d_{\ell}}=\mathbf{p}_{d_{\ell}}$.
Proof. Let $(x, y) \in \mathfrak{g} \times \mathfrak{g}$ and $v \in \mathfrak{g}$. The differential of σ_{v} at (x, y), that we denote by $d \sigma_{v}(x, y) \in T_{(x, y)}^{*}(\mathfrak{g} \times \mathfrak{g})$, is given by

$$
\forall(a, b) \in \mathfrak{g} \times \mathfrak{g}, \quad d \sigma_{v}(x, y)(a, b)=\left.\frac{d}{d t}\right|_{t=0} \sigma_{v}(x+t a, y+t b)=\kappa(v,[x, b]+[a, y])
$$

It follows that $d \sigma_{v}(x, y)=0$ if, and only if, $v \in([x, \mathfrak{g}]+[y, \mathfrak{g}])^{\perp}=\mathfrak{g}^{x} \cap \mathfrak{g}^{y}$, where \perp denotes the orthogonal with respect to κ. Therefore, the linear map

$$
\vartheta: \mathfrak{g} \rightarrow T_{(x, y)}^{*}(\mathfrak{g} \times \mathfrak{g}), \quad v \mapsto d \sigma_{v}(x, y)
$$

has rank $n-\operatorname{dim}\left(\mathfrak{g}^{x} \cap \mathfrak{g}^{y}\right)$.
Now, suppose that $(x, y) \in \mathcal{C}(\mathfrak{g}) \cap\left(\mathfrak{g}^{\prime} \times \mathfrak{g}\right)$. Then $y \in \mathfrak{g}^{x}$ and \mathfrak{g}^{x} is a Cartan subalgebra of \mathfrak{g}. Thus, $\mathfrak{g}^{y} \supseteq \mathfrak{g}^{x}$ and $\operatorname{rk} \vartheta=n-\ell$. Let $v_{1}, \ldots, v_{n-\ell} \in \mathfrak{g}$ be such that $d \sigma_{v_{1}}(x, y), \ldots, d \sigma_{v_{n-\ell}}(x, y)$ are linearly independent. Denote by (A, \mathbf{m}) the local ring of $\mathfrak{g} \times \mathfrak{g}$ at the point (x, y); recall that $T_{(x, y)}^{*}(\mathfrak{g} \times \mathfrak{g}) \equiv \mathbf{m} / \mathbf{m}^{2}$. Since (A, \mathbf{m}) is a regular local ring, the functions $\sigma_{v_{1}}, \ldots, \sigma_{v_{n-\ell}} \in \mathbf{m}$ can be included in a regular system of parameters. In particular, they generate an ideal of height $n-\ell$ in A. Note that they also belong to $\mathbf{a}_{(x, y)} \subseteq \mathbf{p}_{(x, y)}$, and that $\operatorname{height}\left(\mathbf{p}_{(x, y)}\right)=\operatorname{height}(\mathbf{p})=\operatorname{codim} \mathcal{C}(\mathfrak{g})=n-\ell$. Hence,

$$
\left(\sigma_{v_{1}}, \ldots, \sigma_{v_{n-\ell}}\right)=\mathbf{a}_{(x, y)}=\mathbf{p}_{(x, y)}
$$

Since $(x, y) \in \mathcal{C}(\mathfrak{g}) \cap\left(\mathfrak{g}^{\prime} \times \mathfrak{g}\right)=\mathcal{C}(\mathfrak{g})_{d_{\ell}}$ was arbitrary, we obtain that $\mathbf{a}_{d_{\ell}}=\mathbf{p}_{d_{\ell}}$.
Remark. The proof of Lemma 6.3 shows that, if $(x, y) \in \mathcal{C}(\mathfrak{g})$ and $\operatorname{dim}\left(\mathfrak{g}^{x} \cap \mathfrak{g}^{y}\right)=\mathrm{rk} \mathfrak{g}$, then (x, y) is a smooth point of $\mathcal{C}(\mathfrak{g})$. Hence, $\mathcal{C}(\mathfrak{g}) \cap\left(\mathfrak{g}^{\prime} \times \mathfrak{g}\right)$ is a smooth open subset of $\mathcal{C}(\mathfrak{g})$.

Recall the following theorem:
Theorem 6.4. [13, Theorem 3.2] Let $(x, y) \in \mathfrak{g} \times \mathfrak{g}$. Then, the orbit $G .(x, y)$ is closed if and only if the algebraic hull of the Lie subalgebra of \mathfrak{g} generated by x and y is reductive in \mathfrak{g}.

Since we are, here, interested in orbits in $\mathcal{C}(\mathfrak{g})$, we will give a proof of Theorem 6.4 in this particular case.
Lemma 6.5. Let $(x, y) \in \mathcal{C}(\mathfrak{g})$. Then, $G .(x, y)$ is closed if and only if x and y are semisimple.

Proof. Recall the Jordan-Chevalley decomposition of $x \in \mathfrak{g}: x=x_{s}+x_{n}, x_{s}$ semisimple, x_{n} nilpotent, $\left[x_{s}, x_{n}\right]=0$. Note that ad x_{s} and ad x_{n} are polynomials in ad x. Thus, $[x, y]=0$ if and only if $\left[x_{s}, y_{s}\right]=\left[x_{s}, y_{n}\right]=\left[x_{n}, y_{s}\right]=\left[x_{n}, y_{n}\right]=0$. Since x_{s}, y_{s} are commuting semisimple elements, we may assume (after conjugacy) that $x_{s}, y_{s} \in \mathfrak{h}$. Observe that $\mathfrak{k}=\mathfrak{g}^{x_{s}} \cap \mathfrak{g}^{y_{s}}$ is a reductive Lie algebra in \mathfrak{g}, see $\S 2$. Denote by $K \subseteq G$ the adjoint group of \mathfrak{k}. Furthermore, $x_{n}, y_{n} \in[\mathfrak{k}, \mathfrak{k}]$ are nilpotent, see [4, §3 Remark 9$]$; since they commute, there exists a maximal nilpotent subalgebra \mathfrak{u} of \mathfrak{k} containing x_{n} and y_{n}. Then, it easy to show that there is a one-parameter subgroup, $\lambda: \mathbb{C}^{*} \rightarrow K$, such that $\lim _{t \rightarrow 0} \lambda(t) . z=0$ for all $z \in \mathfrak{u}$.

Now assume that $G .(x, y)$ is closed. Then $\lim _{t \rightarrow 0} \lambda(t) .(x, y)=\left(x_{s}, y_{s}\right)$, and therefore $\left(x_{s}, y_{s}\right) \in G .(x, y)$. This shows that x, y are semisimple.

Conversely, assume that $x, y \in \mathfrak{g}$ are commuting semisimple elements. We may suppose (after conjugacy) that $x, y \in \mathfrak{h}$. Thus the stabilizer $G^{(x, y)}=G^{x} \cap G^{y}$ contains H. Then [5, III.2.5, Folgerung 3] gives that $G .(x, y)$ is closed. (The proof goes as follows. Let $B=N H$ be a Borel subgroup. Since N is unipotent, $Z=B \cdot(x, y)=N .(x, y)$ is closed. Recall now the well known fact: Let P be a parabolic subgroup of G and Z be a P-stable closed subset of some G-variety V, then, $G . Z$ is closed. (Set $\varphi: G \times V \xrightarrow{\sim} G \times V, \varphi((g, v))=(g, g . v), \eta: G \times V \rightarrow G / P \times V, \eta((g, v))=(\bar{g}, v)$, and $\varpi: G \times V \rightarrow V, \varpi((g, v))=v$. Since $\varphi(G \times Z)$ is closed, $\eta(\varphi(G \times Z))$ is closed if and only if $\varphi(G \times Z)=\eta^{-1}(\eta(\varphi(G \times Z)))$, which is clear. Then, since G / P is complete, $G . Z=\varpi(\varphi(G \times Z))$ is closed. $))$

Set $N=N_{G}(H)$, so that $W=N / H$. We have a natural surjective morphism

$$
\mu: X=G \times_{N}(\mathfrak{h} \times \mathfrak{h}) \rightarrow G .(\mathfrak{h} \times \mathfrak{h}), \quad\left[g,\left(h_{1}, h_{2}\right)\right] \mapsto\left(g \cdot h_{1}, g \cdot h_{2}\right)
$$

By Theorem 6.1, μ induces a dominant morphism from \mathcal{X} to $\mathcal{C}(\mathfrak{g})$. Furthermore, $\operatorname{dim} \mathcal{X}=$ $\operatorname{dim} G+2 \operatorname{dim} \mathfrak{h}-\operatorname{dim} N=n+\ell$.

Theorem 6.6. Set $\mathcal{X}^{\prime}=G \times_{N}\left(\mathfrak{h}^{\prime} \times \mathfrak{h}\right)$ and $\mathcal{S}=\left\{(x, y) \in \mathcal{C}(\mathfrak{g}) \mid x \in \mathfrak{g}^{\prime}\right\}$. Then,
(1) $\mu: X^{\prime} \rightarrow \mathcal{S}$ is an isomorphism;
(2) μ is a birational morphism from \mathcal{X} to $\mathcal{C}(\mathfrak{g})$.

Proof. (1) If $x \in \mathfrak{g}^{\prime}, x$ is conjugate to an element of \mathfrak{h}^{\prime}, say $x=g . x_{1}$. Let $(x, y) \in \mathcal{S}$ and set $y=g . y_{1}$. Then $[x, y]=\left[x_{1}, y_{1}\right]=0$, hence $y_{1} \in \mathfrak{g}^{x_{1}}=\mathfrak{h}$. It follows that $(x, y)=g \cdot\left(x_{1}, y_{1}\right) \in$ $\mu\left(X^{\prime}\right)$. Hence, $\mu: X^{\prime} \rightarrow \mathcal{S}$ is surjective. Suppose that $\left[g,\left(h_{1}, h_{2}\right)\right],\left[g^{\prime},\left(h_{1}^{\prime}, h_{2}^{\prime}\right)\right] \in X^{\prime}$ and satisfy $g . h_{i}=g . h_{i}^{\prime}$ for $i=1,2$. Then $h_{i}=g^{-1} g^{\prime} . h_{i}^{\prime}$; in particular, the two generic elements h_{1}, h_{1}^{\prime} are G-conjugate. This implies that h_{1} and h_{1}^{\prime} are W-conjugate. Indeed, there exists $n \in N$ such that $h_{1}^{\prime}=n . h_{1}$. Therefore $h_{1}=g^{-1} g^{\prime} n . h_{1}$, forcing $t:=g^{-1} g^{\prime} n \in H$. We obtain that $g^{-1} g^{\prime}=t n^{-1} \in N$ and

$$
\left[g^{\prime},\left(h_{1}^{\prime}, h_{2}^{\prime}\right)\right]=\left[g t n^{-1},\left(h_{1}^{\prime}, h_{2}^{\prime}\right)\right]=\left[g, t n^{-1}\left(h_{1}^{\prime}, h_{2}^{\prime}\right)\right]=\left[g,\left(h_{1}, h_{2}\right)\right] .
$$

This proves that μ restricted to X^{\prime} is bijective. We know that \mathcal{S} is contained in the set of smooth points of $\mathcal{C}(\mathfrak{g})$ (see the remark after Lemma 6.3). Therefore $\mu_{\mid X^{\prime}}$ is an isomorphism.
(2) Since X^{\prime} and \mathcal{S} are non-empty open subsets of the irreducible varieties X and $\mathcal{C}(\mathfrak{g})$ respectively, the result follows from (1).

The previous theorem says that $\mathfrak{h} \times \mathfrak{h}$ is a rational section of the action of G on $\mathcal{C}(\mathfrak{g})$, see [11, II.2.5, II.2.8].

The group G acts on X by left translation and we have a natural isomorphism

$$
X / G \cong(\mathfrak{h} \times \mathfrak{h}) / W .
$$

The G-equivariant morphism μ then induces $\mu:(\mathfrak{h} \times \mathfrak{h}) / W \rightarrow \mathcal{C}(\mathfrak{g}) / G$. This morphism μ will be called the Chevalley restriction map; it is easily seen that μ is given by restriction
of functions:

$$
\mu:(\mathfrak{h} \times \mathfrak{h}) / W \longrightarrow \mathcal{C}(\mathfrak{g}) / G ; \quad \mu: W .(x, y) \mapsto G .(x, y)
$$

The comorphism of μ is

$$
\mu^{\sharp}: \mathcal{O}(\mathcal{C}(\mathfrak{g}))^{G} \rightarrow \mathcal{O}(\mathfrak{h} \times \mathfrak{h})^{W}, \quad \mu^{\sharp}(f)=f_{\mid \mathfrak{h} \times \mathfrak{h}} .
$$

Since $\mathcal{C}(\mathfrak{g})=\overline{G \cdot(\mathfrak{h} \times \mathfrak{h})}$, it is clear that a function f on $\mathcal{C}(\mathfrak{g})$ is determined by its values on $G .(\mathfrak{h} \times \mathfrak{h})$. If f is G-invariant, it is therefore determined by $f_{\mathfrak{h} \times \mathfrak{h}}$. Hence, $\mu^{\sharp}: \mathcal{O}(\mathcal{C}(\mathfrak{g}))^{G} \rightarrow$ $\mathcal{O}(\mathfrak{h} \times \mathfrak{h})^{W}$ is injective, i.e. μ is dominant.

The open question is to show that $\mathfrak{h} \times \mathfrak{h}$ is a Chevalley section [11, II.3.8], i.e. μ^{\sharp} : $\mathcal{O}(\mathcal{C}(\mathfrak{g}))^{G} \simeq \mathcal{O}(\mathfrak{h} \times \mathfrak{h})^{W}$. The next result shows that μ is at least bijective.

Theorem 6.7. The morphism $\mu:(\mathfrak{h} \times \mathfrak{h}) / W \longrightarrow \mathcal{C}(\mathfrak{g}) / G$ is bijective and is the normalization of $\mathcal{C}(\mathfrak{g}) / G$.

Proof. 1. μ is surjective. Let $(x, y) \in \mathcal{C}(\mathfrak{g})$ be such that $G .(x, y)$ is closed in $\mathcal{C}(\mathfrak{g})$ (hence in $\mathfrak{g} \times \mathfrak{g})$. Then, by Lemma $6.5, x$ and y are commuting semisimple elements. Therefore they are contained in a Cartan subalgebra \mathfrak{h}_{1} of \mathfrak{g}. By conjugacy of the Cartan subalgebras, we can find $g \in G$ such that $g \cdot \mathfrak{h}_{1}=\mathfrak{h}$. Thus, $g .(x, y)=(g . x, g . y) \in \mathfrak{h} \times \mathfrak{h}$. This proves the surjectivity of μ.
2. μ is injective. Recall the following well-known facts, cf. [4] for example.
(1) If $x \in \mathfrak{g}$ is semisimple, then G^{x} is a connected reductive subgroup of G.
(2) If $y \in \mathfrak{h}$, then $G . y \cap \mathfrak{h}=W . y$.

We shall denote by $\dot{w} \in N=N_{G}(H)$ a representative element of $w \in W$. We have to show that: if $x, x^{\prime}, y, y^{\prime} \in \mathfrak{h}$ are such that $g \cdot x=x^{\prime}, g . y=y^{\prime}$ for some $g \in G$, then there exists $\dot{u} \in N$ such that $x^{\prime}=\dot{u} . x, y^{\prime}=\dot{u} . y$. Since $x^{\prime} \in G . x \cap \mathfrak{h}$ and $y^{\prime} \in G . y \cap \mathfrak{h}$, we know from (2) that $x^{\prime}=\dot{w}_{1} \cdot x, y^{\prime}=\dot{w}_{2} . y$ for some $w_{1}, w_{2} \in W$. Set $y^{\prime \prime}=\dot{w}_{1}^{-1} \cdot y^{\prime}, g^{\prime}=\dot{w}_{1}^{-1} g$. We have $g^{\prime} \cdot x=x, g^{\prime} \cdot y=y^{\prime \prime}$; thus, $G \cdot(x, y)=\left(x, y^{\prime \prime}\right)$. Therefore, it is enough to show that there exists $w \in W^{x}$ such that $y^{\prime \prime}=w . y$. Indeed, $y^{\prime \prime}=w . y$ implies $y^{\prime}=\dot{w}_{1} \dot{w} . y$ and we have $x^{\prime}=\dot{w}_{1} \dot{w} \cdot x$. Thus, the result follows by setting $\dot{u}=\dot{w}_{1} \dot{w}$.

Therefore we may, and we do, assume that $x=x^{\prime}, g \in G^{x}, y^{\prime}=g . y \in \mathfrak{h}$. The proof of the injectivity of μ reduces then to show that

$$
x, y \in \mathfrak{h} \Longrightarrow G^{x} . y \cap \mathfrak{h}=W^{x} . y
$$

Observe that $H \subset G^{x}$. Therefore \mathfrak{h} is Cartan subalgebra of \mathfrak{g}^{x}. Futhermore, cf. (1), G^{x} is a connected reductive subgroup of G. Since $H \subseteq N \cap G^{x}=N_{G^{x}}(H)$, the Weyl group of G^{x} is W^{x} (with respect to the choice of the Cartan \mathfrak{h}). Now, use (2) in the connected reductive group G^{x} to get $G^{x} . y \cap \mathfrak{h}=W^{x} . y$.

By [2, Theorem 4.6], μ is then birational. Since $(\mathfrak{h} \times \mathfrak{h}) / W$ is a normal variety, the result follows.

Remark . The fact that μ is the normalization of $\mathcal{C}(\mathfrak{g})$ is a corollary of [9, Proposition $2.2]^{12}$. Recall [9, Lemme 1.8] that, if $\varphi: X \rightarrow y$ is a surjective birational morphism between affine irreducible varieties, and if y is normal, then φ is an isomorphism. Therefore, the open problem of whether $\mu:(\mathfrak{h} \times \mathfrak{h}) / W \rightarrow \mathcal{C}(\mathfrak{g}) / G$ is an isomorphism, is equivalent to showing that $\mathcal{C}(\mathfrak{g}) / G$ is normal, cf. Corollary 7.2.

[^9]
7. GRADED-SURJECTIVITY OF δ

We begin with a preliminary remark. Recall that the map $\delta: \mathcal{D}(\mathfrak{g})^{G} \rightarrow \mathcal{D}(\mathfrak{h})^{W}$ is equal to $\iota \circ r$, where $r: \mathcal{D}(\mathfrak{g})^{G} \rightarrow \mathcal{D}\left(\mathfrak{h}^{\prime}\right)^{W}$ is the "radial component" map. We noticed that, when we restrict to the generic elements,

$$
\operatorname{gr}(\delta)=\operatorname{gr}(r): \mathcal{O}\left(\mathfrak{g}^{\prime} \times \mathfrak{g}\right)^{G}=\mathcal{O}\left(\left(\mathfrak{g}^{\prime} \times \mathfrak{g}\right) / G\right) \longrightarrow \mathcal{O}\left(\mathfrak{h}^{\prime} \times \mathfrak{h}\right)^{W}=\mathcal{O}\left(\left(\mathfrak{h}^{\prime} \times \mathfrak{h}\right) / W\right)
$$

From the definition of r, it is immediate that $\operatorname{gr}(r)$ is induced by restriction of functions: $\operatorname{gr}(r)(f)=f_{\mid \mathfrak{h}^{\prime} \times \mathfrak{h}}$. Since $\left(\mathfrak{g}^{\prime} \times \mathfrak{g}\right) / G$ is open and dense in $(\mathfrak{g} \times \mathfrak{g}) / G$, it follows that $\operatorname{gr}(\delta)$ is also given by restriction of functions.

Proposition 7.1. With the notation of $\S 6$, we have
(1) $\mathbf{q}=\mathbf{p}^{G}$ and $\mathcal{C}(\mathfrak{g}) / G=\mathcal{V}(\operatorname{gr} \mathcal{J})$;
(2) $\mathbf{p}_{d_{\ell}}^{G}=\operatorname{gr} \mathcal{J}_{d_{\ell}}$ and $\left.\mathcal{J}_{d_{\ell}}=(\mathcal{D}(\mathfrak{g})) \tau(\mathfrak{g})\right)_{d_{\ell}}^{G}$.

Proof. (1) Note first that, since $\mathcal{V}(\mathbf{a})=\mathcal{C}(\mathfrak{g}), \mathcal{C}(\mathfrak{g}) / G=\mathcal{V}\left(\mathbf{p}^{G}\right)=\mathcal{V}\left(\mathbf{a}^{G}\right)$. Moreover, $\mathbf{a} \subseteq \operatorname{gr} \mathcal{J}$ implies $\mathbf{a}^{G} \subset(\operatorname{gr} \mathcal{J})^{G}=\operatorname{gr} \mathcal{J}$. Therefore,

$$
\mathcal{V}(\mathbf{q}) \subseteq \mathcal{V}(\operatorname{gr} \mathcal{J}) \subseteq \mathcal{V}\left(\mathbf{a}^{G}\right)=\mathcal{C}(\mathfrak{g}) / G
$$

By Corollary 5.8 and Theorem 6.7, $\operatorname{dim} \mathcal{C}(\mathfrak{g}) / G=\operatorname{dim} \mathcal{V}(\mathbf{q})=2 \ell$. Hence,

$$
\mathcal{V}(\mathbf{q})=\mathcal{V}(\operatorname{gr} \mathcal{J})=\mathcal{C}(\mathfrak{g}) / G=\mathcal{V}\left(\mathbf{p}^{G}\right)
$$

This proves the claims.
(2) We have seen (cf. the proof of Corollary 5.8) that $\mathbf{q}_{d_{\ell}}=\operatorname{gr} \mathcal{J}_{d_{\ell}}$. Thus, the first assertion follows from (1). By Lemma 6.3, $\mathbf{a}_{d_{\ell}}^{G}=\mathbf{p}_{d_{\ell}}^{G}$ (recall that d_{ℓ} is invariant) and therefore, $\mathbf{a}_{d_{\ell}}^{G}=\operatorname{gr} \mathcal{J}_{d_{\ell}}$. Since $\mathbf{a}^{G} \subseteq(\operatorname{gr} \mathcal{D}(\mathfrak{g}) \tau(\mathfrak{g}))^{G} \subseteq \operatorname{gr} \mathcal{J}$, we obtain the equality $(\operatorname{gr} \mathcal{D}(\mathfrak{g}) \tau(\mathfrak{g}))_{d_{\ell}}^{G}=\operatorname{gr} \mathcal{J}_{d_{\ell}}$. Hence $(\mathcal{D}(\mathfrak{g}) \tau(\mathfrak{g}))_{d_{\ell}}^{G}=\mathcal{J}_{d_{\ell}}$.
Corollary 7.2. The following are equivalent:
(a) δ is graded-surjective;
(b) $\mathcal{C}(\mathfrak{g}) / G$ is a normal variety;
(c) the Chevalley restriction map $\mu:(\mathfrak{h} \times \mathfrak{h}) / W \rightarrow \mathcal{C}(\mathfrak{g}) / G$ is an isomorphism, i.e. $\mathcal{O}(\mathcal{C}(\mathfrak{g}))^{G} \longrightarrow \mathcal{O}(\mathfrak{h} \times \mathfrak{h})^{W}$.

Proof. By Proposition 7.1 and the preliminary remark, the comorphism of $\operatorname{gr}(\delta): \mathcal{O}(\mathfrak{g} \times$ $\mathfrak{g})^{G} / \operatorname{gr} \mathcal{J} \rightarrow \mathcal{O}(\mathfrak{h} \times \mathfrak{h})^{W}$ is the map, $(\mathfrak{h} \times \mathfrak{h}) / W \rightarrow \mathcal{V}(\operatorname{gr} \mathcal{J})=\mathcal{C}(\mathfrak{g}) / G$, induced by restriction of functions.
(b) $\Leftrightarrow(\mathrm{c})$ is consequence of Theorem 6.7.
(a) \Rightarrow (c) If δ is graded-surjective, then $\operatorname{gr} \mathcal{J}=\mathbf{q}=\mathbf{p}^{G}$ by Corollary 5.9. Hence, $\operatorname{gr}(\delta): \mathcal{O}(\mathfrak{g} \times \mathfrak{g})^{G} / \mathbf{p}^{G} \xrightarrow{\sim} \mathcal{O}(\mathfrak{h} \times \mathfrak{h})^{W}$ and (c) follows.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$ If the Chevalley restriction map is an isomorphism, we deduce that $\operatorname{gr}(\delta)$ gives an isomorphism $\mathcal{O}(\mathfrak{g} \times \mathfrak{g})^{G} / \mathbf{p}^{G} \xrightarrow{\sim} \mathcal{O}(\mathfrak{h} \times \mathfrak{h})^{W}$. In particular, $\operatorname{gr}(\delta)$ is surjective. Hence the result.

The (equivalent) conditions of Corollary 7.2 hold when $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})$. As explained in [1], this follows from the fact that, in this case, $\mathcal{O}(\mathfrak{h} \times \mathfrak{h})^{W}$ is well understood. Recall that when $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})$, one can choose $\mathfrak{h}=\left\{\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathrm{M}_{n}(\mathbb{C})\right\}$ as a Cartan subalgebra. Then, the Weyl group $W=W(\mathfrak{g}, \mathfrak{h})$ identifies with the symmetric group \mathfrak{S}_{n} acting on \mathfrak{h} by permutation of the entries:

$$
w \cdot \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\operatorname{diag}\left(\lambda_{w^{-1}(1)}, \ldots, \lambda_{w^{-1}(n)}\right)
$$

Set $\mathcal{O}(\mathfrak{h} \times \mathfrak{h})=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \otimes_{\mathbb{C}} \mathbb{C}\left[Y_{1}, \ldots, Y_{n}\right]$. Thus W acts on $\mathcal{O}(\mathfrak{h} \times \mathfrak{h})$ by $w . X_{j}=X_{w(j)}$, $w . Y_{j}=Y_{w(j)}$.

For every $r, s \in \mathbb{N}$, define the "polarized power sums" $p_{r, s} \in \mathcal{O}(\mathfrak{h} \times \mathfrak{h})$ by

$$
p_{r, s}=\sum_{i=1}^{n} X_{i}^{r} Y_{i}^{s}
$$

Clearly, $p_{r, s}$ is W-invariant. One has the following result, due to H. Weyl:
Theorem 7.3. [18] $\mathcal{O}(\mathfrak{h} \times \mathfrak{h})^{W}$ is generated by the polynomials $p_{r, s}$.
Corollary 7.4. Assume that $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})$. Then, the Chevalley restriction map $\mu:(\mathfrak{h} \times$ $\mathfrak{h}) / W \rightarrow \mathcal{C}(\mathfrak{g}) / G$ is an isomorphism.
Proof. We have already noticed in $\S 6$ that $\mu^{\sharp}: \mathcal{O}(\mathcal{C}(\mathfrak{g}))^{G} \rightarrow \mathcal{O}(\mathfrak{h} \times \mathfrak{h})^{W}$ is injective. It remains to show that $\mu^{\#}$ is surjective. By Theorem 7.3, this is equivalent to showing that $p_{r, s} \in \operatorname{Im} \mu^{\sharp}$. Consider the polynomial function $u_{r, s}$ on $\mathfrak{g} \times \mathfrak{g}$ defined by

$$
u_{r, s}(x, y)=\operatorname{tr}\left(x^{r} y^{s}\right)
$$

Then, $u_{r, s}$ is G-invariant and induces a function $u_{r, s} \in \mathcal{O}(\mathcal{C}(\mathfrak{g}))^{G}$. Obviously, $u_{r, s \mid \mathfrak{h} \times \mathfrak{h}}=p_{r, s}$; hence the result.

Remark. When \mathfrak{g} is of type B_{n} or G_{2}, then Theorem 7.3 has an analog and the same proof yields Corollary 7.4. For \mathfrak{g} of type D_{n} and F_{4}, Theorem 7.3 fails, but Wallach [17] has shown that Corollary 7.4 is true. Therefore, it remains to investigate the types $\mathrm{E}_{6}, \mathrm{E}_{7}$ and E_{8}.

References

[1] M. D. Haiman, Conjectures on the Quotient Ring by Diagonal Invariants, Journal of Algebraic Combinatorics, 3 (1994), 17-76.
[2] J. E. Humphreys, Linear Algebraic Groups, Springer Verlag, New York/Heidelberg/Berlin, 1975.
[3] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.
[4] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math., 85 (1963), 327- 404.
[5] H. Kraft, Geometrische Methoden in der Invariantentheorie, Vieweg, Braunschweig/Wiesbaden, 1984.
[6] G. R. Krause and T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Pitman, Boston, 1985.
[7] T. Levasseur and J. T. Stafford, Invariant differential operators and an homomorphism of HarishChandra, J. Amer. Math. Soc., 8 (1995), 365-372.
[8] T. Levasseur and J. T. Stafford, The kernel of an homomorphism of Harish-Chandra, Ann. Sci. Ecole Norm. Sup., (1995), to appear.
[9] D. Luna, Adhérences d'orbites et invariants, Invent. Math., 29 (1975), 231-238.
[10] S. Montgomery, Fixed Rings of Finite Automorphism Groups of Associative Rings, Lecture Notes in Mathematics 818, Springer-Verlag, Berlin/New York, 1980.
[11] V. L. Popov and E. B. Vinberg, Invariant Theory, in Alebraic Geometry IV, A. N. Parshin and I. R. Shafarevich (Eds), Springer-Verlag, Berlin/Heidelberg/New York, 1991.
[12] R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math., 38 (1979), 311-322.
[13] R. W. Richardson, Simultaneous Conjugacy of n-tuples in Lie Algebras and Algebraic Groups, Canadian Math. Soc., Conference Proceedings, 6 (1986), 377-387.
[14] G. W. Schwarz, On a homomorphism of Harish-Chandra, preprint (1995).
[15] T. A. Springer, Linear Algebraic Groups, Birkhäuser, Boston, 1981.
[16] R. Steinberg, Torsion in reductive groups, Adv. in Math., 15 (1975), 63-92.
[17] N. Wallach, Invariant differential operators on a reductive Lie algebra and Weyl group representations, J. Amer. Math. Soc., 6 (1993), 779-816.
[18] H. Weyl, The Classical Groups, Their Invariants and Representations, Princeton University Press, Princeton, 1949.

[^0]: ${ }^{1} G$ acts rationally on X.

[^1]: ${ }^{2}$ We shall not use this result.

[^2]: ${ }^{3}$ Observe that $\left[z^{2}, \partial_{z}^{2}\right]=4 z \partial_{z}+2$, and thus $\mathcal{D}(V)^{W}=\mathbb{C}\left[z^{2}, \partial_{z}^{2}\right]$.
 ${ }^{4}$ An element x is called generic if it is semisimple and $\operatorname{dim} \mathfrak{g}^{x}=\ell$.

[^3]: ${ }^{5}$ We leave the details to the reader.

[^4]: ${ }^{6}$ Note that we may, if necessary, assume that \mathfrak{g} is simple and that $G \subset \mathrm{GL}(\mathfrak{g})$ is the adjoint group.

[^5]: ${ }^{7}$ The elements of \mathfrak{h} are identified with \mathbb{C}-linear derivations with constant coefficients on $\mathrm{S}\left(\mathfrak{h}^{*}\right)$, hence $\partial_{i}=\frac{\partial}{\partial x_{i}}$.

[^6]: ${ }^{8}$ In the rest of this section we do not assume that the surjectivity of δ has been proved.
 ${ }^{9}$ Recall that $\operatorname{dim} \mathfrak{g}=n, \ell=\operatorname{rk} \mathfrak{g}=\operatorname{dim} \mathfrak{h}, \mathfrak{g}=\mathfrak{s} \oplus \mathfrak{z}, \mathfrak{h}=\mathfrak{z} \oplus \mathfrak{t}$ and $k=\operatorname{dim} \mathfrak{t}$ (hence $\operatorname{dim} \mathfrak{z}=\ell-k$). The heights of the ideals in (3) are computed in $\mathcal{O}(\mathfrak{g} \times \mathfrak{g})^{G}$.

[^7]: ${ }^{10}$ Since S is semisimple, $\operatorname{dim}(\mathfrak{s} \times \mathfrak{s}) / S=2 \operatorname{dim} \mathfrak{s}-\max \{\operatorname{dim} S .(x, y) ; x, y \in \mathfrak{s}\}$.

[^8]: ${ }^{11}$ Actually, $\mathfrak{J}=\mathcal{D}(\mathfrak{g}) \tau(\mathfrak{g})$ has been proved [8]. The equality $\mathbf{a}=\mathbf{p}$ would imply a stronger result: $\operatorname{gr} \mathfrak{J}=\operatorname{gr} \mathcal{D}(\mathfrak{g}) \tau(\mathfrak{g})$.

[^9]: ${ }^{12}$ Apply this proposition to $M=\mathfrak{g} \times \mathfrak{g}$.

