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Abstract

The primitive ideals of the Hopf algebra Cq[SL(3)] are classified. In particular it is shown that the
orbits in PrimCq[SL(3)] under the action of the representation group H ∼= C∗×C∗ are parameterized
naturally by W ×W where W is the associated Weyl group. It is shown that there is a natural one-
to-one correspondence between primitive ideals of Cq[SL(3)] and symplectic leaves of the associated
Poisson algebraic group SL(3,C).

Introduction

The primitive spectrum of a noncommutative affine algebra is the natural generalization of the variety
associated to a commutative affine algebra. When the noncommutative algebra A is a deformation of a
commutative algebra B, one expects to find a close correspondence between the primitive ideals of A and
the symplectic leaves of the associated Poisson structure on the variety Max(B). For instance if g is a
solvable complex Lie algebra, then the primitive ideals of the enveloping algebra U(g) correspond to the
coadjoint orbits in g∗, which are the symplectic leaves for the Kostant-Kirillov Poisson structure on g∗.

A similar close correspondence seems likely to occur for quantum groups and related algebras. Let G
be a semi-simple complex Lie group and let Cq[G] be the associated quantum group as defined in [16].
There is a standard Poisson Lie group structure on G associated to Cq[G]. The primitive ideals of Cq[G]
are expected to correspond bijectively to the symplectic leaves of G. This correspondence may be verified
for SL(2) by direct calculation. In this paper we study the primitive ideals of Cq[SL(n)] and prove that
the primitive ideals of Cq[SL(3)] correspond exactly to the symplectic leaves of SL(3).

When q is real, q 6= 1, Cq[G] together with a natural involution * can be viewed as a deformation
of C[K], the algebra of functions on a maximal compact subgroup K of G. In a series of articles in
[18, 19, 20] Soibelman, and Vaksman showed that the unitary representations of Cq[K] correspond to the
symplectic leaves of K.

Fix a maximal torus H in G. Then G has a natural H-invariant Poisson structure [4]. A description
of the symplectic leaves of G may be deduced from the work of Semenov-Tian-Shansky and Lu and
Weinstein [11, 17]; an outline of this description is given in Appendix A. Let W be the Weyl group of
G. The symplectic leaves fall into H-orbits parameterized by W × W . Let D = G × G, identify G
with the diagonal subgroup of D and let Gr be the dual group. Denote by p the natural projection
G→ D/Gr. The symplectic leaves of G are precisely the connected components of the inverse images of
the left Gr-orbits in D/Gr. Set Γ = ker p and Ḡ = p(G). Then Γ is a finite subgroup of H and Ḡ = G/Γ
is an open subset of D/Gr. For each w ∈ W ×W , let Cw be the image of the corresponding Bruhat cell
of D in D/Gr. Denote by Cẇ a fixed Gr-orbit in Cw. Then Cẇ ∼= Cl × (C∗)s and Cw is the union of the
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H-translates of Cẇ. Each symplectic leaf of G is then a finite cover of hCẇ ∩ Ḡ for some w ∈W ×W and
some h ∈ H.

In section two we prove some preliminary results about the primitive spectrum of Cq[SL(n)]. The
group H occurs again in the quantum case as the character group and Prim Cq[SL(n)] therefore decom-
poses into the union of the H-orbits. Following ideas of Soibelman [18, 19], we define for each w ∈W ×W
a locally closed H-invariant subset Primw of Prim Cq[SL(n)]. It may be shown that Primw is nonempty
for all w and that Prim Cq[SL(n)] =

⊔
w Primw. We conjecture that each Primw is a single H-orbit

and that the elements of Primw are in bijection with the leaves of type w. This conjecture is proved in
sections three and four for Cq[SL(3)]. The truth of the conjecture for Cq[SL(2)] was proved earlier by
S.P Smith and the first author. This result is outlined in Appendix B.

In order to describe the symplectic leaves of G one passes first to Ḡ. Similarly, in order to describe the
primitive ideals of Cq[G], we first study the invariant subalgebra Cq[Ḡ] = Cq[G]

Γ
. The quantum analog

of Cw ∩ Ḡ is a certain localization of a homomorphic image of Cq[G] denoted by Bw. The key result
in section three is the decomposition of Bw as the tensor product Bẇ ⊗C[Hw] where Bẇ is a quantum
analog of Cẇ ∩ Ḡ and C[Hw] is the algebra of functions on the torus Hw = H/Stab HCẇ.

Acknowledgements. The authors would like to thank S.P. Smith for many interesting conversations
concerning these questions. The first author would also like to thank H.J. Koelink for bringing his work to
his attention. Much of this work was done while the first author was visiting the Université de Bretagne
Occidentale.

1 Preliminaries

1.1 In this section we introduce the basic definitions and notation that we shall be using. We denote
by g the Lie algebra sl(n,C) and by G the Lie group SL(n,C). We follow the standard notation in
Bourbaki for the roots, weights, Weyl group etc. associated to g. Other notation is listed at the end of
the paper.

1.2 Let q ∈ C∗. We shall assume throughout this paper that q is not a root of unity. We denote by Q
the set {qn | n ∈ Z}. Let [aij ] be the Cartan matrix associated to g. Recall that the quantum universal
enveloping algebra associated to g is defined to be the algebra Uq(g) generated by K±1

i , X±i , 1 ≤ i ≤ n−1
with relations

K−1
i Ki = KiK

−1
i = 1, KiX

±
j = q±aijX±j Ki

[X+
i , X

−
j ] = δij

K2
i −K

−2
i

q2 − q−2
, KiKj = KjKi

1−aij∑
k=0

(−1)k
[

1− aij
k

]
(X±i )kX±j (X±i )1−aij−k = 0, if i 6= j

where

[
m
k

]
=

k∏
j=1

q2(m−j+1) − q−2(m−j+1)

q2j − q−2j

(see, for example, [12]). The algebra Uq(g) is a Hopf algebra. The comultiplication ∆ is defined by

∆(X±i ) = X±i ⊗K
−1
i +Ki ⊗X±i , ∆(Ki) = Ki ⊗Ki

and the counit and antipode by

ε(X±i ) = 0, ε(Ki) = 1, S(Ki) = K−1
i , S(X±i ) = −q∓2X±i .

There is also a C-linear antiautomorphism a 7→ a∗ given by (X±i )∗ = X∓i , (Ki)
∗ = Ki. It is easily verified

that ∆(a∗) = ∆(a)∗ (where (a⊗ b)∗ = a∗ ⊗ b∗) and S(S(a)∗) = a∗.
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1.3 Set Uo = C[K±1
i | 1 ≤ i ≤ n − 1]. Let M be a Uo-module. If χ is a character of Uo define the χ-

weight space of M by Mχ = {x ∈ M | ux = χ(u)x, ∀u ∈ Uo}. Set Ω(M) = {χ | Mχ 6= 0}. Let P be the
set of weights of g and let {α1, . . . , .αn−1} be a fixed set of positive roots. Each weight λ ∈ P induces a
character of Uo via λ(Ki) = q(λ,αi), 1 ≤ i ≤ n− 1. We denote by Mλ the associated weight space.

Define C to be the category of finite dimensional Uq(g) modules such that M =
⊕

µ∈P Mµ. Since C
is closed under finite direct sums, tensor products and passage to the dual module, we may define the
restricted dual of Uq(g) with respect to C. This is the associated quantum group Cq[G]. Thus

Cq[G] = {f ∈ Uq(g)
∗ | Kerf ⊇ AnnM for someM ∈ C}

The algebra Cq[G] then has a natural Hopf algebra structure induced in the usual way from that on
Uq(g). There is also an anti-automorphism on Cq[G] induced from that on Uq(g) by `∗(u) = `(S(u)∗)
for all ` ∈ Cq[G] and all u ∈ Uq(g).

Let π : Uq(g) −→ End(M) ∼= Mm(C), π(a) = [πij(a)], be an m-dimensional representation of Uq(g)
where M is an object of C. The elements πij ∈ Uq(g)

∗
are called the matrix elements or matrix coefficients

of the representation π. It is clear that these πij belong to Cq[G] and that the set of all such πij for all
possible M in C, spans Cq[G] as a vector space. Recall the following useful formulas:

∆πij =
∑
k

πik ⊗ πkj , πijπkl = (πij ⊗ πkl) ◦∆, S(πij) = πij ◦ S, ε(πij) = πij(1)

1.4 The category C is in some sense a deformation of the category of finite dimensional modules over
the Lie algebra g [12]. Denote by P+ the set of dominant weights of g. For each dominant weight Λ ∈ P+

there is a simple module L(Λ) in C and an element vΛ ∈ L(Λ) such that
1. L(Λ) = Uq(g)vΛ =

⊕
µ∈P,µ≤Λ L(Λ)µ;

2. L(Λ)Λ = CvΛ, X+
i vΛ = 0, 1 ≤ i ≤ n− 1; (vΛ is called the highest weight vector of L(Λ))

3. the set of weights Ω(Λ) = Ω(L(Λ)) and the multiplicities are the same as for the corresponding
simple g-module.

Any M ∈ C decomposes as M =
⊕

Λ∈P+
L(Λ)mΛ . The representation ring of C is generated by the

classes of the simple modules L($i) corresponding to the fundamental dominant weights $i, 1 ≤ i ≤ n−1.
Moreover each L(Λ) occurs as a subquotient of a suitable power of the standard representation L($1).
On the other hand the dual of L($1) is isomorphic to L($n−1) which is isomorphic to the (n − 1)-th
quantum exterior power of L($1). Hence if the matrix coefficients with respect to the natural basis
e1, . . . , en of L($1) are denoted by Xij then the matrix coefficients corresponding to L($n−1) are the
quantum minors defined by:

Dij =
∑

σ∈Sn−1

(−q2)`(σ)X1,σ(1) . . . Xi−1,σ(i−1)Xi+1,σ(i+1) . . . Xn,σ(n)

where Sn−1 denotes the symmetric group acting in the usual way as bijections from {1, . . . , i − 1, i +
1, . . . , n} to {1, . . . , j − 1, j + 1, . . . , n}. .

From these and related facts one deduces the following well-known description of the Hopf algebra
Cq[G].

Theorem 1.4.1 (a) The algebra Cq[G] is generated by the Xij, 1 ≤ i, j ≤ n, with relations:

Xi`Xj` = q2Xj`Xi`, ∀`,∀i < j, X`iX`j = q2X`jX`i, ∀`,∀i < j,

X`iXmj = XmjX`i, ∀` < m, ∀i > j,

X`iXmj −XmjX`i = (q2 − q−2)X`jXmi, ∀` < m, ∀i < j,
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Detq =
∑
σ∈Sn

(−q2)`(σ)Xσ(1),1 . . . Xσ(n),n = 1.

(b) The Hopf algebra structure is given by

∆(Xij) =
∑
k

Xik ⊗Xkj , S(Xij) = (−q2)i−jDji, ε(Xij) = δij .

(c)The involution * is given by (Xij)
∗ = (−q2)j−iDij.

(d) Furthermore δij =
∑
k(−q2)k−jXikDjk =

∑
k(−q2)i−kDkiXkj =

∑
k(−q2)j−kDjkXik =

∑
k(−q2)k−iXkjDki

The reader is referred to [16] and [14] for further details concerning this algebra.

1.5 The generators described in the above section are not well suited to the study of the primitive ideals.
A more natural set of generators is the following. This notation was first introduced by Soibelman in
[18].

Recall that L($k) ∼=
∧k

L($1) (the k-th quantum exterior power of L($1)) and that Ω($k) = W$k

where W denotes the Weyl group. Recall that W may be naturally identified with the symmetric group
Sn by letting the reflection with respect to the simple root αi correspond to the transposition (i, i+ 1).
Let i = {i1, . . . , ik} be a subset of {1, . . . , n − 1} such that i1 < . . . < ik. Define ei = ei1 ∧ . . . ∧ eik .
Then the weight spaces of L($k) are exactly the Cei. For any w ∈ W define ew$k

to be the element
ei of L($k) where i is the ordered multi-index associated to {w(1), . . . , w(k)}. It is easily verified that
ew$k

∈ L($k)w$k
. Define e∗−w$k

∈ L($k)∗ to be the dual basis element coresponding to ew$k
and

denote by 〈−,−〉 the natural pairing between a vector space and its dual.

Definition For each k = 1, . . . , n− 1 and each w ∈W we define elements c±k,w ∈ Cq[G] by: ∀u ∈ Uq(g),

c+k,w(u) = 〈e∗−w$k
, ue$k

〉, c−k,w(u) = 〈e∗−ww0$n−k
, uew0$n−k

〉.

Thus c+k,w (respectively c−k,w) is a matrix coefficient of L($k) (respectively L($n−k)). In particular

we have that c+1,(1,i) = Xi1, c+n−1,(i,n) = Din, c−1,(1,i) = Di1, c−n−1,(i,n) = Xin. The general element c±k,w
can be interpreted as a general quantum minor as defined in [14]. In the notation of that article,

c+j,w = ξ
w{1,...,j}
{1,...,j} , c−j,w = ξ

w{j+1,...,n}
{j+1,...,n}

where w{1, . . . , k} = {w(1), . . . , w(k)} etc.
One of the key properties of these matrix elements is that they generate Cq[G]. In fact a slightly

stronger statement is true. Let A+ be the subalgebra of Cq[G] generated by the elements of the form
c+i,w and let A− be the algebra generated by the elements of the form c−i,w.

Theorem 1.5.1 The linear map A−⊗A+ −→ Cq[G] given by a⊗b 7→ ab is an epimorphism of C-vector
spaces.

Proof. This result is Theorem 3.1 of [19]. It suffices to check that the definition of A± given there is in
fact the same as the one given above. 2

1.6 On occasion we will need a notation for a coordinate function coming from an arbitrary represen-
tation in C. Our notation again follows Soibelman [19].

Let Λ ∈ P+. Recall that L(Λ) =
⊕

λ∈Ω(Λ) L(Λ)λ, L(Λ)∗ ∼= L(−w0Λ) and L(Λ)∗−µ = [L(Λ)µ]∗ Each

module L(Λ) carries a non degenerate bilinear contravariant form (− | −)Λ such that (av | w)Λ = (v |
a∗w)Λ for all a ∈ Uq(g) and v, w ∈ L(Λ). Such a form is unique up to a scalar multiple [7]. Choose

an orthonormal basis {v(j)
µ | µ ∈ Ω(Λ), 1 ≤ j ≤ dimL(Λ)µ} of L(Λ) with respect to (− | −)Λ. Let

{`(i)−λ} be the dual basis in L(Λ)∗. Then each `
(i)
−λ identifies with (v

(i)
λ | −)Λ and `

(i)
−λ ∈ L(Λ)∗−λ. Hence

〈`(i)−λ, v
(j)
µ 〉 = (v

(i)
λ | v

(j)
µ )Λ = δλµδij . We define elements cΛ−λ,i,µ,j of Cq[G] by:

∀u ∈ Uq(g), cΛ−λ,i,µ,j(u) = 〈`(i)−λ, uv
(j)
µ 〉 = (v

(i)
λ | uv

(j)
µ )Λ.
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For convenience we use the following abreviations:

cΛ−λ,i,µ,j =


cΛ−λ,µ,j if dimL(Λ)λ = 1

cΛ−λ,i,µ if dimL(Λ)µ = 1

cΛ−λ,µ if dimL(Λ)λ = dimL(Λ)µ = 1

The first two parts of the following lemma are taken from [19]. The third part is a consequence of the
general formula in section 1.3.

Lemma 1.6.1 (a) S(cΛ−λ,i,µ,j) ∈ Cc−w0Λ
µ,j,−λ,i

(b) (cΛ−λ,i,µ,j)
∗ ∈ Cc−w0Λ

λ,i,−µ,j

(c) ∆(cΛ−λ,i,µ,j) =
∑
ν,k c

Λ
−λ,i,ν,k ⊗ cΛ−ν,k,µ,j

Notice that c+k,w ∈ Cc$k
−w$k,$k

and c−k,w ∈ Cc
$n−k

w$k,−$k
= C(c+k,w)∗.

1.7 Let R± denote the set of positive and negative roots respectively. Denote by b± = h ⊕ n± the
Borel subalgebras associated to R±. We denote by Uq(b

±) the Hopf subalgebras of Uq(g) generated by
{Ki, X

±
i | 1 ≤ i ≤ n− 1} respectively (we call them the Borel subalgebras).

As in [19] we define the following ideals of Cq[G] which play a fundamental role in what follows:

I+(w,Λ) = 〈cΛ−µ,i,Λ | 1 ≤ i ≤ dimL(Λ)µ, v
(i)
µ 6∈ Uq(b+)vwΛ〉

I−(w,Λ) = 〈c−w0Λ
µ,i,−Λ | 1 ≤ i ≤ dimL(−w0Λ)−µ, v

(i)
−µ 6∈ Uq(b−)v−wΛ〉

Notice that in the definition of I−(w,Λ) the v
(i)
−µ’s belong to L(−w0Λ)−µ. Notice also that the condition

v
(i)
µ 6∈ Uq(b+)vwΛ can be expressed in the form cΛ−µ,i,wΛ(u) = 0 for all u ∈ Uq(b+).

Define τ to be the involutive automorphism τ = ∗ ◦ S. For any Uq(g)-module M we denote by
Mτ the twisted module where the action of an element u ∈ Uq(g) on an element v ∈ M is given by

u · v = τ(u)v. Then it is easily verified that L(−w0Λ) ∼= L(Λ)τ . This isomorphism takes v
(i)
−µ ∈ L(−w0Λ)

onto v
(i)
µ ∈ L(Λ)µ. Since τ(Uq(b

+)) = Uq(b
−) we obtain that

v(i)
µ 6∈ Uq(b+)vwΛ ⇐⇒ v

(i)
−µ 6∈ Uq(b−)v−wΛ.

Therefore Lemma 1.6.1 shows that I+(w,Λ)∗ = I−(w,Λ).

1.8 We shall need some elementary facts about the Bruhat ordering on W . We take the reverse of the
usual Bruhat ordering introduced in [3]. Thus e ≤ w ≤ w0 for all w ∈ W . For each fundamental weight
$i we denote the stabiliser of $i in W by Wi = Stab($i). Denote by Ŵi a fixed transversal of Wi in W .

Definition Fix i ∈ {1, . . . , n− 1}. Let y, w ∈W . we say that y ≤i w if and only if y$i ≥ w$i.

It is clear that ≤i is right Wi-invariant and that the induced ordering on W/Wi is a partial ordering. In
order to keep the notation consistent, we shall sometimes use the notation =i for equivalence modulo Wi.
The proof of the following proposition is similar to standard arguments concerning the Bruhat ordering
(for instance [3, §7.7]).

Proposition 1.8.1 Let i ∈ {1, . . . , n− 1} and let y, w ∈W .
1. The following are equivalent: (a) y ≤i w; (b) vy$i

∈ Uq(b+)vw$i
; (c) vw$i

∈ Uq(b−)vy$i
.

2. y ≤i w ⇔ yw0 ≥n−i ww0.
3. y ≤ w ⇔ y ≤i w for all i.
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Example If we identify W as above with the symmetric group Sn, then the subgroup W1 = StabW ($1)
identifies with the group Sn−1 = Sym {2, . . . , n} and we may take Ŵ1 to be {e = (1, 1), (1, 2), . . . , (1, n)}.
The ordering ≤1 is then given by

W1 <1 (1, 2)W1 <1 · · · <1 (1, n)W1.

SimilarlyWn−1 = Sym {1, . . . , n−1} and we may take the transversal Ŵn−1 to be {(n, 1), (n, 2), . . . , (n, n) =
e}. The ordering ≤n−1 is then given by

Wn−1 <n−1 (n, n− 1)Wn−1 <n−1 · · · <n−1 (n, 1)Wn−1.

In the case we shall be most interested in (when n = 3) these are of course the only two cases.

2 The Algebras Aw, Bw and Cw.

2.1 In order to study Cq[G] in more detail we introduce algebras Aw, Bw and Cw defined for each
w ∈ W × W . The motivation for the definitions of these algebras comes from the structure of the
symplectic leaves in G. Recall the notation of Appendix A. There are natural maps G −→ Ḡ ↪→ D/Gr
and a symplectic leaf of G is a connected component of the inverse image of a left Gr-orbit of D/Gr. The
Bruhat cells Cw of D/Gr are disjoint unions of isomorphic leaves of “type w”. Just as in this geometric
case it is natural to study the symplectic leaves by type, so in the study of Cq[G] it is natural to classify
primitive ideals by type. The algebras Cw, Bw and Aw correspond to the cell Cw and its inverse image
in Ḡ and G respectively.

2.2 Setting Λ = $i in 1.7 we obtain the ideals I±(w,$i). From Lemma 1.6.2 and Proposition 1.8.1 it
follows that

I±(w,$i) = 〈c±i,y | y 6≤i w〉.

Henceforth, the principal objects of interest will be the ideals defined for each w = (w+, w−) ∈ W ×W
by:

Iw =

n−1∑
i=1

(I+(w+, $i) + I−(w−, $i)) = 〈cεi,y | 1 ≤ i ≤ n− 1, y 6≤i wε〉.

and the sets, defined also for each w = (w+, w−) ∈W ×W by

Ew =
{
c+i,w+

, c−i,w− | i = 1, ..., n− 1
}
.

We shall also occasionally use the following notation. For y ∈W we define I±(y) =
∑n−1
i=1 I

±(y,$i) and
E±(y) =

{
c±i,y | i = 1, ..., n

}
. For w = (w+, w−), we define I±w = I±(w±), and E±w = E±(w±).

Theorem 2.2.1 Let w ∈W . The image of cεi,w is normal in Cq[G]/Iε(w,$i). In fact we have that

cΛ−λ,i,µ,jc
ε
i,w = γcεi,wc

Λ
−λ,i,µ,j (mod Iε(w,$i)) for some γ ∈ Q.

Proof. Recall that Cq[G] = C
[
cΛ−λ,i,µ,j | Λ ∈ P+

]
and that c+i,w is a scalar multiple of c$i

−w$i,$i
. The

ideal J0(w$i, $i) defined in [19] is precisely the ideal I+(w,$i) defined above. The result for c+i,w then

follows from [19, Prop. 3.2]. Applying the involution ∗ yields the result for c−i,w. 2

Corollary 2.2.2 For any w = (w+, w−) ∈ W ×W , the elements of Ew (respectively Eεw) are normal in
Cq[G]/Iw (respectively Cq[G]/Iεw).
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Now let w = (w+, w−) ∈ W ×W . Denote by Ew the multiplicatively closed set generated by the
images of the elements of Ew in Cq[G]/Iw. Since Ew consists of normal elements we may localize with
respect to this set. Denote the localized algebra

Aw = (Cq[G]/Iw)Ew
.

It is not immediately clear that Aw 6= 0 since it could happen that Ew ∩ Iw 6= ∅. In the next few
subsections we shall prove the following result:

Theorem 2.2.3 For all w ∈W ×W , Aw 6= 0.

The idea of the proof is to construct a non-zero Aw-module by tensoring together certain “fundamen-
tal” Cq[G]-modules. This technique was used by Soibelman in [19, §5]; the idea is apparently due to
Drinfeld. It is a quantum analog of the proof that p−1(Cw) 6= ∅ given in Appendix A.

Definition. A non-zero Cq[G]-module is said to be of type w ∈ W × W if (i) IwM = 0 and (ii)
∀c ∈ Ew, M = cM (i.e., M is Ew-divisible).

It is a standard fact that a module of type w has a natural structure as an Aw-module. Thus the
theorem will be a consequence of the existence of a nontrivial module of type w for all w ∈W ×W .

2.3 For each i ∈ {1, ..., n− 1}, denote by Uq(sli(2)), the Hopf subalgebra generated by {X+
i , X

−
i ,K

±1
i };

denote by Uq(b
ε
i ) the subalgebra generated by {Xε

i ,K
±1
i }. Consider the following commutative diagram

of inclusions:

Uq(b
ε
i ) −→ Uq(sli(2))

↓ ↘ϕε,i ↓ ϕi

Uq(b
ε)

−→
ϕε Uq(g)

Since Uq(b
ε) is a Hopf subalgebra, the subspace Uq(b

ε)⊥ = {f ∈ Cq[G] | f(Uq(b
ε)) = 0} is an ideal

of C[G]. Define Cq[B
ε] = Cq[G]/Uq(b

ε)⊥ and define similarly Cq[B
ε
i ] and Cq[SLi(2)]. Then we have a

commutative diagram of surjections,

Cq[B
ε
i ] ←− Cq[SLi(2)]

↑ ↖ϕ∗ε,i ↑ ϕ∗i

Cq[B
ε]

←−
ϕ∗ε Cq[G]

It is easily verified that the canonical isomorphism, Uq(sli(2)) ∼= Uq(sl(2)) induces an isomorphism
Cq[SL(2)] ∼= Cq[SLi(2)] such that the kernel of Cq[SLi(2)]→ Cq[B

+
i ] is I(e,s) (and likewise Ker (Cq[SLi(2)]→

Cq[B
−
i ]) = I(s,e)). From the Theorem in Appendix B, we know that there exist Cq[SL(2)] modules

M+ and M− of type (s, e) and (e, s) respectively. Define M±i to be the modules M± considered as
Cq[G] modules via the map Cq[G] −→ Cq[SLi(2)]−̃→Cq[SL(2)]. Then in particular we have that
Ann M±i ⊇ kerϕ∗i,∓.

Proposition 2.3.1 The modules M+
i and M−i are of type (si, e) and (e, si) respectively.

Proof. We give the proof for M+
i . We first need to show that I(si,e) ⊂ Ann M+

i ; it is enough to

show that I+(si, $) + I−(e,$) ⊂ Ann M+
i for each fundamental weight $. Notice that I−(e,$) =

〈c−w0$
µ,−$ | v−µ 6∈ Uq(b

−)v−$〉 = 〈c−w0$
µ,−$ | ϕ∗−(c−w0$

µ,−$ ) = 0〉 ⊂ Ker ϕ∗− ⊂ Ann M+
i . On the other

hand, I+(si, $) = 〈c$−λ,$ | vλ 6∈ Uq(b
+)vsi$〉. Suppose that I+(si, $) 6⊂ Ker ϕ∗i . Then exists a λ
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such that vλ 6∈ Uq(b
+)vsi$ and vλ ∈ Uq(sli(2))v$. Since X+

i v$ = 0 and X+
i vsi$ ∈ Cv$, we obtain

vλ ∈ Uq(sli(2))v$ = Cv$ + Cvsi$ ⊆ Uq(b+)vsi$, a contradiction.
It remains to show that M+

i is E(si,e)-divisible. Recall that elements of E(si,e) are of the form

cj = c
$j

−si$j ,$j
or c′j = c

−w0$j

$j ,−$j
. We first compute ϕ∗i (cj) acting onM+ via the identification Cq[SLi(2)] =

Cq[SL(2)]. The Uq(sli(2)) module generated by v$j is either trivial (when ($j , αi) = 0) or is the fun-
damental representation with highest weight vector v$i

(when ($j , αi) = 1). It follows that ϕ∗i (cj) =(
cρ−sρ,ρ

)($j ,αi)
for whichM+

i is divisible by definition. A similar reasoning gives that ϕ∗i (c
′
j) =

(
cρ−sρ,sρ

)($j ,αi)

which again acts divisibly by definition on M+. 2

2.4 We now show that modules of type w = (w+, w−) can be constructed by forming the tensor product
of modules of the form M±i using the reduced decomposition of w+ and w− . The fundamental result is
the following.

Theorem 2.4.1 Let M be a Cq[G]-module of type (w+, w−). If siw+ > w+ (respectively siw− >
w−) then M+

i ⊗M (respectively M ⊗M−i ) is a Cq[G]-module of type (siw+, w−) (respectively of type
(w+, siw−)).

Proof. We prove the assertion in the case siw+ > w+.
(i) I−(w−, $) ⊆ Ann(M+

i ⊗M) for all fundamental representations $.
We denote c−w0$

λ,µ by cλ,µ. A standard generator for I−(w−, $) is then of the form cλ,−$ where v−λ 6∈
Uq(b

−)v−w−$. The action of cλ,−$ is given by the comultiplication ∆(cλ,−$) =
∑
µ∈Ω(−w0$) cλ,µ ⊗

c−µ,−$ Suppose that the action is nontrivial. Then there exists a µ such that both factors cλ,µ and
c−µ,−$ act non-trivially on M+

i and M respectively. Since M is of type (w+, w−) this implies that vµ ∈
Uq(b

−)v−w−$. Since Ann(M+
i ) ⊇ Ker(ϕ∗−), we must have that ϕ∗−(cλ,µ) 6= 0; thus v−λ ∈ Uq(b−)vµ ⊆

Uq(b
−)v−w−$, a contradiction.

(ii) I+(siw+, $) ⊆ Ann(M+
i ⊗M) for all fundamental weights $.

For these calculations we abbreviate c$λ,µ by cλ,µ. Then a standard generator of I+(siw+, $) is c−λ,$
where vλ 6∈ Uq(b

+)vsiw+$. The action on Mi ⊗M is given by: ∆(c−λ,$) =
∑
µ∈Ω($) c−λ,µ ⊗ c−µ,$.

Suppose that there exists a µ such that both c−λ,µ and c−µ,$ act non-trivially on M+
i and M respectively.

Then by definition and Proposition 1.8.1, vµ ∈ Uq(b+)vw+$ ⊆ Uq(b+)vsiw+$. On the other hand, since
Ann(M+

i ) ⊇ Ker(ϕ∗i ) we must have vλ ∈ Uq(sli(2))vµ. Since siw+ > w+, X−i vsiw+$ = 0. Since moreover

[X+
k , X

−
i ] = δik(q2 − q−2)−1(K2

i −K
−2
i ), it follows easily that

Uq(sli(2))Uq(b
+)vsiw+$ ⊆ Uq(b+)vsiw+$

which implies that vλ ∈ Uq(b+)vsiw+$, a contradiction.
(iii) M+

i ⊗M is E(siw+,w−)-divisible.
Let $ be a fundamental representation. We continue with the notation of part (ii). The action of

csiw+$,$ is given by:

∆(c−siw+$,$) =
∑

µ∈Ω($)

c−siw+$,µ ⊗ c−µ,$.

Suppose µ is such that the corresponding summand is non-trivial. Then we have that (a) vµ ∈ Uq(b+)vw+$

and (b) vsiw+$ ∈ Uq(b
−
i )vµ. Consider the Uq(sli(2))-submodule of L($) containing vw+$. Since

siw+ > w+ it has highest weight w+$ and lowest weight siw+$. If (w+$,αi) = 0, the representa-
tion is trivial; otherwise (w+$,αi) = 1 and the representation is the fundamental representation. From
(b) we obtain µ = siw+$ + pαi = w+$ + (p − (w+$,αi))αi where p is an integer between 0 and
(w+$,αi). From (a) we deduce that p = (w+$,αi) and so µ = w+$. Thus for any m′ ∈ M+

i and
m ∈M ,

c−siw+$,$m
′ ⊗m = c−siw+$,w+$m

′ ⊗ c−w+$,$m.

By hypothesis M is c−w+$,$-divisible. On the other hand, ϕ∗i (c−siw+$,w+$) = (cρ−sρ,ρ)
(w+$,αi) and M+

i

is divisible with respect to this element. Hence M+
i ⊗M is c$−siw+$,$-divisible. The proof for elements

of the form c−w0$
w−$,−$ is similar. 2
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Corollary 2.4.2 Let w+ = si1 ...sik , w− = sj1 ...sjm be reduced expressions for w+ and w− in w. Then

M+
i1
⊗ ...⊗M+

ik
⊗M−jm ⊗ ..⊗M

−
j1

is a module of type (w+, w−).

This completes the proof of Theorem 2.2.3. These results generalize slightly [19, Propositions 5.1,
5.2].

2.5 Let R(Cq[G]) denote the set of one-dimensional representations of Cq[G]. Since Cq[G] is a Hopf
algebra, R(Cq[G]) has a natural group structure. Let X = (Xij) be the matrix of coordinate functions
as described in 1.4. Since the Xij generate Cq[G], there is a natural map from R(Cq[G]) to Mn(C)
given by χ 7→ (χ(Xij)) = χ(X). It is easily verified that this is an isomorphism of R(Cq[G]) onto the set
of invertible diagonal matrices. Since R(Cq[G]) is naturally isomorphic to this complex torus we shall
denote it by H.

For any Hopf algebra A, there is a natural action of R(A) as automorphisms of A given by rχ(a) =∑
a(1)χ(a(2)) for all χ ∈ R(A) and a ∈ A. In the case A = Cq[G] the action of H on Cq[G] is therefore

algebraic and given by rχ(X) = Xχ(X).
Denote by Γ the subgroup of H corresponding to matrices with entries equal to ±1. Denote by γi for

i = 1, ..., n− 1, the element with −1 in the (i, i) and (i+ 1, i+ 1) position and 1’s elsewhere. Obviously Γ
is generated by the γi. Using the description of cεi,w as a quantum minor given in 1.5 it is easily verified
that the action of γi on the elements cεi,w is given by

γi(c
ε
j,w) =

{
cεj,w if j 6= i
−cεj,w if j = i.

Definition. We denote by B = Cq[Ḡ] = Cq[G]Γ the algebra of elements of Cq[G] invariant under
the action of Γ.

Definition. Let w = (w+, w−) ∈ W ×W . Recall that Aw = (A/Iw)Ew
. Since γ(Iw) ⊆ Iw and

γ(Ew) ⊆ Ew for all γ ∈ Γ, there is a natural induced action of Γ on Aw. We define Bw = AΓ
w.

Notice that Bw = (B/(Iw ∩ B))(Ew∩B). In order to simplify the notation we continue to denote by
cεi,y the image of cεi,y in Aw.

It is fairly easy to see that Aw has a natural structure as a crossed product of the dual group Γ̂ over
Bw. Denote by Γ̂ the dual group of Γ and denote by γ̂i the element of Γ̂ such that γ̂i(γj) = (−1)δij .

Define a map φ : Γ̂ → Aw by φ(γ̂i1 . . . γ̂it) = c+i1,w+
. . . c+it,w+

if i1 < · · · < it. Then Aw is a crossed

product of Γ̂ over Bw via φ in the sense of [13, 1.5.8].

2.6 Fix w = (w+, w−) ∈W ×W .

Definition. Let y ∈W . In Aw set zεi,y = cεi,y(cεi,wε
)−1 and ti = c−i,w−(c+i,w+

)−1.

Clearly these elements belong to Bw. We define Cw to be the subalgebra of Bw generated by the set{
zεi,y | ε = ±, i = 1, ..., n− 1, y ∈W

}
∪
{
t±1
i | i = 1, ..., n− 1

}
.

Clearly zεi,y = 0 for y >i wε and zεi,wε
= 1. Thus

Cw = C
[
t±1
i , zεi,y | ε = ±, y <i wε, i = 1, ..., n− 1

]
.

We now show that Bw is the localization of Cw with respect to an appropriate normal element. Recall
[14, §2] that the relation Detq = 1 may be written, for each i = 1, ..., n − 1, as 1 =

∑
y∈Ŵi

αi,yc
+
i,yc
−
i,y
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where αi,y ∈ Q and Ŵi is a transversal of Wi in W . Using Theorem 2.2.1 and the description of the cεi,w
as quantum minors given in 1.5, we obtain that Cw contains the elements

di = (c+i,w+
)−1(c−i,w−)−1 =

∑
y∈Ŵi

βi,yz
+
i,yz
−
i,y

where βi,y ∈ Q. Define d to be d1d2...dn−1.

Theorem 2.6.1 The element d is a normal element of Cw and Bw = Cw[d−1].

Proof. It follows easily from Theorem 2.2.1 that dAw = Awd. Since each zεi,y is an eigenvector for

conjugation by d, it is clear that dCwd
−1 = Cw. Thus d is a normal element of Cw. It follows from

Theorem 1.5.1 that Aw is spanned by elements of the form vdt where v is a word in the cεi,y and t is a
non-negative integer. Such words are clearly eigenvectors for the action of Γ. Hence Bw is spanned by
the words with eigenvalue 1; that is, words for which the number of occurrences in v of elements of the
form cεi,y, for a fixed i is even, say 2mi. For such words it follows from the normality of the elements
cεi,wε

(Theorem 2.2.1) that if t > mi for all i, then vdt ∈ Cw. Hence for all b ∈ Bw, there exists a positive
integer m such that bdm ∈ Cw. 2

2.7 We shall also be interested in the subalgebras of elements invariant under the action of the whole
group H. There is a natural induced algebraic action of H on Aw and Bw Let λ ∈ C∗ and let h =
λeii + λ−1ei+1,i+1. Then it follows from the description of the cεi,y as quantum minors that

h(c±j,y) =

{
λ±1c±j,y if j = i

c±j,y if j 6= i.

It is thus clear that the elements zεi,y are H-invariant.

Theorem 2.7.1 (i) CHw = C[zεi,y | ε = ±, 1 ≤ i ≤ n− 1, y ∈W ].

(ii) AHw = BHw = CHw [d−1].
(iii) The monomials tr11 ...t

rn−1

n−1 for (r1, ..., rn−1) ∈ Zn−1 form a basis for Cw as a left or right CHw -
module and a basis for Bw as a left or right BHw -module.

Proof. Denote by S the subalgebra of Cw generated by the zεi,y. Clearly S ⊆ CHw . On the other hand, since
Cw is generated over S by the ti which are invertible elements normalising S (tiS = Sti), it follows that
the given monomials span Cw as a left or right S-module. It is also clear that if h = λeii + λ−1ei+1,i+1,
then h(ti) = λ−2ti and h(tj) = tj for j 6= 1. Thus each distinct monomial corresponds to a different
character of H. Hence the monomials must be linearly independent over CHw . Thus Cw =

⊕
r∈Zn−1 Str

where tr = tr11 ...t
rn−1

n−1 if r = (r1, ..., rn−1). This proves (i) and the first part of (iii). The remaining
assertions then follow easily. 2

2.8 We are now in a position to formulate more precisely the conjectures made in the introduction
concerning Prim Cq[G]. Although we only consider here the case when G = SL(n), similar conjectures
may be made in the general case. The reader is referred to Appendix A for a description of the symplectic
leaves of G.Denote by A the algebra Cq[G].

Definition For each w ∈ W ×W , define SpecwA = {P ∈ SpecA | P ⊇ Iw and P ∩ Ew = ∅} and
SpecwB = {P ∈ SpecB | P ⊇ Iw ∩ Bw and P ∩ Ew = ∅}. Elements of SpecwA and SpecwB are said to
be of type w. Set PrimwA = Specw A ∩ PrimA and PrimwB = Specw B ∩ PrimB.

The action of H on A described above induces an action of H on PrimA for which the locally closed
subsets PrimwA are invariant for all w ∈W ×W . Since the action of H is algebraic, StabHP is a closed
subgroup of H and H/StabHP is a torus for all P ∈ PrimA.
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Conjecture 1: PrimA =
⊔
w∈W×W PrimwA and PrimwA is a non-empty H-orbit for all w ∈W×W .

If Pẇ is a primitive ideal of type w, then H/StabH Pẇ is a torus of rank rk G − s(w). Hence there is a
bijection β : PrimA→ SympG such that β(PrimwA) = SympwG.

Conjecture 2: One may define a bijection β : PrimA → Symp G as in Conjecture 1 such that β is
order reversing and GKdim A/P = dimβ(P ) for all P ∈ PrimA.

Both conjectures are known to be true in the case G = SL(2,C) (see Appendix B). Conjecture 1 is
proved in section 4 in the case when G = SL(3,C).

3 The Adjoint Action

3.1 Henceforth we restrict our attention to the case G = SL(3). We shall denote the algebra Cq[SL(3)]
by A. In order to study the ideals of A we look at the ideals of Cw and Bw invariant under the
adjoint action. At the same time we study in detail the structure of the algebra CHw , showing that it
is an iterated Ore extension in the sense of [13]. We shall therefore be interested in bases consisting of
standard monomials as defined below.

Definition Let Y = {y1, y2, . . . , yt} be an indexed set of elements. The standard monomials in Y are
defined to be the elements yr = yr11 . . . yrtt where r = (r1, . . . , rt) ∈ Nt.

3.2 We shall show that for each w, there exists a certain set of zεi,y such that for a suitably chosen

ordering, the standard monomials in these z’s form a basis for CHw . Clearly we should exclude from
such a set all the zεi,y for which y 6<i wε. The Plucker relations imply that certain other relations are
redundant.

Definition Fix w ∈W ×W . Define

Z = {zεi,y | ε = ±, y <i wε, i = 1, 2} − {zε2,wεw0
| ε = ±}.

Define I to be the corresponding index set; that is,

I = {(ε, y, i) | ε = ±, y <i wε, i = 1, 2} − {(ε, 2, wεw0)}.

Theorem 3.2.1 CHw = C[Z]

Proof. From Theorem 2.7.1 and the remarks at the beginning of 2.6, it suffices to show that if wεw0 < wε,
then zε2,wεw0

∈ C[Z]. The Plucker relations given in Theorem 1.4.1 (d) imply that in Aw∑
y∈Ŵ1, y≤1w+

αyc
+
1,yc

+
2,yw0

= 0, for some αy ∈ Q.

Multiplying by (c+1,w+
)−1(c+2,w+

)−1 and using the fact that z+
1,w+

= 1, we obtain:

z+
2,w+w0

=
∑

y∈Ŵ1, y<1w+

γyz
+
1,yz

+
2,yw0

, for some γy ∈ Q.

Now for y <1 w+, z+
2,yw0

is either 0 or an element of Z. Hence z+
2,w+w0

∈ C[Z], as required. A similar

argument works for z−2,w−w0
.

Remark It is important to notice that if w+ <2 w+w0, then the above relation collapses to 0 = 0.
Nontrivial relations for z+

2,w+w0
only occur when w+ or w− belongs to {(1, 3), (1, 3, 2), (1, 2, 3)}.
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3.3 The ordered indexing on the set Z will be induced from the following ordering on the set S =
{(ε, i, y) | ε = ±, i = 1, 2 and y ∈ Ŵi}.

Definition Define a total ordering on the set S by:

(ε′, i′, y′) < (ε, i, y) iff

 i′ < i; or
i′ = i and y′ >i y; or
i′ = i and y′ =i y and ε′ = +, ε = −.

Since Ŵi is totally ordered by ≤i, it easy to see that this defines a total ordering on S.
The required commutation relations on the zεi,y follow from the following commutation relations in

Cq[SL(3)].

Proposition 3.3.1 Suppose that (ε′, i′, y′) < (ε, i, y). Then there exists an α ∈ C∗ such that

cε
′

i′,y′c
ε
i,y = αcεi,yc

ε′

i′,y′ +
∑
j

βjaja
′
j

where βj ∈ C, aj ∈ {cεi,u | (ε, i, u) < (ε, i, y)} and a′j ∈ {cε
′

i′,u | (ε′, i′, u) < (ε, i, y)}

Proof. The result may be deduced from the commutation relations given in [8, 2.1,2.2,2.13-2.16] using the
equations in Section 1.5. Alternatively, one may use the more general formula [19, §3.8] which follows
from the form of the universal R-matrix for Uq(sl(3,C)). 2

3.4 We define R(ε, i, y) = C[zηj,u | (η, j, u) < (ε, i, y)].

Proposition 3.4.1 The algebra R(ε, i, y) is spanned by the standard monomials in {zε′i′,y′ ∈ Z | (ε′, i′, y′) <
(ε, i, y)} In particular, the algebra CHw is spanned by the standard monomials in the elements of Z.

Proof. It follows from the proof of Theorem 3.2.1 that zε2,wεw0
∈ R(ε, 2, wεw0). On the other hand

Proposition 3.3.1 implies that R(ε, i, y)[zεi,y] is spanned as a left R(ε, i, y) module by the powers of zεi,y.
The result then follows by induction. 2

3.5 In order to show that the standard monomials from Proposition 3.4.1 form a basis for CHw , we
consider the adjoint action of Cq[SL(3)]. Let us recall the basic definitions and properties for the adjoint
action of a Hopf algebra on a bimodule.

Let (R,∆, ε, S) be a complex Hopf algebra and let M be an R-bimodule. The adjoint action of R on
M is defined by: (adh)x = h(1)xS(h(2)) forall h ∈ R and x ∈M where we are using the Sweedler notation

together with the obvious summation convention. We set Mad = {x ∈M | (adh)x = ε(h)x, ∀h ∈ R}. It
is easily seen that Mad = {x ∈M | hx = xh, ∀h ∈ R}.

The map ad: R −→ EndCM is a homomorphism of algebras and in this way M becomes a left R-
module via ad. Suppose now that M also has the structure of a C-algebra compatible with its bimodule
structure; i.e.

∀x, y ∈M, ∀h ∈ R, h(xy) = (hx)y and (xy)h = x(yh)

Then under the adjoint action, M has the structure of a R-module algebra in the sense that (adh)(xy) =
(adh(1))(x)(adh(2))(y).

3.6 These generalities apply to the Hopf algebra Cq[SL(3)] and any bimoduleM . Recall that Cq[SL(3)] =
C[Xij | 1 ≤ i, j ≤ 3] where the Xij are the coordinate functions for the standard 3-dimensional
representation of Uq(sl(3,C)). Since ∆(Xij) =

∑
kXik ⊗ Xkj , the adjoint action of Xij is given by

(adXij)m =
∑
kXikmS(Xkj) for all m ∈M . Denote adXij by adij , and define the adjoint matrix of m

to be [adm] = [adijm]1≤i,j≤n. Denote by X the matrix of coordinate functions (Xij) ∈ Mn(A) and by
S(X) the matrix (S(Xij)). It follows easily from the coalgebra structure of A that S(X) = X−1.
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Proposition 3.6.1 Let φ : Cq[SL(3)] → B be a C-algebra map. Then for any b ∈ B, [ad b] =
φ(X)bφ(S(X)). The map [ad−] : B →Mn(B) is an algebra map. In particular, [ad bc] = [ad b][ad c] for all b, c ∈
B.

Proof. The formula for [ad b] is clear. For simplicity, drop the φ and consider Mn(A) as acting on Mn(B)
via φ. Then [ad bc] = XbcS(X) = XbIcS(X) = XbS(X)XcS(X) = [ad b][ad c]. 2

3.7 In this section we study the adjoint action of A on the subalgebra generated by the elements t±1
1 , t±1

2

defined in section 2.6. To simplify the notation a little, set

a = w−(1), b = w+(1), c = w+(3), d = w−(3).

In this notation, t1 = Da1X
−1
b1 , t2 = Xd3D

−1
c3 and t1t2 = q2(δa,c−δb,d)t2t1. Recall that by Theorem 2.7.1,

the elements tn1 t
m
2 for n,m ∈ Z form a basis for the subalgebra C[t±1

1 , t±1
2 ]. Denote by Fi(α) the diagonal

scalar matrix with the scalar α in the (i, i)−th position and 1’s elsewhere on the diagonal.

Lemma 3.7.1 With the above notation we have that

[ad t1] = Fb(q
2)Fa(q−2)t1 and [ad t2] = Fc(q

−2)Fd(q
2)t2

Proof. It is easily verifed that Xb1X = Fb(q
2)XF1(q−2)Xb1 (mod Iw) and similarly that Da1S(X) =

F1(q2)S(X)Fa(q−2)Da1 (mod Iw). Combining these two identities gives the formula for [ad t1]. The
proof of the second equality is similar. 2

Proposition 3.7.2 The algebra C[t±1
1 , t±1

2 ]ad is a subalgebra of the centre of Aw equal to:
(i) C[t±1

1 , t±1
2 ] if w+ = w−;

(ii) C[t±1
i ] if w+ = w−(Wi) and w+ 6= w−;

(iii) C if w+ 6= w−(Wi) for i = 1 and 2 but w− 6= w+w0;
(iv) C[(t1t

−1
2 )±1] if w− = w+w0.

Proof. It is clear that C[t±1
1 , t±1

2 ]ad has as a basis the set of all monomials tn1 t
m
2 which are adA-invariant.

Now
[ad tn1 t

m
2 ] = Fb(q

2n)Fc(q
−2m)Fa(q−2n)Fd(q

2m)tn1 t
m
2 .

The result then follows easily. 2

Notice that the dimension of C[t±1
1 , t±1

2 ]ad is therefore 2− s(w), where s(w) is the length of a shortest
expression for w+w

−1
− as a product of reflections.

3.8 The adjoint action of A on CHw is a little more complicated. As usual let w = (w+, w−) ∈ W ×W .
As before, set a = w−(1), b = w+(1), c = w+(3), d = w−(3) and set p = q2 − q−2.

Lemma 3.8.1 Let y be an arbitrary element of W and set r = y(1) and s = y(3). The adjoint action on
zεi,y is given by

[ad z+
1,y] = Fr(q

−2)Fb(q
2)z+

1,y −
b∑

i=r+1

pz+
1,(1,i)eir

[ad z−1,y] = Fr(q
−2)Fa(q2)z−1,y + q2(r+1−a)

a∑
i=r+1

(−1)r−i−1pz−1,(1,i)eri

[ad z+
2,y] = Fc(q

−2)Fs(q
2)z+

2,y − q2(s−c−1)
s−1∑
i=c

(−1)s−i−1pz+
2,(i,3)esi

[ad z−2,y] = Fd(q
−2)Fs(q

2)z−2,y +

s−1∑
i=d

pz−2,(i,3)eis
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Proof. Recall that z+
1,y = Xr1X

−1
a1 . One verifies first that for r ≤ j ≤ a

XXj1 = Xj1Fj(q
−2)XF1(q2)−

 a∑
i=j+1

pXi1eij

XF1(q2) (mod Iw)

Hence XX−1
a1 = X−1

a1 Fa(q2)XF1(q−2). Putting these two formulas together yields the desired result. A
similar calculation proves the other three formulas. 2

3.9 Thus for each zεi,y the matrix [ad zεi,y] is of the form D +N where D is diagonal and N is a strictly
upper or lower triangular matrix with all its non-zero entries in a single row or column. Furthermore
the nonzero entry in N that is furthest from the diagonal is a scalar. Since this entry is of particular
importance we define φ to be the function that associates to zεi,y this position. That is, for a fixed w we
define

φ(z+
1,y) = (w+(1), y(1)), φ(z+

2,y) = (y(3), w+(3))

φ(z−1,y) = (y(1), w−(1)), φ(z−2,y) = (w−(3), y(3))

This map is not injective on the set of all zεi,y since for instance when w+ = (13), φ(z+
2,e) = (3, 1) = φ(z+

1,e).
However when φ is restricted to Z we do have injectivity.

Lemma 3.9.1 The map φ restricted to Z is injective.

Proof. Clearly φ(z+
i,y) ⊂ {(k, l) | k > l} and φ(z−i,y) ⊂ {(k, l) | k < l} so we may consider the two

cases separately. Suppose that φ(z+
1,y) = φ(z+

2,y′) where y <1 w+ and y′ <2 w+. This means that

(w+(1), y(1)) = (y′(3), w+(3)). Hence y = w+w0(W1) and y′ = w+w0(W2). Since z+
2,w+w0

/∈ Z, the result
follows. The other case is similar. 2

Proposition 3.9.2 Let y ∈W and suppose that φ(zεi,y) = (k, l). Set [ad zεi,y] = [aij ]. Then [ad (zεi,y)n] =
[ad zεi,y]n = [aij(n)] where

(i) aii(n) = anii ∈ C∗(zεi,y)n

(ii) aij = 0 implies aij(n) = 0.
(iii) akl(n) = adkl (z

ε
i,y)n ∈ C∗(zεi,y)n−1.

Proof. Write [aij ] = D + N where D is diagonal and N is strictly upper or lower triangular. Then
because of the particular form of N , we have that NDiN = 0 for any i. Hence [aij(n)] = (D + N)n =

Dn +
∑n−1
s=0 D

sNDn−s−1. The first two assertions are then clear, as is the fact that

akl(n) =

n−1∑
s=0

(q2)±(n−2s−1)akl(z
ε
i,y)n−1.

Since q is not a root of unity, the coefficient on the right hand side is non-zero. 2

The lemma states that if (k, l) = φ(zεi,y), then adkl behaves rather like a partial differential operator
with respect to zεi,y. However, on an arbitrary standard monomial it is important to apply these operators
in the correct order. This necessitates defining a new ordering on the standard monomials.

Let I = {(ε, y, i) | ε = ±, y <i wε, i = 1, 2} − {(±, 2, wεw0)} be the index set corresponding to the set
Z and let K = φ(I) (where φ is the obvious induced map on I). For each w let ≺ be a total ordering on
the set {(i, j) | i, j = 1, 2, 3, i 6= j} satisfying

(1, i) � (1, i′) � (2, 3) � (3, j) � (3, j′) � (2, 1)

and i and i′ are chosen so that if (1, i) and (1, i′) are both in φ(I) then the ordering ≺ reverses the
ordering induced by φ. We denote by ≺ the induced ordering on the subset K. The ordering induced
by ≺ on I via φ−1 will also be denoted by ≺. The ordering ≺ on I extends naturally to a lexicographic
ordering on NI which will again be denoted by ≺.
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Theorem 3.9.3 Let m ∈ NI and let φ(m) be its image in NK. Let Mm be a standard monomial in
the zεi,y with respect to the order defined in 3.3 and let Xφ(m) be the standard monomial in the Xij with
respect to the ordering on K defined above. Then

(i) adXφ(m) Mm ∈ C∗; (ii) adXφ(m) Mn = 0 for all n ≺m.

Proof. Define Supp(m) = {η ∈ I | mη 6= 0}. For (i, j) ∈ K, define fij to be the element of NI such that
(fij)ξ = δξ,ϕ−1(i,j). It suffices to prove that for any monomial Mm and any (i, j) � Max(φ(Supp(m)),

(adXij)M
m =

{
cMm−fij if (i, j) = Max(φ(Supp(m));
0 if (i, j) � Max(φ(Supp(m));

for some c ∈ C∗. Suppose that Mm = Zm1
1 . . . Zmt

t where Zi ∈ Z. Then ad ijM
m is the (i, j)-entry

of ad (Zm1
1 ) . . . ad (Zmt

t ). The form of these matrices was computed in Proposition 3.9.1. A lengthy but
routine calculation shows in all cases that if k is such that (i, j) = φ(Zk) = Max(φ(Supp(m)), then

(adXij)M
m = ad iiZ

m1
1 . . . ad iiZ

mk−1

k−1 ad ijZ
mk

k ad jjZ
mk+1

k+1 . . . ad jjZ
mt
t ,

and that if (i, j) � Max(φ(Supp(m)), then (adXij)M
m = 0. Hence the result above follows from

Proposition 3.9.1. 2

3.10 We now come to the most important results of the section. For each character ν ∈ R(A) let us
denote by Cνw the ν-isotypic part of Cw under the adjoint action. Denote by Soc Cw the socle of Cw
under this action.

Theorem 3.10.1 1. The algebras Cw and CHw are iterated Ore extensions. Hence Cw, C
H
w and Bw are

all domains.
2. Soc Cw =

⊕
ν∈R(A) C

ν
w = C[t±1

1 , t±1
2 ]. Hence Cadw = C[t±1

1 , t±1
2 ]ad is as described in section 3.7.2.

3. If ν ∈ R(A) is such that Cνw 6= 0, then there exists an invertible element uν such that Cνw = uνC
ad
w .

Proof. Theorem 3.9.3 implies that the standard monomials in the elements of Z form a basis for CHw .
The fact that CHw is an iterated Ore extension is an induction based on [2, 1.3] using Proposition 3.4.1.
Theorem 2.7.1 implies that Cw is an Ore extension of CHw . Thus Cw and CHw are both domains. Since
Bw is a localization of Cw (Theorem 2.6.1), it too is a domain.

Now let f ∈ Cw. We may write f in the form f =
∑

n≤m αnM
n where Mn is the monomial described

in 3.9, αn ∈ C[t±1
1 , t±1

2 ] for all n and αm 6= 0. By Theorem 3.9.3, there exists an a ∈ A such that a is a
product of elements of the form Xij and such that

(ad a)Mn =

{
0 if n < m
1 if n = m

Now αn =
∑
χ∈R(A) αn,χ, where αn,χ ∈ C[t±1

1 , t±1
2 ]χ. Moreover,

(ad a)αn,χMn = (ad a(1))αn,χ(ad a(2))Mn = χ(a(1))αn,χad a(2)Mn = αn,χad (rχ(a))Mn.

But rχ(a) = λχa for some non-zero scalar λχ. Thus

(ad a)f =
∑
χ

λχαm,χ ∈ C[t±1
1 , t±1

2 ]\{0}.

Since C[t±1
1 , t±1

2 ] is a semi-simple ad-A module, this proves the second assertion. The third statement
then follows easily from 3.7. 2

Remark We can identify Cadw with C[Hw], the algebra of functions on the torus Hw = H/Stab HCẇ (see
Theorem A.3.1).
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4 Primitive Spectrum of Cq[G]

4.1 We begin with a result showing that the study of Spec A and Spec B may be reduced to the study
of Spec Aw and Spec Bw, w ∈W ×W respectively.

Proposition 4.1.1 Let P ∈ Spec A (resp. Spec B). Then there exists a unique w ∈ W ×W such that
P ⊃ Iw (resp. P ⊃ Iw ∩B) and P ∩ Ew = ∅.

Proof. Let P ∈ Spec A. Define the elements w
(i)
+ ∈ Ŵi, i = 1, 2 to be the smallest elements of Ŵi such

that c+i,y ∈ P for all y > w+
(i). We want to show that there exists a w+ ∈W ×W such that w+ = w

(i)
+ (Wi)

for i = 1, 2. It is easily verified that this will occur if and only if w
(1)
+ w0 6= w

(2)
+ (W2). Suppose that

w
(1)
+ w0 = w

(2)
+ (W2). Recall the Plucker relation∑

y∈Ŵ1

(−q2)y(1)−1c+1,yc
+
2,yw0

= 0

Now for y >1 w
(1)
+ , c+1,y ∈ P by definition. On the other hand, if y <1 w

(1)
+ , then yw0 >2 w

(1)
+ w0 =

w
(2)
+ (W2) by Proposition 1.8. Hence c+2,yw0

∈ P . The remaining term, which is a scalar multiple of

c+
1,w

(1)
+

c+
2,w

(2)
+

, must therefore lie in P also. However neither c+
1,w

(1)
+

nor c+
2,w

(2)
+

lie in P by hypothesis.

Moreover c+
1,w

(1)
+

is normal modulo P by Lemma 2.1. This contradicts the fact that P is prime.

A similar argument produces an analogous element w−. Thus there exists an element w = (w+, w−)
such that c±i,y ∈ P for all y > w± and c±i,w± 6∈ P for i = 1, 2. In other words, P ⊃ Iw and P ∩Ew = ∅. It
is clear that such an element must be unique.

Now let P ∈ SpecB. By [13, 10.2.10], there exists a Q ∈ SpecA such that P is minimal over Q ∩ B.
By the first part of the proof there exists a w such that Q ⊃ Iw and Q ∩ Ew = ∅. Hence it is clear that
P ⊃ Iw ∩B. Suppose that c ∈ P ∩Ew.From the minimality of P over Q∩B and the fact that c is normal
modulo Iw it follows easily that c ∈ Q, a contradiction. 2

Corollary 4.1.2 Identify Spec A with {P ∈ SpecA | P ⊃ Iw, P∩Ew = ∅}. Then SpecA =
⊔
w∈W×W SpecAw

where
⊔

denotes the disjoint union. Similarly SpecB =
⊔
w∈W×W SpecBw.

The analogous result concerning the primitive spectrum is also true. However, this is a subtler question
and the proof requires the characterization of the primitive ideals as the locally closed elements of SpecA.

4.2 We now return to the study of Bw and Cw. Define the algebra Cẇ by:

Cẇ =


CHw , if w+ = w−;
CHw [t±1

j ], if w+ = w−(Wi) and w+ 6= w−(Wj);

CHw [t±1
1 , t±1

2 ], if w+ 6= w−(Wi) for i = 1, 2 but w− 6= w+w0;
CHw [t±1

1 ], if w− = w+w0.

and defineBẇ to be Cẇ[d−1]. Then it is clear from 2.7.1 and 3.7.2 that Cw ∼= Cẇ⊗Cadw andBw ∼= Bẇ⊗Cadw .
Moreover both Cẇ and Bẇ are integral domains by 3.10.1. We now show that Bẇ is simple. It will then
follow that all prime ideals of Bw are induced from Cadw .

Lemma 4.2.1 Let I be an ideal of Bw (respectively Cw). Then I is an adA-submodule if and only if
I = (I ∩ Cadw )Bw (respectively I = (I ∩ Cadw )Cw).

Proof. Since Bw is a localization of Cw and Cw is ad-invariant, it is enough to prove the result for Cw.
Let I be an ideal of Cw and suppose that I strictly contains (I ∩Cadw )Cw. Choose f ∈ I\(I ∩Cadw )Cw and
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write f (as in the proof of 3.10.1) as f =
∑

n≤m αnM
n where αn ∈ Soc Cw for all n and αm 6= 0. Assume

that m is minimal for such elements. The argument used in the proof of 3.10.1 implies that I contains∑
χ λχαm,χ for some nonzero scalars λχ . Since I is adA-invariant it therefore contains each λχαm,χ. But

λχαm,χ ∈ (Cw)χ = uχC
ad
w for some unit uχ. Thus λχαm,χ ∈ (I ∩Cadw )Cw and so αmMm ∈ (I ∩Cadw )Cw,

contradicting the minimality of m. 2

Theorem 4.2.2 Bw ∼= Bẇ ⊗ Cadw where Bẇ is a simple algebra. The center of Bw is Cadw and all ideals
of Bw are generated by their intersection with the center. Thus SpecBw ∼= SpecCadw and Prim Bw ∼=
Prim Cadw . All primitive ideals of Bw are maximal and all prime ideals are completely prime. If P ∈
PrimBw then GKdim Bw/P = l(w) + s(w).

Proof. Let Pe be the ideal of Bw generated by elements of the form t−1 where t ∈ {tn1 tm2 | n,m ∈ Z}∩Cadw .
Then clearly Bẇ ∼= Bw/Pe. Hence Pe is a completely prime ideal of Bw. From the lemma we have that
Pe is a maximal adA-invariant ideal of Bw. Since Aw is a finite normalizing extension of Bw, it follows
from ‘Lying over’ and ‘Going up’ [13, 10.2], that Pe is in fact a maximal ideal of Bw. Hence Bẇ is simple.
Because Bẇ satisfies the nullstellensatz [13, 9.1], it follows that Bẇ is central simple and the assertion
concerning the spectrum is a consequence of [3, 4.5.1]. By the nullstellensatz again, the primitive ideals
are generated by the maximal ideals of Cadw . Since the quotient of Bw by such an ideal will always be
isomorphic to Bẇ, all the primitive ideals are completely prime. Since every prime ideal is an intersection
of primitives it follows easily that all the prime ideals are completely prime. The assertion concerning
the Gelfand-Kirillov dimension follows from the description of Bẇ as a localization of an Ore extension
and a slight generalization of [13, 8.2.10]. 2

4.3 We may now use Corollary 4.1.2 to deduce some global results about the primitive spectrum of
B. We shall say that a Noetherian C-algebra R satisfies the Dixmier-Moeglin condition if the following
conditions are equivalent for a prime ideal P : (a) P is primitive; (b) P is rational (the center of the
ring of fractions of R/P is C); (c) P is locally closed in SpecR. Recall that the action of H by right
translation on B induces a natural action of H on PrimB.

Theorem 4.3.1 In the notation of section 2.8, we have that

PrimB =
⊔

w∈W×W
PrimwB.

Moreover PrimwB is a nonempty H-orbit for each w ∈ W ×W . If Qẇ is a primitive ideal of type w,
then H/StabHQẇ is a torus of rank 2− s(w). All primitive ideals of B are completely prime. B satisfies
the Dixmier-Moeglin condition.

Proof. Let P be a primitive ideal of B of type w. Then by the nullstellensatz [13, 9.1] and [3, 4.1.6] PBw
is maximal. On the other hand if P is a prime ideal of B of type w and PBw is maximal, then any
prime ideal strictly containing P intersects the set Ew of regular elements nontrivially. Hence the set P is
locally closed in SpecB and again by the nullstellensatz [13, 9.1.8], P must be primitive. The fact that
all prime ideals of B are completely prime follows immediately from 4.1.2 and 4.2.2 by standard facts
about localization. 2

Remark Notice that these results imply that for any primitive ideal P of B there exists an Ore set Ew
and a normal element d such that (B/P )Ew

∼= Cẇ[d−1] and Cẇ is an iterated Ore extension. This should
be compared with the structure of primitive factors of the enveloping algebra of a solvable Lie algebra
[13, §14.8].

4.4 We now deduce the main theorem. Recall that A = Cq[G].

Theorem 4.4.1 In the notation of section 2.8, we have that

PrimA =
⊔

w∈W×W
PrimwA.
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Moreover PrimwA is a nonempty H-orbit for each w ∈W ×W . The map P 7→ PAw is an isomorphism
between PrimwA and PrimAw. If Pẇ is a primitive ideal of type w, then H/StabHPẇ is a torus of rank
rk G− s(w). GKdim A/Pẇ = l(w) + s(w). A satisfies the Dixmier-Moeglin condition.

Proof. Let Pẇ be a primitive ideal of A of type w. It follows from sections 4.2 and 4.3 that PẇAw is
a primitive ideal of Aw and that Pẇ ∩ B is a primitive ideal of B of type w. Furthermore the prime
ideals of A lying over a given primitive ideal of B form a Γ-orbit and are all primitive. The fact that the
Dixmier-Moeglin condition passes from B to A follows from [9]. 2

4.5 As noted in the proof of Theorem 4.4.1, it follows from the description of the primitive ideals of Bw
that if P ∈ PrimAw, then P ∩ Bw is a primitive ideal of Bw and that the primitive ideals lying over a
fixed primitive ideal of Bw form a nontrivial Γ-orbit. Using a detailed analysis of the structure of Aw as
a crossed product of Γ̂ over Bw, one can calculate the exact number of primitives of Aw sitting over a
given primitive of Bw.

Proposition 4.5.1 Let P ∈ PrimAw. Then P ∩ Bw is a maximal ideal of Bw. Conversely for all
maximal ideals Q of Bw the number of primitive ideals P of Aw such that P ∩Bw = Q is:{

4 if w = (e, e);
2 if w+ = w− = e(Wi) and w+ or w− 6= e(Wj)
1 otherwise.

All primitive ideals of Aw are maximal and completely prime.

In particular this last result implies that all prime ideals of Cq[G] are completely prime. Goodearl
and Letzter [6] have recently proved that all prime ideals of Cq[SL(n)] are completely prime.

Remark The authors have recently generalized the results of this section, proving Conjecture 1 of 2.8
for Cq[SL(n)].
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1.2 Q, Uq(g) 3.2 Z, I
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1.5 cεi,w 3.5 Rad
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2.6 zεi,y, ti, Cw, di, d
2.7 CHw
2.8 Primw, Sympw

A Symplectic Leaves in a Semi-simple Poisson Lie Group

A.1 Let G be a connected complex semisimple Lie group with Lie algebra g. Let h be a Cartan
subalgebra of g, let R be the associated root system and R+ a choice of positive roots. Denote by
κ(−,−) the Killing form on g. Let n± = ⊕α∈R±gα and let b± = h⊕ n±. Let d = g × g. The Iwasawa
decomposition of d (as defined in [3, 1.13.14]) is then d = g ⊕ a ⊕ u+ where g is identified with the
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diagonal subalgebra of d, a = {(x,−x) | x ∈ h} and u+ = {(x, y) | x ∈ n+, y ∈ n−}. Define the bilinear
form 〈−,−〉 on d by:

〈(x1, y1), (x2, y2)〉 =
1

2
(κ(x1, x2)− κ(y1, y2))

Denote a⊕u+ by gr. Then (g,gr,d) is a Manin triple in the sense of [4]. There is then a Poisson Lie group
structure on G associated to this triple [4]. The corresponding Poisson tensor is the tensor π defined by
π(g) = lg∗R− rg∗R where R = 1

2

∑
α>0Eα ∧E−α ∈ g∧ g and lg∗ and rg∗ are the differentials of left and

right translation respectively. The associated local double Lie group is then (G,Gr, D) where D = G×G;
G is identified with the diagonal subgroup {(x, x) | x ∈ G}; Gr = AU+ where A = {(x, x−1) | x ∈ H} and
U+ = {(x, y) ∈ N+, y ∈ N−} and H, N± and B± are the closed connected subgroups of G associated
to h, n± and b± respectively.

Consider the map p : G→ D/Gr. Define Γ to be G ∩Gr = ker p. It is easily seen that Γ = {(h, h) ∈
H | h2 = 1}. Hence Γ is a finite subgroup of D isomorphic to ZrkG

2 . Define Ḡ to be G/Γ ∼= GGr/Gr.
Since GGr is open in D, it follows that Ḡ is an open subset of D/Gr. Since π is H-invariant (and therefore
Γ-invariant), it induces a Poisson tensor on Ḡ.

Recall that a symplectic leaf of a Poisson variety is defined to be a maximal connected symplectic
subvariety. We denote by Symp G the set of symplectic leaves of G. There is a natural partial order on
Symp G given by inclusions of closures.

Theorem A.1.1 1) The symplectic leaves of Ḡ are of the form Ḡ ∩GrxGr/Gr for some x ∈ G.
2) The symplectic leaves of G are the connected components of the inverse images of the symplectic

leaves of Ḡ.

Proof. Since p : G→ Ḡ is étale, we have that for all x ∈ G, TxG ∼= Tp(x)Ḡ ∼= Tp(x)D/Gr. We recall some
results from [11]. The left action of Gr on D/Gr induces a map σ from the Lie algebra gr to the Lie
algebra of vector fields on D/Gr. For α ∈ gr we denote by σx(α) the corresponding element of TxG. The
bilinear form 〈−,−〉 identifies gr with g∗. Therefore, each α ∈ gr induces a right invariant 1-form αr on
G. Define the right dressing vector field on G by 〈ρx(α), ξ〉 = πx(αr(x), ξ) for all ξ ∈ T ∗xG. By [11, 3.13],
ρx(α) = −σx(α) for all α ∈ gr and x ∈ G. Hence

rk πx = dimσx(gr) = dimGrxGr/Gr, ∀x ∈ G.

It is easily seen that GrxGr/Gr ∩ Ḡ is a Poisson subvariety of Ḡ; hence it is a symplectic subvariety by
the above equality. The theorem then follows easily. 2

A.2 Denote by Q = TU+ = HGr the positive Borel subgroup of D. Recall the Bruhat decomposition
D =

⊔
w∈W×W QwQ =

⊔
w∈W×W QwGr. For each w ∈ W × W we fix a representative ẇ of w in

the normaliser of T and we set: Cẇ = GrẇGr/Gr, Cw = QwGr/Gr =
⋃
h∈H hCẇ. Hence D/Gr =⊔

w∈W×W Cw. Set Bẇ = Cẇ ∩ Ḡ, Bw = Cw ∩ Ḡ, Aw = p−1(Bw). Fix a connected component Aẇ of
p−1(Bẇ). Notice that QwGr ∩G 6= ∅ for all w ∈W ×W . This can be proved as follows by induction on
l(w) (the length of w). Assume that s is a simple reflection; so s = (sα, e) or (e, sα) for some α ∈ R+.
If s = (sα, e) we have that QsQ ∩ G = (B+sαB

+, B−) ∩ G 6= ∅ since B+sαB
+ ∩ B− 6= ∅; similarly for

s = (e, sα). In the general case, set w = sw′ where s is a simple reflection and l(w) = l(w′) + 1. Then by
induction QwQ∩G ⊃ (QsQ∩G)(Qw′Q∩G) 6= ∅. Therefore Bw = Cw∩Ḡ 6= ∅ and since Cw =

⋃
h∈H hCẇ,

we have that hCẇ ∩ Ḡ 6= ∅ for all h ∈ H. These observations together with the theorem of section one
give the following description of the symplectic leaves.

Theorem A.2.1 1) Each symplectic leaf of Ḡ is of the form hBẇ for some h ∈ H and w ∈W ×W .
2) Each symplectic leaf of G is of the form hAẇ for some h ∈ H and some w ∈W ×W .

Let w = (w+, w−) ∈ W ×W . Define A′w = w(A) ∩ A = {a ∈ A | aẇGr = ẇGr}. Set Aw = A/A′w.
Then Aw is a torus of rank s(w) = dimA− dimA′w = codimh ker(w+w

−1
− − I). When G = SL(n,C) we

have that s(w) = min{m | w+w
−1
− = r1 . . . rm where ri is a transposition for all i }.
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Define U±w = w(U±) ∩ U+ and recall that we have an isomorphism of varieties U+ ∼= U−w × U+
w , and

that U−w
∼= Cl(w). Thus we have that Cẇ = AU+ẇGr/Gr = AU−w ẇGr/Gr. Using a standard argument

one verifies that the multiplication Aw×U−w → Cẇ is an isomorphism. Thus we have proved the following
proposition.

Proposition A.2.2 Cẇ ∼= Aw×U−w where Aw is a torus of rank s(w) and U−w
∼= Cl(w). Hence dim Cẇ =

l(w) + s(w).

A.3 Let w ∈ W ×W . Set H ′w = {h ∈ H | hGrẇGr = GrẇGr}. Then H ′w is a closed subgroup of H
and Hw = H/H ′w is a torus of rank rkG− s(w). We have that Cw = HCẇ and the same argument as in
the previous subsection shows that the multiplication map Hw × Cẇ → Cw is an isomorphism.

The group Gr acts by left translation on Cw and therefore on the product Hw × Cẇ. It is easily seen
that the algebra of Gr-invariant functions on Cw is C[Hw]. This proves the first part of the theorem
below. The second part is a consequence of the description given above.

Theorem A.3.1 1) The Gr-orbits in Cw are the fibres of the natural projection Cw → Gr\\Cw ∼= Hw.
2) The symplectic leaves of type w in Ḡ are the fibres of the induced projection Bw → Hw.

We now summarize the results about the set Symp G of symplectic leaves in G. Denote by SympwG
the set of symplectic leaves of type w ∈W ×W .

Theorem A.3.2 1) Symp G =
⊔
w∈W×W SympwG.

2) For each w ∈W ×W , SympwG is a nonempty H-orbit. If Aẇ is a fixed symplectic leaf of type w,
then H/Stab HAẇ is a torus of rank rkG− s(w).

3) The dimension of a leaf of type w is l(w) + s(w).

B The case G = SL(2,C)

B.1 In this appendix we outline the classification of primitive ideals of Cq[SL(2)] and of symplectic leaves
of SL(2,C). The proofs of the two theorems below are straightforward calculations. In the notation of
the section 1.4, Cq[SL(2)] is generated by the elements a = X11, b = X12, c = X21, and d = X22 subject
to the relations ab = q2ba, ac = q2ca bd = q2db, bc = cb, ad− da = (q2 − q−2)bc, and ad− q2bc = 1. The
Weyl group in this case is just W = {e, s} where s2 = e. The ideals Iw for w ∈ W ×W are given by
I(e,e) = (b, c), I(s,e) = (b), I(e,s) = (c) and I(s,s) = (0).

Theorem B.1.1 The following is a complete list by type of the primitive ideals of Cq[SL(2)]:

(e, e) : P(e,e),λ = (b, c, a− λ, d− λ−1), λ ∈ C∗

(s, e) : P(s,e) = I(s,e) = (b)
(e, s) : P(e,s) = I(e,s) = (c)
(s, s) : P(s,s),λ = (b− λc), λ ∈ C∗

All prime ideals of Cq[SL(2)] are completely prime.

Remark Let M+ and M− be modules with annihilators P(s,e) and P(e,s) respectively. Then M+ and
M− are modules of type (s, e) and (e, s) respectively. The existence of such modules is used in section
2.3.

B.2 We now describe explicitly the symplectic leaves of SL(2,C). We continue to denote the coordinate
functions of the standard representation of SL(2,C) by a, b, c and d as above. The standard Poisson
bracket is then given by: {a, b} = −ab, {a, c} = −ac, {b, d} = −bd, {b, c} = 0 and {a, d} = −2bc.
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Theorem B.2.1 The following is a complete list by type of the symplectic leaves of SL(2,C).

(e, e) :

{[
λ 0
0 λ−1

]}
, λ ∈ C∗

(s, e) :

{[
α 0
γ α−1

]
| α, γ ∈ C∗

}
(e, s) :

{[
α β
0 α−1

]
| α, β ∈ C∗

}
(s, s) :

{[
α λγ
γ δ

]
| γ ∈ C∗, αδ − λγ2 = 1

}
, λ ∈ C∗.

Combining these two theorems yields a positive answer to all the conjectures given in section four.

Corollary B.2.2 There is an order preseving bijection β : Prim Cq[SL(2)]→ Symp SL(2,C). Further-
more, if L = β(P ), then dimL = GKdimCq[SL(2)]/P .
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