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Abstract. Let g be a reductive, complex Lie algebra, with adjoint group G,

let G act on the ring of differential operators D(g) via the adjoint action and

write τ : g → D(g) for the differential of this action. We prove that the
commutant, in D(g), of O(g)G is the algebra generated by O(g) and τ(g),

thereby answering a question of Barlet.

1. Introduction

Fix a reductive, complex Lie algebra g, with adjoint group G, let G act on the
ring of differential operators D(g) via the adjoint action and write τ : g→ D(g) for
the differential of this action. We identify O(g), the ring of regular functions on g,
with S(g∗) and let O(g)G denote the subalgebra of G-invariant functions. The aim
of this note is to prove:

Theorem 1.1. The commutant C = CD(g)(O(g)G), in D(g), of O(g)G is the algebra
generated by O(g) and τ(g).

At the level of vector fields, this result follows from [5, Theorem 2.1], in the
sense that Dixmier’s result implies that C∩DerO(g) = O(g)τ(g). In [2], D. Barlet
raised the question of whether Theorem 1.1 is true, since this would form a natural
generalization of Dixmier’s result. In the same paper, Barlet was able to prove the
theorem in the case when g = gl(n,C). We would like to thank M. Räıs for bringing
Barlet’s question to our attention.

In the process of proving Theorem 1.1, we obtain a considerable amount of
information about the structure of C. Some particular properties are given in the
next result. The unexplained definitions can be found in Section 3.

Proposition 1.2. C is an Auslander-Gorenstein, CM domain and a maximal order
in its quotient division ring.

In fact, the main theorem of this paper is a result about commutative rings. To
state this, let A denote the subalgebra of D(g) generated by O(g) and τ(g) and
set E = O(g)τ(g) ⊂ DerO(g). If one filters D(g) and its subalgebras by degree of
differential operators, then it is easy to see that the associated graded rings grA and
grC are domains with the same quotient field as the symmetric algebra SymO(g)(E).
Then, Theorem 1.1 and Proposition 1.2 follow easily from the following result.
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Theorem 1.3. (i) Let E = O(g)τ(g) ⊂ DerO(g). Then SymO(g)(E) is a factorial,
complete intersection of Krull dimension 2 dim g− rk g.

(ii) grA = grC = SymO(g)(E).

This research was conducted while the second author was visiting and partially
supported by the University of Poitiers. He would like to thank that institution for
its hospitality and financial support.

2. The symmetric algebra of the module generated by τ(g)

In this section we prove Theorem 1.3 from the introduction. We begin with some
preliminary notation and results.

As before, we fix a complex, reductive Lie algebra g of dimension n and rank `.
WriteG for the adjoint group of g. Define the categorical quotient of g byO(g//G) =
SpecO(g)G and let u : g → g//G denote the quotient morphism. We will write O
for O(g). Define

Xi = {y ∈ g : rk dyu ≤ i},
where dyu : Tyg→ Tu(y)g//G denotes the differential of u. Observe that each Xi is
a closed G-subvariety of g. Recall that y ∈ g is called regular if its centralizer in g
is of dimension `. Then [10, Theorem 10.1], rk dyu = ` if and only if y is regular.

We would like to thank D. Panyushev for the proof of the following proposition,
which is considerably easier than our original proof.

Proposition 2.1. One has: codimXi ≥ `− i+ 2, for 0 ≤ i ≤ `− 1.

Proof. Notice that u induces a surjective morphism $ : Xi → Xi//G and that, for all
x ∈ Xi, the differential dx$ is the restriction of dxu to TxXi. Set r = max{rk dx$ :
x ∈ Xi}. Then, by [7, Proposition III.10.6] and the definition of Xi, we obtain that
dimXi//G ≤ r ≤ i.

Since Xi is stable under the C∗-action y 7→ λy, λ ∈ C∗, the point 0 belongs to
each irreducible component of Xi. Hence, dimXi ≤ dimXi//G + dim$−1($(0))
(see [11, AI.3.3] or [7, Ex. II.3.22]). But $−1($(0)) = Xi ∩N, where N denotes
the nilpotent cone of g, and, since i ≤ `− 1, Xi ∩N is contained in the subvariety
of non-regular nilpotent elements. Therefore dim$−1($(0)) ≤ n − ` − 2 and it
follows that dimXi ≤ i+ n− `− 2, as required. �

Remark . Proposition 2.1 generalizes the well-known fact that X`−1 has codimen-
sion at least three (see, for example, [18, Theorem 4.12]). It is natural to conjecture
that Proposition 2.1 can be improved to the statement that codimXi ≥ 3(`− i) for
0 ≤ i ≤ ` − 1. D. Panyushev informs us that he has been able to prove this by a
case by case analysis.

Fix a G-invariant, non-degenerate, symmetric bilinear form κ on g and let κ̃ :
g∗ → g be the induced isomorphism. Thus, κ̃ induces an isomorphism between
differential one-forms on g and vector fields on g. If f ∈ OG, then we define a G-
invariant vector field grad(f) ∈ O⊗C g to be the image of df under κ̃. Equivalently,
if we fix an orthonormal basis {ei} of g and write xi = e∗i ∈ g∗, then

(2.1) grad(f) =
∑n
j=1

∂f
∂xj
⊗ ej =

∑n
j=1

∂f
∂xj

∂
∂xj

.

By Chevalley’s Theorem, OG is a polynomial ring, say OG = C[u1, . . . , u`] for
homogeneous, algebraically independent polynomials {ui}i. Set ∇i = grad(ui), for
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1 ≤ i ≤ `. If τ : g→ DerO is the differential of the adjoint action of G on g, then
write E = Oτ(g). We will also write τ for the induced map:

τ : O ⊗C g −→ E ⊆ DerO.

Notice that if θ ∈ O ⊗C g, the vector field τ(θ) is given by τ(θ)y = [y, θy] for all
y ∈ g. It follows easily that if θ is G-invariant, then τ(θ) = 0. In particular, one
has τ(∇i) = 0 for all i. In fact rather more is true:

Lemma 2.2. There is a short exact sequence

(2.2) 0 −→
⊕`

i=1O∇i −→ O ⊗C g
τ−→ E −→ 0.

Proof. This is [16, Theorem 2.5.4]. Using the identification of g with g∗ under κ̃,
it also follows from [14, Theorem 1.9]. �

Corollary 2.3. If SymO(E) denotes the symmetric algebra of the O-module E,
then, SymO(E) ∼= SymO(O ⊗C g)

/
(∇1, . . . ,∇`).

Proof. This follows from the universal property of symmetric algebras. �

Set Sym(E) = SymO(E). The main aim of this section is to understand the
structure of Sym(E), for which we use the results from [1] and [8].

Let It(u) be the ideal generated by the t× t minors of the matrix u =
[
∂ui

∂xj

]
and

consider the following condition for s ≥ 0:

(Fs) ht It(u) ≥ `− t+ 1 + s, for 1 ≤ t ≤ `.

Observe that, if we regard the short exact sequence (2.2) as a sequence

0 −→ O` β−→ On −→ E −→ 0,

then (2.1) implies that It(u) is the ideal generated by the t× t minors of the map β.
Thus, the ideals In−t(u) are nothing more than the Fitting ideals of E (see, for
example, [17, 1.1]). In particular, they are independent of the presentation of E
and our condition (Fs) coincides with that of [8].

Proposition 2.4. (i) The condition (F2) is satisfied by E.
(ii) Sym(E) is a factorial domain of Krull dimension 2n − `. In particular,

Sym(E) is a complete intersection and is Gorenstein.
(iii) If P is a prime ideal of O with htP ≥ 2, then htP Sym(E) ≥ 2.

Proof. Write X̃i−1 for the zero set of Ii(u); thus

X̃i−1 =
{
x ∈ g : rk

(
∇1(x), . . . ,∇`(x)

)
≤ i− 1

}
.

Since the ∇j are the images of the duj under the isomorphism κ̃, clearly X̃i−1 ={
x ∈ g : rk

(
dxu1, . . . , dxu`

)
≤ i− 1

}
. Since u1, . . . , u` define the quotient map u :

g→ g//G, this implies that X̃i = Xi. Hence, part (i) is a reformulation of Proposi-
tion 2.1.

By Lemma 2.2, E has projective dimension at most 1. Thus, part (ii) follows
from part (i), combined with [1, Propositions 3 and 6]. By [8, Remarks, pp. 664-5],
the condition of part (iii) is equivalent to the condition (F2). �
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We end this section by giving the geometric significance of Proposition 2.4. This
should be compared with [9, § 2] which proves weaker results for much more general
G-varieties.

The map τ induces a homomorphism of algebras

τ̃ : O(g× g∗) = SymO(O ⊗ g) −→ O(T ∗g) = SymO(DerO).

Clearly, the image of τ̃ is the subring O[τ(g)] of SymO(DerO) generated by O and
τ(g). After identification of g∗ with g through κ̃, the associated morphism to τ̃ is:

ν : T ∗g ∼= g× g −→ g× g, ν(x, y) = (x, [y, x])

Let T̃g denote the closure of the image of ν; thus, T̃g is an irreducible affine
subvariety of g× g with coordinate ring O(T̃g) ∼= O[τ(g)].

Corollary 2.5. (i) Sym(E) = O(T̃g).

(ii) The variety T̃g is a factorial complete intersection in g× g.

Proof. By universality, τ̃ induces a surjective morphism π : Sym(E) � O[τ(g)]. If

we prove that dim T̃g ≥ 2n−`, then the corollary will follow from Proposition 2.4(ii).

Let ρ : T̃g � g denote the projection onto the first factor. By [11, AI.3.3] there

exists a dense open subset U ⊆ T̃g such that dim T̃g = dim g + dim ρ−1(ρ(u)) for

all u ∈ U . Since T̃g is irreducible, we can pick u = (x, y) ∈ ρ−1(g′) ∩ U , where g′

denotes the set of generic elements in g. Now,

ρ−1(ρ(u)) ⊇ ρ−1(ρ(u)) ∩ Im ν = {(x, [g, x])}.

Since x is generic, dim ρ−1(ρ(u)) ≥ dim[g, x] = n− ` and the result follows. �

3. The commutant of O(g)G

As usual, we identify D(g), as a vector space, with O ⊗C S(g), where O = O(g)
and the symmetric algebra S(g) is identified with the constant coefficient differential
operators on g. We will always filter D(g) by degree of differential operators and
so, as algebras, grD(g) = SymO(DerO) ∼= O ⊗C S(g). Write A for the subring of
D(g) generated by O and τ(g) and let C denote the commutant of OG, as in the
introduction. Obviously, A is contained in C.

Lemma 3.1. Let x ∈ g be a regular point and set R = Og,x for the local ring of g
at x. Then, there exists a basis of derivations {∂i : 1 ≤ i ≤ n} of DerR such that
∂i(uj) = δij for all 1 ≤ i, j ≤ ` and Rτ(g) =

⊕n
i=`+1R∂i.

Proof. Let m denote the maximal ideal of R. By [10, Theorem 0.1], the {dxui : 1 ≤
i ≤ `} are linearly independent. The {dxui} may also be regarded as elements of
m/m2, under the usual identification of T ∗xg with m/m2. Thus, for some scalars
λi, the set {u1 − λ1, . . . , u` − λ`} is part of a system of parameters, say {z1 =
u1 − λ1, . . . , z` = u` − λ`, z`+1, . . . , zn} for m. Let ∂i ∈ DerR be defined by
∂i(zj) = δij .

If D ∈ DerR, then D̃ = D −
∑`
i=1D(ui)∂i satisfies D̃(uj) = 0, for 1 ≤ j ≤ `.

Thus, D̃(OG) = 0 and so, by [5, Theorem 2.1] (or directly), D̃ ∈ Rτ(g). Hence,
DerR = Rτ(g)⊕

(
⊕`
i=1R∂i

)
. Since

Rτ(g) ⊆
{
D ∈ DerR : D(uj) = 0 for 1 ≤ j ≤ `

}
=
⊕n

i=`+1R∂i,

the result follows. �
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Theorem 3.2. Let A and C be given the filtrations induced from that on D(g).
Then grA = grC ∼= Sym(E).

Proof. Since grC ⊂ grD(g) ∼= O(T ∗g), certainly grA ⊆ grC are domains. Also,
as τ(g) consists of derivations, we may regard τ(g) ⊆ DerO ⊆ grD(g). Hence
the ring O[τ(g)] is contained in grA and, by Corollary 2.5(i), the natural map
π : Sym(E)→ O[τ(g)] is an isomorphism.

Let x ∈ g be a regular point and let S = {f ∈ O : f(x) 6= 0}. Given a ring C
containing O, we write Cx for the localization CS (given that it exists). Then, we
claim that

(3.1) (grA)x = (grC)x ∼= Sym(E)x,

where the isomorphism is induced by π−1.
By mimicking the proof of Richardson’s Lemma [11, II.3.4], one can show that

this suffices to prove the theorem. In more detail, assume that (3.1) is true. Since
grC and Sym(E) are domains, (3.1) certainly implies that

Sym(E)
π
↪→ grA ⊆ grC

and that grC and Sym(E) have the same field of fractions. Moreover, {x ∈ g :
(grC)x 6= Sym(E)x} is contained in the set of non-regular elements of g. By [10,
Theorem 0.1], this is precisely the subspace X`−1 and, by Proposition 2.1 or [18,
Theorem 4.12], codimX`−1 ≥ 3. Thus, for any b ∈ grC, there exists an ideal
I of O of height at least 3 such that bI ⊆ Sym(E). By Proposition 2.4(iii),
htSym(E) I Sym(E) ≥ 2. Hence, b ∈ Sym(E)p for every height one prime p of
Sym(E). Since Sym(E) is Cohen-Macaulay, it satisfies the (S2)-condition [12,
p. 125], and therefore b ∈ Sym(E).

Thus, it remains to prove (3.1). Let R = Ox = Og,x and keep the notation of
Lemma 3.1. It is immediate from that lemma that D ∈ D(g)x satisfies [D,uj ] = 0
if and only if D ∈ R〈∂j : j 6= i〉. Consequently, Cx = Ax = R〈∂`+1, . . . , ∂n〉.

Let ∂k denote the image of ∂k in grD(g). Obviously, Lemma 3.1 also implies
that Rτ(g) =

⊕n
k=`+1R∂k, where Rτ(g) is now regarded as a subspace of DerR ⊂

grD(g)x
∼= R⊗C S(g). Thus,

grCx = grAx = grR〈∂`+1, . . . , ∂n〉 = R[∂`+1, . . . , ∂n] = R[τ(g)].

Since π : Sym(E)x → R[τ(g)] is an isomorphism, this completes the proof of (3.1)
and hence of the theorem. �

The Gelfand-Kirillov dimension of a module M will be denoted GKdimM . If
a Noetherian ring A has finite injective dimension, then A is called Auslander-
Gorenstein if A satisfies the following condition: For any integers 0 ≤ i < j and
finitely generated (right) A-module M , one has ExtiA(N, A) = 0 for all (left) A-

submodules N of ExtjA(M, A). Set j(M) = min{j : ExtjA(M, A) 6= 0}. The algebra
A is CM if j(M) + GKdimM = GKdimA holds for all finitely generated, non-zero
A-modules M .

Corollary 3.3. (i) The commutant C of OG in D(g) is the ring generated by O
and τ(g). Moreover, C is an Auslander-Gorenstein, CM, Noetherian domain and a
maximal order.

(ii) As a (left or right) O-module, C ∩ D(g)m is generated by the elements{
τ(ξ1)τ(ξ2) · · · τ(ξk) : ξi ∈ g and k ≤ m

}
.
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(iii) The centre of C is O(g)G.

Proof. (i) By Theorem 3.2, C is generated by O and τ(g). By that theorem and
Proposition 2.4, grC satisfies the other conditions given in part (i). Let M =⋃
n∈NMn be a filtered right C-module such that grM is a finitely generated grC-

module. By [3, Theorem 3.9], C is Auslander-Gorenstein and jC(M) = jgrC(grM).
However, [13, Corollary 1.4] implies that GKdim grM = GKdimM and hence that
C is CM. Finally, [15] implies that C is a maximal order.

(ii) This follows from the fact that, in grC = Sym(E), a homogeneous element
c of degree m can be written c =

∑
fi1,...,imξi1 · · · ξim , for some fi1,...,im ∈ O and

ξij ∈ τ(g).

(iii) Let Z denote the centre of C. Clearly both τ(g) and O commute with OG
and so OG ⊆ Z. Conversely, Z is contained in the commutant, in D(g), of O.
Hence, Z ⊆ O. Since OG is the commutant, in O, of τ(g), the result follows. �

Corollary 3.4. Both C and Sym(E) are free (left or right) modules over O(g)G.

Proof. Set O = O(g) and S = Sym(E) =
⊕∞

m=0 Symm(E). We first prove the
result for C, assuming that Symm(E) is a free OG-module for all m ∈ N. Note that
the isomorphism grC ∼= S of Theorem 3.2 is a graded isomorphism of O-algebras,
for the natural graded structure of the two objects. In other words Cm/Cm−1 ∼=
Symm(E), for all m, where Cm = C ∩ D(g)m. Hence, each Cm/Cm−1 is a free
OG-module; it follows routinely that C is also free over OG.

We now prove the result for Symm(E). Note, first, that S is a quotient of the
polynomial ring

T = SymO(O ⊗ g) ∼= O[y1, . . . , yn] ∼= C[x1, . . . , xn, y1 . . . , yn],

which we now grade by giving each generator xi and yj degree one. Since the
ui are homogeneous in O, the ∇i = grad(ui) are homogeneous in T and so, by
Corollary 2.3, Symm(E) is a graded OG-module.

Set P =
∑`
i=1 uiS. By [6, Proposition 2.16] and its proof (which depends upon

a case by case analysis), S/P is a domain of dimension 2n−2` = dimS− `. Hence,
the uj form a regular sequence in S, and therefore in each module Symm(E).
Thus, by [4, § 8, Proposition 8 and § 9, Corollaire 2], Symm(E) is a graded free
OG-module. �

Corollary 3.3 and Corollary 3.4 should be compared with [9] which (as a very

special case) shows that the commutant of D(g)
G

is simply C〈τ(g)〉 ( ∼= U(g) when

g is semisimple). Moreover, both rings are free modules over the centre of D(g)
G

(which is also the centre of C〈τ(g)〉).
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