NOTES ON EQUIVARIANT D-MODULES

T. LEVASSEUR

1. Generalities

All the varieties considered in these notes are quasi-projective algebraic varieties defined over \mathbb{C}.

Let X be a smooth algebraic variety. We denote by \mathcal{O}_{X} the sheaf of regular functions on X and by \mathcal{D}_{X} the sheaf of differential operators. The rings of global sections will be denoted by $\mathcal{O}(X)$ and $\mathcal{D}(X)$ respectively. We refer to [3] for the basic properties of \mathcal{D}_{X}-modules. All the \mathcal{D}_{X}-modules encountered in the sequel will be quasi-coherent. The category of quasi-coherent \mathcal{D}_{X}-modules is denoted by $\operatorname{Mod} \mathcal{D}_{X}$.

Let $F: Y \rightarrow X$ be a morphism between varieties. The comorphism of F is denoted by $F^{\#}$ and the inverse image of an \mathcal{O}_{X}-module M by

$$
F^{*} M=\mathcal{O}_{Y} \otimes_{F \#} M
$$

When X and Y are affine, there exists a natural map

$$
F^{\#}: M \rightarrow F^{*} M, \quad v \mapsto 1_{Y} \otimes_{F}{ }^{\#} v
$$

Suppose that $Z=X \times Y$ is the product of two varieties. Let M be an \mathcal{O}_{X}-module and N be an \mathcal{O}_{Y}-module; the \mathcal{O}_{Z}-module $M \otimes_{\mathbb{C}} N$ will be denoted by $M \boxtimes N$.

In this section we recall the definitions, and well known properties, of equivariant D-modules. Our main references are $[2,3,5,6,7,8,11,12,15]$ where the reader will find the proof of the results stated below.

Let G be a linear algebraic group and V be a smooth affine algebraic G-variety. Let e be the unit in G and set

$$
\begin{aligned}
& \mu: G \times V \rightarrow V, \quad(g, v) \mapsto g \cdot v \quad \text { (the action of } G \text { on } V) \\
& \left.\mu_{G}: G \times G \rightarrow G, \quad \mu_{G}(g, h)=g h \quad \text { (the multiplication in } G\right) \\
& \left.s: G \rightarrow G, \quad s(g)=g^{-1} \quad \text { the inverse in } G\right) \\
& \varepsilon:\{e\} \hookrightarrow G \text { (the inclusion) } \\
& p_{2}: G \times V \rightarrow V, \quad p_{2}(g, v)=v \\
& p_{23}: G \times G \times V \rightarrow G \times V, \quad p_{23}(g, h, v)=(h, v) \\
& \varepsilon_{V}: V \rightarrow G \times V, \quad \varepsilon_{V}(v)=(e, v)
\end{aligned}
$$

We then set: $\Delta=\mu_{G}^{\#}, S=s^{\#}, \epsilon=\varepsilon^{\#}$.
Let M be a rational G-module; the G-action on M is denoted by $g . a, g \in G, a \in$ M. Recall that the G-module structure is equivalent to a left comodule structure $\lambda_{M}: M \rightarrow \mathcal{O}(G) \boxtimes M$, such that

$$
g \cdot a=a_{(1)}\left(g^{-1}\right) a_{(2)}
$$

Date: October 1, 1997.
where we have used the (abbreviated) Sweedler notation $\lambda_{M}(a)=a_{(1)} \boxtimes a_{(2)}, a_{(1)} \in$ $\mathcal{O}(G), a_{(2)} \in M$. This applies in particular to $M=\mathcal{O}(V)$ with the action $(g \cdot \varphi)(x)=$ $\varphi\left(g^{-1} . x\right)$ for $\varphi \in \mathcal{O}(V), g \in G, x \in V$. The corresponding coaction is denoted by λ_{V}. When $V=G$ and G acts via left translations, we have $\lambda_{G}=\Delta$.

Suppose furthermore that the G-module M has an \mathcal{O}_{V}-module structure. Then we say that M is a G-equivariant \mathcal{O}_{X}-module if the G and $\mathcal{O}(V)$ actions are compatible, i.e. $g .(\varphi a)=(g . \varphi)(g . a), g \in G, \varphi \in \mathcal{O}(V), a \in M$. This translates into $\lambda_{M}(\varphi a)=\lambda_{V}(\varphi) \lambda_{M}(a)$ for the coactions. We denote by $\mathfrak{M}\left(\mathcal{O}_{V}, G\right)$ the category of G-equivariant \mathcal{O}_{V}-modules.

Recall that $M \in \mathfrak{M}\left(\mathcal{O}_{V}, G\right)$ if and only if there exists an isomorphism of $\mathcal{O}_{G \times V^{-}}$ modules

$$
\begin{equation*}
\theta: p_{2}^{*} M=\mathcal{O}(G) \boxtimes M \xrightarrow{\sim} \mu^{*} M \tag{1.2}
\end{equation*}
$$

such that

$$
\begin{equation*}
\varepsilon_{V}^{*}(\theta)=1_{M}, \quad\left(\mu_{G} \times 1_{V}\right)^{*}(\theta)=\left(1_{G} \times \mu\right)^{*}(\theta) \circ p_{23}^{*}(\theta) \tag{1.3}
\end{equation*}
$$

When the coaction λ_{M} is given the isomorphism θ is:

$$
\theta(a \boxtimes v)=a S v_{(1)} \otimes_{\mu \#} v_{(2)}
$$

Endow $\mathcal{O}(G), \mathcal{O}(G \times V)=\mathcal{O}(G) \boxtimes \mathcal{O}(V)$ and $p_{2}^{*} M=\mathcal{O}(G) \boxtimes M$ with the action induced by left translation on G. It is then easily seen that θ is G-linear when G acts on $\mu^{*} M$ by

$$
g \cdot\left(b \otimes_{\mu \#} m\right)=g \cdot b \otimes_{\mu \#} g \cdot m
$$

for all $g \in G, b \in \mathcal{O}(G) \boxtimes \mathcal{O}(V)$ and $m \in M$. For these actions, since $(\mathcal{O}(G) \boxtimes M)^{G}=$ $\mathbb{C} \boxtimes M$, we obtain the isomorphism

$$
\theta: \mathbb{C} \boxtimes M \xrightarrow{\sim}\left(\mu^{*} M\right)^{G}
$$

Recall that the G-action on V induces a rational G-module structure on the algebra $\mathcal{D}(V)$, given by

$$
(g . D) \cdot \varphi=g \cdot\left(D \cdot\left(g^{-1} \cdot \varphi\right)\right)
$$

for all $g \in G, D \in \mathcal{D}(V), \varphi \in \mathcal{O}(V)$. (We denote by $D \cdot \varphi$ the natural action of $\mathcal{D}(V)$ on $\mathcal{O}(V)$.) The corresponding coaction extends the coaction λ_{V} and we will still denote it by $\lambda_{V}: \mathcal{D}(V) \rightarrow \mathcal{O}(G) \boxtimes \mathcal{D}(V)$.

Let $M \in \operatorname{Mod} \mathcal{D}_{V}$. The module M is said to be a weakly G-equivariant $\mathcal{D}_{V^{-}}$ module if $M \in \mathfrak{M}\left(\mathcal{O}_{V}, G\right)$ and

$$
g \cdot(D \cdot v)=(g \cdot D) \cdot(g \cdot v)
$$

for all $g \in G, D \in \mathcal{D}(V)$ and $v \in M$. (This is equivalent to saying that $\lambda_{M}(D . v)=$ $\lambda_{V}(D) \lambda_{M}(v)$.) We denote by $\mathfrak{M}\left(\mathcal{D}_{V}, G^{w}\right)$ the category of weakly G-equivariant $\mathcal{D}(V)$-modules. Then, a module $M \in \operatorname{Mod} \mathcal{D}_{V}$ is weakly G-equivariant if, and only if, there exists a map θ as in (1.2) \& (1.3) which is $\mathcal{O}(G) \boxtimes \mathcal{D}(V)$ linear.

The differential of the G-action on V yields a Lie algebra map, τ_{V}, from $\mathfrak{g}=$ $\operatorname{Lie}(G)$ to the Lie algebra Θ_{V} of vector fields on V. It is defined by

$$
\left(\tau_{V}(\xi) \cdot \varphi\right)(x)=\frac{d}{d t}_{\mid t=0} \varphi(\exp (-t \xi) \cdot x)
$$

for all $\xi \in \mathfrak{g}, \varphi \in \mathcal{O}(V), x \in V$. Notice that $\tau_{V}(\xi)$ identifies with a derivation of $\mathcal{O}(V)$ and that $\tau_{V}(\operatorname{Ad}(g) \cdot \xi)=g \cdot \tau_{V}(\xi)$ for all $g \in G$. The differential of the
G-action on $\mathcal{D}(V)$ is then given by

$$
\xi . D=\left[\tau_{V}(\xi), D\right], \text { for all } D \in \mathcal{D}(V)
$$

Let $M \in \mathfrak{M}\left(\mathcal{O}_{V}, G\right)$. The differential of the G-action on M gives a \mathfrak{g}-module structure on M :

$$
\xi \cdot v=\frac{d}{d t}_{\mid t=0}(\exp (t \xi) \cdot v), \text { for all } \xi \in \mathfrak{g} \text { and } v \in M
$$

The module M is called a G-equivariant \mathcal{D}_{V}-module if $M \in \mathfrak{M}\left(\mathcal{D}_{V}, G^{w}\right)$ and

$$
\begin{equation*}
\tau_{V}(\xi) \cdot v=\xi \cdot v, \text { for all } \xi \in \mathfrak{g} \text { and } v \in M \tag{1.4}
\end{equation*}
$$

Then, a module $M \in \operatorname{Mod} \mathcal{D}_{V}$ is G-equivariant if, and only if, there exists a map θ as in (1.2) \& (1.3) which is $\mathcal{D}(G) \boxtimes \mathcal{D}(V)$ linear.
Remarks. (1) Let $M \in \mathfrak{M}\left(\mathcal{O}_{V}, G\right)$. If $v \in M^{G}$ we have $\lambda_{M}(v)=1_{G} \boxtimes v$ and therefore $\theta\left(1_{G} \boxtimes v\right)=1_{G \times V} \otimes_{\mu \#} v$.
(2) Set

$$
\begin{equation*}
\mathcal{N}=\mathcal{D}_{V} / \mathcal{D}_{V} \tau_{V}(\mathfrak{g}) \tag{1.5}
\end{equation*}
$$

Then $\mathcal{N} \in \mathfrak{M}\left(\mathcal{D}_{V}, G\right)$. Moreover, when G is connected every subquotient of \mathcal{N} is in $\mathfrak{M}\left(\mathcal{D}_{V}, G\right)($ see $[9,14])$.
(3) Suppose that $M \in \mathfrak{M}\left(\mathcal{D}_{V}, G\right)$. Then, when G is connected:

$$
\left\{M=\mathcal{D}_{V} \cdot v \text { with } v \in M^{G}\right\} \Longleftrightarrow\{M \text { is a quotient of } \mathcal{N}\}
$$

The definitions of $\mathfrak{M}\left(\mathcal{O}_{V}, G\right), \mathfrak{M}\left(\mathcal{D}_{V}, G^{w}\right)$ and $\mathfrak{M}\left(\mathcal{D}_{V}, G\right)$ carry over to the case when the smooth variety V is not necessarily affine, see $[3,8,15]$. For instance, $M \in \operatorname{Mod} \mathcal{D}_{V}$ is G-equivariant if there exists an isomorphism $\theta: \mathcal{O}_{G} \boxtimes M 工 \mu^{*} M$ of $\mathcal{D}_{G \times V}$-modules which satisfies the conditions of (1.3).

Let $F: Y \rightarrow X$ be a G-equivariant morphism between (not necessarily affine) smooth G-varieties. Recall that if $M \in \operatorname{Mod} \mathcal{D}_{X}$ one defines the inverse image of M by setting

$$
F^{!} M=\left(\mathcal{D}_{Y \rightarrow X} \otimes_{\mathcal{D}_{X}}^{L} M\right)\left[d_{Y, X}\right]
$$

where $\mathcal{D}_{Y \rightarrow X}=F^{*} \mathcal{D}_{X}=\mathcal{O}_{Y} \otimes_{F} \mathcal{D}_{X}$ and $d_{Y, X}=\operatorname{dim} Y-\operatorname{dim} X$. The inverse image is an object in the derived category $D^{b}\left(\mathcal{D}_{Y}\right)$ of $\operatorname{Mod} \mathcal{D}_{Y}$, and the construction of $F^{!}$extends to $D^{b}\left(\mathcal{D}_{X}\right)$. Observe that $\mathcal{D}_{Y \rightarrow X}$ is a weakly G-invariant right $\mathcal{D}_{X^{-}}$ module for the G-action $g .\left(\varphi \otimes_{F \#} D\right)=g \cdot \varphi \otimes_{F \#} g \cdot D, \varphi \in \mathcal{O}(Y), D \in \mathcal{D}(X)$.

Assume that $M \in \mathfrak{M}\left(\mathcal{D}_{X}, G\right)$ and let $\theta_{M}: p_{2, X}^{*} M \rightarrow \mu_{X}^{*} M$ be the associated isomorphism (with obvious notation). Set $r=\operatorname{dim} G$. Since $p_{2, X}$ and μ_{X} are smooth, $p_{2, X}^{!} M$ and $\mu_{X}^{!} M$ have cohomology concentrated in degree $-r$, equal to $p_{2, X}^{*} M$ and $\mu_{X}^{*} M$ respectively. Thus one can consider θ_{M} as an isomorphism of $\mathcal{D}_{G \times X}$-modules between $p_{2, X}^{!} M$ and $\mu_{X}^{!} M$. It follows from base change that we have an isomorphism in $D^{b}\left(\mathcal{D}_{G \times Y}\right)$

$$
\theta_{F^{!} M}: p_{2, Y}^{!} F^{!} M \xrightarrow{\sim} \mu_{Y}^{!} F^{!} M
$$

Indeed, the isomorphism $\theta_{F^{!} M}$ is defined by the left vertical arrow which makes the following diagram commutative:

Therefore, since $p_{2, Y}$ and μ_{Y} are smooth, we obtain isomorphisms of $\mathcal{D}_{G \times Y}$-modules in cohomology:

$$
\theta_{F^{!} M}: p_{2, Y}^{*} \mathcal{H}^{j}\left(F^{!} M\right) \xrightarrow{\sim} \mu_{Y}^{*} \mathcal{H}^{j}\left(F^{!} M\right)
$$

This implies that $\mathcal{H}^{j}\left(F^{!} M\right)$ has a natural induced structure of G-equivariant $\mathcal{D}_{Y^{-}}$ module. In particular, the G-action on $\mathcal{H}^{j}\left(F^{!} M\right)$ is uniquely determined by the action of G on M. To compute this action one may proceed as follows.

Suppose that we are given a resolution $\left(P^{\bullet}, d\right)$ of $\mathcal{D}_{Y \rightarrow X}$ by weakly G-equivariant right \mathcal{D}_{X}-modules, see [6, Lemma 4.7] and [8, Proposition 2.1], such that each P^{k} is projective as a \mathcal{D}_{X}-module and d is G-equivariant. Then, since $\left(P^{\bullet} \otimes_{\mathcal{D}_{X}} M, d \otimes\right.$ $\left.1_{M}\right)=F^{!} M\left[-d_{Y, X}\right]$, the G-action on $\mathcal{H}^{j}\left(F^{!} M\right)$ is induced by the diagonal G-action on $P^{\bullet} \otimes_{\mathcal{D}_{X}} M$.

Moreover, since $\mathcal{D}_{G \times Y \rightarrow G \times X}=\mathcal{D}_{G} \boxtimes \mathcal{D}_{Y \rightarrow X}$, the objects $\left(1_{G} \times F\right)^{!} \mu_{X}^{!} M$ and $\left(1_{G} \times F\right)!p_{2, X}^{!} M$ are represented, up to a shift, by

$$
\left(\mathcal{D}_{G} \boxtimes P^{\bullet}\right) \otimes_{\mathcal{D}_{G \times X}} \mu_{X}^{!} M \quad \text { and } \quad\left(\mathcal{D}_{G} \boxtimes P^{\bullet}\right) \otimes_{\mathcal{D}_{G \times X}} p_{2, X}^{!} M
$$

Thus the isomorphism $\theta_{F^{!} M}$ is induced by

$$
\left(1_{G} \boxtimes 1_{P} \bullet\right) \otimes \theta_{M}:\left(\mathcal{D}_{G} \boxtimes P^{\bullet}\right) \otimes p_{2, X}^{*} M \longrightarrow\left(\mathcal{D}_{G} \boxtimes P^{\bullet}\right) \otimes \mu_{X}^{*} M .
$$

This applies for instance to the morphisms p_{2} and μ, and the isomorphism θ of (1.2) can be viewed as an isomorphism in $\mathfrak{M}\left(\mathcal{D}_{G \times V}, G\right)$ between $p_{2}^{!} M=p_{2}^{*} M[r]$ and $\mu^{!} M=\mu^{*} M[r]$.

2. Reduction to a Slice

In this section we apply the results of $\S 1$ to the case where the variety V is a finite dimensional rational G-module, which we denote by E. We keep the notation of (1.1). We set $r=\operatorname{dim} G, n=\operatorname{dim} E$ and we fix $x \in E$. Denote by $t_{x}: y \mapsto y+x$ the translation by x and let $\mu_{x}=\mu \circ\left(1_{G} \times t_{x}\right): G \times E \rightarrow E,(g, v) \mapsto g \cdot(x+v)$.

Let $F \subseteq E$ be a linear subspace of dimension m. We assume in this section that the following hypothesis holds:

$$
\mu_{x}: G \times F \rightarrow E \text { is a smooth morphism and } E=F \oplus \mathfrak{g} \cdot x
$$

Set $\mathbf{O}=G . x$, which is a quasi-affine subvariety of E. Then, by $(\dagger), x+F$ is a transverse slice to \mathbf{O} at the point x, see [13, §5.1]. Let \mathfrak{g}^{x} be the stabilizer of x in \mathfrak{g} and set $s=\operatorname{dim} \mathfrak{g}^{x}$. Then, (\dagger) implies that

$$
\operatorname{dim} \mathbf{O}=r-s=n-m
$$

Proposition 2.1. There exists an affine open neighborhood U of 0 in F such that, if ψ is the restriction of μ_{x} to $G \times F$,
(1) ψ is smooth on $Y:=G \times U, \Omega=\psi(Y)=G \cdot(x+U)$ is a G-stable open subset of E;
(2) $\Omega \cap \overline{\mathbf{O}}=\mathbf{O}$ and $\mathbf{O} \cap\{x+U\}=\{x\}$.

Proof. Let $T=(x+F) \times{ }_{E} \mathbf{O}$ be the intersection of $x+F$ and \mathbf{O}; thus T is a subscheme of E. From (\dagger) and [4, IV.17.13.8] it follows that this intersection is transverse of dimension 0 at the point x. Hence [ibid], there exists an affine open subset $0 \in U_{0} \subseteq F$ such that the intersection $\left(x+U_{0}\right) \cap \mathbf{O}$ is transverse at x. In particular $\operatorname{dim}\left(\left(x+U_{0}\right) \cap \mathbf{O}\right)=0$, therefore $\left(x+U_{0}\right) \cap \mathbf{O}$ is a finite set [4, O.14.1.9], say $\left\{x=x_{0}, x_{1}, \ldots, x_{t}\right\}$. For each $i=1, \ldots, t$, pick an affine open subset
$0 \in U\left(x_{i}\right) \subset F$ such that $x_{i} \notin x+U\left(x_{i}\right)$. Set $U_{1}=U_{0} \cap U\left(x_{1}\right) \cap \cdots \cap U\left(x_{t}\right)$. Then, U_{1} is an affine open neighborhood of 0 and $\left(x+U_{1}\right) \cap \mathbf{O}=\{x\}$.

Since \mathbf{O} is open in its closure, we can find a G-stable open subset $V \subset E$ such that $V \cap \overline{\mathbf{O}}=\mathbf{O}$. Define an open neighborhood of 0 in F by:

$$
U_{2}=p_{2} \psi^{-1}(V)=\{u \in F: \exists g \in G, g \cdot(x+u) \in V\}
$$

Let $v \in U_{2}$; since ψ is G-equivariant, we have $\psi(G \times\{v\}) \subset V$. Hence, $G \times U_{2} \subset$ $\psi^{-1}(V)$. Observe that, if $0 \in U \subset U_{2}$ is any open subset, $\psi(G \times U)$ is open and $\psi(G \times U) \cap \overline{\mathbf{O}}=\mathbf{O}$.

Now, let U_{1} be as in the first paragraph and choose an affine open subset $0 \in$ $U \subseteq U_{1} \cap U_{2}$. Then U satisfies the required properties.

We will keep the notation of Proposition 2.1 for the rest of this section. In particular, ψ will be the smooth morphism

$$
\psi: Y=G \times U \longrightarrow E, \quad \psi(g, u)=g \cdot(x+u)
$$

Set $X=x+U$ and notice that t_{x} induces an isomorphism (of varieties) from U onto X, with inverse t_{-x}. Define:

$$
\begin{equation*}
\beta: U \hookrightarrow E, \beta_{x}: X \hookrightarrow E, \quad \imath:\{x\} \hookrightarrow E \text { (the natural inclusions) } \tag{2.1}
\end{equation*}
$$

Observe that $\beta_{x}=t_{x} \circ \beta \circ t_{-x}$ and $\psi=\mu_{x} \circ\left(1_{G} \times \beta\right)$.
Let $M \in \mathfrak{M}\left(\mathcal{D}_{E}, G\right)$. We assume that M is a coherent \mathcal{D}_{E}-module, i.e. M is a finitely generated G-equivariant $\mathcal{D}(E)$-module. Recall from $\S 1$ that we have an isomorphism of G-equivariant $\mathcal{D}_{G \times E}$-modules,

$$
\theta: p_{2}^{!} M=p_{2}^{*} M[r] \xrightarrow{\sim} \mu^{*} M[r]=\mu^{!} M
$$

By using the translation t_{x} we can construct the \mathcal{D}_{E}-module $t_{x}^{*} M$, which identifies with $t_{x}^{!} M$. Observe that $t_{x} \in \operatorname{Aut}(E)$ induces an automorphism of $\mathcal{O}(E)$, $\left(t_{x} . \varphi\right)(y)=\varphi(y-x)$ for $\varphi \in \mathcal{O}(E), y \in E$, and therefore yields an automorphism of $\mathcal{D}(E),\left(t_{x} . D\right)(\varphi)=t_{x} . D\left(t_{-x} . \varphi\right)$ for $D \in \mathcal{D}(E)$. Then, the $\mathcal{D}(E)$-module $t_{x}^{*} M$ can be identified with the vector space M endowed with the action $D \cdot u=\left(t_{x} \cdot D\right) u$. As in $\S 1$ we have maps $t_{x}^{\#}: M \rightarrow t_{x}^{*} M$ and $t_{-x}^{\#}: M \rightarrow t_{-x}^{*} M$. We set:

$$
t_{-x} \cdot v=t_{x}^{\#}(v), \quad t_{x} \cdot v=t_{-x}^{\#}(v)
$$

We will adopt a similar notation for the inverse images by t_{x}, or t_{-x}, for modules over X, or U.
Lemma 2.2. There exists an isomorphism of G-equivariant $\mathcal{D}_{G \times E}$-modules:

$$
\theta_{x}: p_{2}^{!} t_{x}^{*} M \xrightarrow{\sim} \mu_{x}^{!} M
$$

Proof. Since p_{2} and μ are smooth, $p_{2}^{!} t_{x}^{!} M=p_{2}^{*} t_{x}^{*} M[r]$ and $\mu_{x}^{!} M=\mu^{*} M[r]$. Notice that $\mu_{x}^{!} M=\left(1_{G} \times t_{x}\right)^{!} \mu^{!} M=\left(1_{G} \times t_{x}\right)^{*} \mu^{!} M$ and $p_{2}^{!} t_{x}^{*} M=\left(\mathcal{O}(G) \boxtimes t_{x}^{*} M\right)[r]=$ $\left(1_{G} \times t_{x}\right)^{*} p_{2}^{!} M$. Now, the G-equivariant isomorphism $1_{G} \times t_{x}: G \times E \rightarrow G \times E$ yields the isomorphism, in $\mathfrak{M}\left(\mathcal{D}_{G \times E}, G\right)$,

$$
\theta_{x}=\left(1_{G} \times t_{x}\right)^{*}(\theta):\left(1_{G} \times t_{x}\right)^{*} p_{2}^{!} M=p_{2}^{!} t_{x}^{*} M \xrightarrow{\sim}\left(1_{G} \times t_{x}\right)^{*} \mu^{!} M=\mu_{x}^{!} M
$$

as desired.
Remark. The isomorphism θ_{x} yields the isomorphism

$$
\theta_{x}: \mathcal{H}^{-r}\left(p_{2}^{!} t_{x}^{*} M\right)=\mathcal{O}(G) \boxtimes t_{x}^{*} M \xrightarrow{\sim} \mu_{x}^{*} M=\mathcal{H}^{-r}\left(\mu_{x}^{!} M\right)
$$

which is given by $\theta_{x}\left(a \boxtimes t_{-x} \cdot v\right)=a S v_{(1)} \otimes_{\mu_{x}^{\#}} v_{(2)}$ for $a \in \mathcal{O}(G)$ and $v \in M$.

Since ψ is smooth and G-equivariant, $\psi^{*} M$ is coherent [3, VI.4.8] and $\psi^{!} M=$ $\psi^{*} M[r+m-n] \in \mathfrak{M}\left(\mathcal{D}_{G \times U}, G\right)$. Thus,

$$
\mathcal{H}^{j}\left(\psi^{!} M\right)= \begin{cases}0 & \text { if } j \neq-s=n-r-m \tag{2.2}\\ \psi^{*} M & \text { if } j=-s=n-r-m\end{cases}
$$

The G-action on $\psi^{*} M=\mathcal{O}(G \times U) \otimes_{\psi^{\#}} M$ is given by $g .\left(b \otimes_{\psi^{\#}} v\right)=g . b \otimes_{\psi^{\#}} g . v$, $b \in \mathcal{O}(G \times U), v \in M$.

Lemma 2.3. There exists an isomorphism of G-equivariant \mathcal{D}_{Y}-modules

$$
\psi^{!} M \cong\left(\mathcal{O}(G) \boxtimes \beta^{!} t_{x}^{*} M\right)[r]
$$

and $\beta^{!} t_{x}^{!} M=\left(\beta^{*} t_{x}^{*} M\right)[m-n]$. Hence

$$
\mathcal{H}^{j}\left(\beta^{!} t_{x}^{!} M\right)= \begin{cases}0 & \text { if } j \neq \operatorname{dim} \mathbf{O} \\ \mathcal{O}_{U} \otimes_{\beta} \# t_{x}^{*} M & \text { if } j=\operatorname{dim} \mathbf{O}\end{cases}
$$

Proof. Notice first that, since t_{x} is an isomorphism, we can identify $t_{x}^{!} M$ with $t_{x}^{*} M$. From $\psi=\mu_{x} \circ\left(1_{G} \times \beta\right)$ we deduce that $\psi!M=\left(1_{G} \times \beta\right)^{!} \mu_{x}^{!} M$. Therefore, using the G-equivariant morphism $1_{G} \times \beta$, we obtain

$$
\left(1_{G} \times \beta\right)^{!}\left(\theta_{x}\right):\left(1_{G} \times \beta\right)^{!} p_{2}^{!} t_{x}^{*} M \xrightarrow{\sim} \psi^{!} M
$$

Then, $\left(1_{G} \times \beta\right)!p_{2}^{!} t_{x}^{*} M=\left(1_{G} \times \beta\right)^{!}\left(\mathcal{O}(G) \boxtimes t_{x}^{*} M\right)[r]=\left(\mathcal{O}(G) \boxtimes \beta^{!} t_{x}^{*} M\right)[r]$ yields $\psi^{!} M \cong\left(\mathcal{O}(G) \boxtimes \beta^{!} t_{x}^{*} M\right)[r]$. From this isomorphism one deduces that $\mathcal{H}^{j-r}\left(\psi^{!} M\right) \cong$ $\mathcal{O}_{G} \boxtimes \mathcal{H}^{j}\left(\beta^{!} t_{x}^{*} M\right)$. Then, by (2.2), $\mathcal{H}^{j}\left(\beta^{!} t_{x}^{*} M\right)=0$ unless $j=n-m$, and

$$
\mathcal{H}^{n-m}\left(\beta^{!} t_{x}^{*} M\right)=\mathcal{H}^{n-m}\left(\left(\mathcal{O}_{U} \otimes_{\beta^{\#}}^{L} t_{x}^{*} M\right)[m-n]\right)=\mathcal{O}_{U} \otimes_{\beta \#} t_{x}^{*} M
$$

This completes the proof of the lemma.
In order to simplify the notation we set

$$
t_{x}^{*} M_{\mid U}=\mathcal{H}^{\operatorname{dim} \mathbf{O}}\left(\beta^{!} t_{x}^{!} M\right)=\mathcal{O}_{U} \otimes_{\beta \#} t_{x}^{*} M
$$

Recall that the natural inclusion $\beta_{x}: X \hookrightarrow E$ is equal to $t_{x} \circ \beta \circ t_{-x}$. Therefore, $\beta_{x}^{!} M=t_{-x}^{!} \beta^{!} t_{x}^{!} M$ has non-zero cohomology only in degree $\operatorname{dim} \mathbf{O}=n-m$, where $\mathcal{H}^{\operatorname{dim} \mathbf{O}}\left(\beta_{x}^{!} M\right)=\mathcal{O}_{X} \otimes_{\beta^{\#}} M$. We set

$$
M_{\mid X}=\mathcal{H}^{\operatorname{dim} \mathbf{O}}\left(\beta_{x}^{!} M\right)=\mathcal{O}_{X} \otimes_{\beta_{x}^{\#}} M
$$

Thus we have:

$$
\begin{equation*}
\beta_{x}^{!} M=M_{\mid X}[m-n] \tag{2.3}
\end{equation*}
$$

Notice that it follows easily from $\beta_{x} \circ t_{x}=t_{x} \circ \beta$ (on U) that

$$
\begin{equation*}
t_{x}^{*}\left(M_{\mid X}\right)=t_{x}^{*} M_{\mid U} \tag{2.4}
\end{equation*}
$$

Let S be a complementary subspace to $F, E=F \oplus S$. Let $\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis of F and $\left\{v_{m+1}, \ldots, v_{n}\right\}$ be a basis of S. Denote by $\left\{y_{j}=v_{j}^{*}\right\}_{j}$ the dual basis and set $f_{j}=t_{x} \cdot y_{j}=y_{j}-y_{j}(x), 1 \leqslant j \leqslant n$. Then,

$$
\mathcal{O}(F)=S\left(E^{*}\right) / J, \quad \mathcal{O}(x+F)=S\left(E^{*}\right) / J_{x}
$$

where $J=\left(y_{m+1}, \ldots, y_{n}\right) S\left(E^{*}\right)$ and $J_{x}=t_{x} . J=\left(f_{m+1}, \ldots, f_{n}\right) S\left(E^{*}\right)$.
Let $\jmath: U \hookrightarrow F$ and $\jmath_{x}: X \hookrightarrow x+F$ be the natural inclusions.
Lemma 2.4. We have:
(1) $M_{\mid X}=\mathcal{O}_{X} \otimes_{\jmath_{x}^{\#}}\left(M / J_{x} M\right)$;
(2) $t_{x}^{*} M_{\mid U}=\mathcal{O}_{U} \otimes_{\jmath^{\#}}\left(t_{x}^{*} M / J t_{x}^{*} M\right)=\mathcal{O}_{U} \otimes_{\jmath^{\#}} t_{x}^{*}\left(M / J_{x} M\right)$.

Proof. 1. Let $\tilde{\beta}_{x}: x+F \hookrightarrow E$ be the inclusion. Thus $\beta_{x}=\tilde{\beta}_{x} \circ \jmath_{x}$. Since \jmath_{x} is an open immersion, $\mathcal{H}^{j}\left(\beta_{x}^{!} M\right)=\mathcal{O}_{X} \otimes_{\jmath_{x}^{\#}} \mathcal{H}^{j}\left(\tilde{\beta}_{x}^{!} M\right)$ for all j. Recall that $\tilde{\beta}_{x}^{!} M=\left(\mathcal{D}_{x+F \rightarrow E} \otimes_{\mathcal{D}_{E}}^{L} M\right)[m-n]$. Set $V_{x}=\oplus_{i=m+1}^{n} \mathbb{C} d f_{i}$ and $\mathcal{C}_{x}^{-p}=\bigwedge^{p} V_{x} \boxtimes \mathcal{D}_{E}$. By [3, VI.7.4], $\tilde{\beta}_{x}^{!} M=\left(\mathcal{C}_{x}^{\bullet} \otimes_{\mathcal{D}_{E}} M, \partial_{x}\right)[m-n]$, with $\mathcal{C}_{x}^{p} \otimes_{\mathcal{D}_{E}} M=\bigwedge^{-p} V_{x} \boxtimes M$ and

$$
\partial_{x}\left(d f_{j_{1}} \wedge \cdots \wedge d f_{j_{p}} \boxtimes v\right)=\sum_{a=1}^{p}(-1)^{a+1} d f_{j_{1}} \wedge \cdots \wedge \widehat{d f_{j_{a}}} \wedge \cdots \wedge d f_{j_{p}} \boxtimes f_{j_{a}} v
$$

It follows that $\mathcal{H}^{n-m}\left(\tilde{\beta}_{x}^{!} M\right)=\mathcal{H}^{0}\left(\mathcal{C}_{x}^{\bullet} \otimes_{\mathcal{D}_{E}} M, \partial_{x}\right)=M / J_{x} M=\mathcal{O}_{x+F} \otimes_{\tilde{\beta}_{x}^{\#}} M$.
2. follows from 1. and (2.4).

Let $\operatorname{Supp} M$ be the support of the \mathcal{D}_{E}-module M. Since M is coherent and G-equivariant, $\operatorname{Supp} M$ is a closed G-stable subvariety of E and we have $\operatorname{Supp} M=$ $\bigcup_{v \in M} \operatorname{Supp} \mathcal{O}_{E . v}$. From now on we assume that

$$
\text { Supp } M \subseteq \overline{\mathbf{O}}
$$

Recall that the local cohomology group $H_{[0]}^{m}\left(\mathcal{O}_{U}\right)$ is a \mathcal{D}_{U}-module isomorphic to $\mathcal{D}_{U} /\left(\mathcal{D}_{U} y_{1}+\cdots+\mathcal{D}_{U} y_{m}\right)$. It is easily seen that $t_{-x}^{*} H_{[0]}^{m}\left(\mathcal{O}_{U}\right)=H_{[x]}^{m}\left(\mathcal{O}_{X}\right) \cong$ $\mathcal{D}_{X} /\left(\mathcal{D}_{X} f_{1}+\cdots+\mathcal{D}_{X} f_{m}\right)$.
Proposition 2.5. Let M be as above. Then, there exists $k \in \mathbb{N}$ such that
(1) $M_{\mid X} \cong H_{[x]}^{m}\left(\mathcal{O}_{X}\right)^{\oplus k}, t_{x}^{*} M_{\mid U} \cong H_{[0]}^{m}\left(\mathcal{O}_{U}\right)^{\oplus k}$;
(2) $\psi!M \cong\left(\mathcal{O}_{G} \boxtimes H_{[0]}^{m}\left(\mathcal{O}_{U}\right)^{\oplus k}\right)[s]$;
(3) if $\operatorname{Supp} M=\overline{\mathbf{O}}$, then $k \geqslant 1$.

Proof. 1. Clearly, the support of $M_{\mid X}=\mathcal{O}_{X} \otimes_{\beta_{x}^{\#}} M$ is contained in $X \cap \operatorname{Supp} M \subseteq$ $X \cap \overline{\mathbf{O}}$. But, $X \cap \overline{\mathbf{O}} \subseteq X \cap \Omega \cap \overline{\mathbf{O}}=X \cap \mathbf{O}=\{x\}$. Thus $M_{\mid X}$ is a \mathcal{D}_{X}-module whose support is contained in $\{x\}$; therefore, by Kashiwara's equivalence [3, VI.7.11], $M_{\mid X}=H_{[x]}^{m}\left(\mathcal{O}_{X}\right)^{\oplus k}$ for some k. The proof is similar for $t_{x}^{*} M_{\mid U}$.
2. follows from 1. and Lemma 2.3.
3. The hypothesis implies that there exists $v \in M$ such that $\mathbf{O} \cap \operatorname{Supp} \mathcal{O}_{E} . v \neq \emptyset$. Then, since ψ is flat and $\Omega \supset \mathbf{O}$, we have $1 \otimes_{\beta \#} v \in \psi^{*} M \backslash\{0\}$. Thus $\psi^{*} M \neq 0$, i.e. $k \geqslant 1$.

Denote by $\mathbf{m}_{x}=\left(f_{1}, \ldots, f_{n}\right) \mathcal{O}(E)$ and $\mathbf{n}_{x}=\left(f_{1}, \ldots, f_{m}\right) \mathcal{O}(F)$ the maximal ideals asociated to $x \in E$ and $x \in(x+F)$ (respectively). Set $\mathbb{C}_{x}=\mathcal{O}(E) / \mathbf{m}_{x} \mathcal{O}(E)$.

Theorem 2.6. Let $\imath:\{x\} \hookrightarrow E$ be the inclusion. Set

$$
\omega^{-1}=d f_{1} \wedge \cdots \wedge d f_{m} \text { and } T=\left\{u \in M / J_{x} M: \mathbf{n}_{x} u=0\right\}
$$

Then,
(1) $T \cong\left\{v \in H_{[x]}^{m}\left(\mathcal{O}_{X}\right)^{\oplus k}: \mathbf{n}_{x} v=0\right\}$ is a \mathbb{C}-vector space of dimension k;
(2) $\imath^{!} M$ has cohomology concentrated in degree $\operatorname{dim} \mathbf{O}$ and

$$
\mathcal{H}^{\operatorname{dim} \mathbf{O}}\left(\imath^{!} M\right)=\operatorname{Tor}_{m}^{\mathcal{O}(E)}\left(\mathbb{C}_{x}, M\right)=\omega^{-1} \otimes_{\mathbb{C}_{x}} T
$$

Proof. Recall [3, VI.4.2] that $\mathcal{H}^{j}\left(l^{!} M\right)=\operatorname{Tor}_{-j+n}^{\mathcal{O}(E)}\left(\mathbb{C}_{x}, M\right)$. Let $\gamma:\{x\} \hookrightarrow X$ be the inclusion. Then, $\imath=\beta_{x} \circ \gamma$ and $\imath^{!} M=\gamma^{!} \beta_{x}^{!} M$. Recall from (2.3) that $\beta_{x}^{!} M=M_{\mid X}[m-n]$. By Lemma 2.4 and Proposition 2.5 , we know that $M_{\mid X}=$
$\mathcal{O}_{X} \otimes_{J_{x}^{\#}}\left(M / J_{x} M\right) \cong H_{[x]}^{m}\left(\mathcal{O}_{X}\right)^{\oplus k}$ is supported on $\{x\}$. Thus, $T_{\mid X}=\left\{u \in M_{\mid X}\right.$: $\left.\mathbf{n}_{x} u=0\right\}$ is a \mathbb{C}-vector space of dimension k. Furthermore, by [3, VI.7.4],

$$
\mathcal{H}^{j}\left(\gamma^{!} M_{\mid X}\right)= \begin{cases}0 & \text { if } j \neq 0 \\ \omega_{\{x\} / X}^{-1} \otimes_{\mathbb{C}_{x}} T_{\mid X} & \text { if } j=0\end{cases}
$$

Since $\omega_{\{x\} / X}^{-1}=d f_{1} \wedge \cdots \wedge d f_{m}$, we obtain that $\imath^{!} M$ has cohomology concentrated in degree $n-m$ with $\mathcal{H}^{n-m}\left(\imath^{!} M\right)=\omega^{-1} \otimes \mathbb{C}_{x} T_{\mid X}$. To finish the proof it suffices to apply the following standard result to the module $N=M / J_{x} M$: Let N be any \mathcal{O}_{x+F}-module; then, if $N^{\prime}=\mathcal{O}_{X} \otimes_{j_{x}^{\#}} N$, one has

$$
\left\{u \in N: \mathbf{n}_{x} u=0\right\} \xrightarrow{\sim}\left\{u^{\prime} \in N^{\prime}: \mathbf{n}_{x} u^{\prime}=0\right\}
$$

through the natural map $\jmath_{x}^{\#}: N \rightarrow N^{\prime}, \jmath_{x}^{\#}(u)=1_{X} \otimes_{J_{x}^{\#}} u$.
One can factorize the inclusion $\imath:\{x\} \hookrightarrow E$ as follows: $\imath:\{x\} \stackrel{\imath_{1}}{\hookrightarrow} \mathbf{O} \xrightarrow{\imath_{2}} E$. We now compute $\imath_{2}^{!} M$, the "restriction to \mathbf{O} ".
Proposition 2.7. $\imath_{2}^{!} M$ has cohomology concentrated in degree 0 and, as an $\mathcal{O}_{\mathbf{O}^{-}}$ module, $\mathcal{H}^{0}\left(\imath_{2}^{!} M\right)=\operatorname{Tor}_{m} \mathcal{O}_{E}\left(\mathcal{O}_{\mathbf{O}}, M\right)$.
Proof. Notice first the following commutative diagram of G-equivariant morphisms

where $\pi(g, 0)=g \cdot x$.
Recall that, by Proposition 2.5, $\psi^{!} M \cong \psi^{*} M[s]$ with $\psi^{*} M=\mathcal{O}_{G} \boxtimes H_{[0]}^{m}\left(\mathcal{O}_{U}\right)^{\oplus k}$. Thus $\psi^{*} M=\mathcal{H}^{-s}\left(\psi^{!} M\right)$ is supported on $G \times\{0\}$. Since $\jmath_{2}: G \times\{0\} \hookrightarrow Y$ is a closed embedding, [3, VI.7.4] gives that $\int_{2}^{!} \psi^{*} M$ has cohomology concentrated in degree 0 ; equivalently, $\jmath_{2}^{!} \psi^{!} M$ has cohomology concentrated in degree $-s$.

On the other hand,

$$
\mathcal{H}^{j}\left(\pi^{!} \imath_{2}^{!} M\right)=\mathcal{H}^{j}\left(\left(\mathcal{D}_{G \times\{0\} \rightarrow \mathbf{O}} \otimes_{\mathcal{D}_{\mathbf{O}}}^{L} \imath_{2}^{!} M\right)[s]\right)=\mathcal{H}^{j+s}\left(\mathcal{D}_{G \times\{0\} \rightarrow \mathbf{O}} \otimes_{\mathcal{D}_{\mathbf{O}}}^{L} \imath_{2}^{!} M\right) .
$$

Since π is smooth and $\mathcal{D}_{G \times\{0\} \rightarrow \mathbf{O}}=\pi^{*} \mathcal{D}_{\mathbf{O}}$, it follows that, as an $\mathcal{O}_{G \times\{0\}}$-module,

$$
\mathcal{H}^{j}\left(\pi^{!} \imath_{2}^{!} M\right)=\mathcal{O}_{G \times\{0\}} \otimes_{\pi \#} \mathcal{H}^{j+s}\left(\imath_{2}^{!} M\right)
$$

Now, since π is faithfully flat and $\pi!\imath_{2}^{!} M=\jmath_{2}^{!} \psi^{!} M$, the previous paragraph implies that $\imath_{2}^{!} M$ has cohomology concentrated in degree 0 . By definition, $\imath_{2}^{!} M=\left(\mathcal{D}_{\mathbf{O}} \otimes_{\mathcal{D}_{E}}^{L}\right.$ $M)[-m]$. Hence, see [3, VI.4.2], $\mathcal{H}^{0}\left(\imath_{2}^{!} M\right)=\operatorname{Tor}_{m}^{\mathcal{O}_{E}}\left(\mathcal{O}_{\mathbf{O}}, M\right)$.

We set:

$$
\begin{equation*}
M_{\mid \mathbf{O}}=\mathcal{H}^{0}\left(l_{2}^{!} M\right) \tag{2.5}
\end{equation*}
$$

Denote by G^{x} the stabilizer of x in G and let G_{0}^{x} be its connected component. Define the component group of \mathbf{O} by

$$
A(\mathbf{O})=G^{x} / G_{0}^{x}
$$

Let $\pi: G \rightarrow \mathbf{O}, g \mapsto g . x$, be the natural morphism and L be a rational representation of G^{x}. Define an $\mathcal{O}_{\mathbf{O}}$-module \mathcal{L} by setting, for any open subset $W \subseteq \mathbf{O}$,

$$
\Gamma(W, \mathcal{L})=\left\{f: \pi^{-1}(W) \rightarrow L: f(g h)=h^{-1} . f(g) \text { for all } g \in \pi^{-1}(W), h \in G^{x}\right\}
$$

Then $\mathcal{L} \in \mathfrak{M}\left(\mathcal{O}_{\mathbf{O}}, G\right)$ [7, Theorem 4.8.1]. When L is a representation of the (finite) group $A(\mathbf{O})$, i.e. when G_{0}^{x} acts trivially on $L, \mathcal{L} \in \mathfrak{M}\left(\mathcal{D}_{\mathbf{O}}, G\right)$ and, conversely, any G-equivariant $\mathcal{D}_{\mathbf{O}}$-module is of this form, see $[7$, Proposition 4.11.1] and $[8, \S 4]$. An object of $\mathfrak{M}\left(\mathcal{D}_{\mathbf{O}}, G\right)$ will be called a connection on \mathbf{O}. The representation of $A(\mathbf{O})$ associated to a connection \mathcal{L} is the "geometric fibre at the point x ", $\mathcal{L}(x)=$ $\mathbb{C}_{x} \otimes_{\mathcal{O}_{\mathbf{O}}} \mathcal{L}=\mathcal{L}_{x} / \mathbf{m}_{x} \mathcal{L}_{x}$, where the $A(\mathbf{O})$-action is coming from the natural action of G^{x}.

Proposition 2.8. The $\mathcal{D}_{\mathbf{O}}-$ module $M_{\mid \mathbf{O}}$ is a connection and its geometric fibre at the point x is

$$
M_{\mid \mathbf{O}}(x)=\omega^{-1} \otimes_{\mathbb{C}} T
$$

Proof. Since $\tau_{2}: \mathbf{O} \hookrightarrow E$ is G-equivariant, the results of $\S 1$ ensure that $\imath_{2}^{!} M=M_{\mid \mathbf{O}}$ (see Proposition 2.7) is in $\mathfrak{M}\left(\mathcal{D}_{\mathbf{O}}, G\right)$. Therefore, by the remarks above, $M_{\mid \mathbf{O}}$ is a connection. In particular, $M_{\mid \mathbf{O}}$ is flat as an $\mathcal{O}_{\mathbf{O}}$-module and it follows that

$$
\imath!M=\imath_{1}^{!} \imath_{2}^{!} M=\imath_{1}^{!} M_{\mid \mathbf{O}}=\left(\mathcal{D}_{\{x\} \rightarrow \mathbf{O}} \otimes_{\mathcal{D}_{\mathbf{O}}}^{L} M_{\mid \mathbf{O}}\right)[m-n]
$$

has cohomology concentrated in degree $n-m$, where $\mathcal{H}^{n-m}\left(l^{!} M\right)=\mathbb{C}_{x} \otimes_{\mathcal{O}_{\mathbf{O}}} M_{\mid \mathbf{O}}=$ $M_{\mid \mathbf{O}}(x)$. The proposition then follows from Theorem 2.6.

Remark. We will see (in a particular case) in the next section how to compute the $A(\mathbf{O})$-action on $\omega^{-1} \otimes_{\mathbb{C}} T$.

Recall that $t_{x}^{*} M_{\mid U}=\mathcal{O}_{U} \otimes_{\beta \#} t_{x}^{*} M, M_{\mid X}=\mathcal{O}_{X} \otimes_{\beta_{x}^{\#}} M$. Thus we have maps $\beta^{\#}: t_{x}^{*} M \rightarrow t_{x}^{*} M_{\mid U}, \beta^{\#}(t)=1_{U} \otimes_{\beta \#} t$, and $\beta_{x}^{\#}: M \rightarrow M_{\mid X}, \beta_{x}^{\#}(v)=1_{X} \otimes_{\beta_{x}^{\#}} v$. We set:

$$
\begin{equation*}
\rho(v)=\beta^{\#}\left(t_{-x} \cdot v\right)=1_{U} \otimes_{\beta^{\#}} t_{-x} \cdot v \tag{2.6}
\end{equation*}
$$

Recall also from Lemma 2.4 that $t_{x}^{*} M_{\mid U}=\mathcal{O}_{U} \otimes_{\jmath^{\#}}\left(t_{x}^{*} M / J t_{x}^{*} M\right)$ and $M_{\mid X}=$ $\mathcal{O}_{X} \otimes_{j_{x}}\left(M / J_{x} M\right)$. Let $\varpi: t_{x}^{*} M \rightarrow t_{x}^{*} M / J t_{x}^{*} M$ and $\varpi_{x} M \rightarrow M / J_{x} M$ be the canonical projections. It is easy to see that, since $t_{x}^{*} M / J t_{x}^{*} M=t_{x}^{*}(M / J M)$, one has $t_{-x} \cdot\left(\varpi_{x}(v)\right)=\varpi\left(t_{-x} \cdot v\right)$. One obtains from the definitions that, for all $v \in M$,

$$
1_{X} \otimes_{\jmath_{x}^{\#}} \varpi_{x}(v)=1_{X} \otimes_{\beta_{x}^{\#}} v, \quad \rho(v)=1_{U} \otimes_{\beta \neq} t_{-x} \cdot v=1_{U} \otimes_{\jmath \#} \varpi\left(t_{-x} \cdot v\right) .
$$

It is also easily seen that the map $t_{x}^{\#}: M_{\mid X} \rightarrow t_{x}^{*}\left(M_{X}\right)=t_{x}^{*} M_{\mid U}$ is a bijection given by

$$
t_{x}^{\#}\left(a \otimes_{J_{x}^{\#}} \varpi_{x}(v)\right)=t_{-x} \cdot a \otimes_{\jmath^{\#}} \varpi\left(t_{-x} \cdot v\right)=\left(t_{-x} \cdot a\right) \rho(v)
$$

for all $a \in \mathcal{O}(X)$ and $v \in M$.
Recall from Lemma 2.2, and the remark thereafter, that θ_{x} yields an isomorphism $\mathcal{O}(G) \boxtimes \mu_{x}^{*} M \leadsto \mu_{x}^{*} M, \theta_{x}\left(a \boxtimes t_{-x} \cdot v\right)=a S v_{(1)} \otimes_{\mu_{x}^{\#}} v_{(2)}$. It follows that $\bar{\theta}_{x}=\left(1_{G} \times\right.$ $\beta)^{*}\left(\theta_{x}\right)$ is the isomorphism:

$$
\bar{\theta}_{x}: \mathcal{O}(G) \boxtimes t_{x}^{*} M_{\mid U} \xrightarrow{\sim} \psi^{*} M, \quad \bar{\theta}_{x}(a \boxtimes \rho(v))=a S v_{(1)} \otimes_{\psi \#} v_{(2)} .
$$

Lemma 2.9. Let $\alpha:\{e\} \times U \hookrightarrow Y$ be the inclusion and $\varphi:\{e\} \times U \xrightarrow{\sim} X$ be the restriction of ψ. Then, $\mathcal{H}{ }^{\operatorname{dim} \mathbf{O}}\left(\alpha^{!} \psi^{!} M\right)=\alpha^{*} \psi^{*} M=\varphi^{*} M_{\mid X}$ and $\bar{\theta}_{x}$ induces an isomorphism

$$
\alpha^{*}\left(\bar{\theta}_{x}\right): \mathbb{C} \boxtimes t_{x}^{*} M_{\mid U} \xrightarrow{\sim} \varphi^{*} M_{\mid X}, \quad 1 \boxtimes\left(t_{-x} . a\right) \rho(v) \mapsto \varphi^{\#}\left(a \otimes_{\jmath_{x}^{\#}} \varpi_{x}(v)\right),
$$

$a \in \mathcal{O}(X), v \in M$.

Proof. Recall that

$$
\alpha^{\prime} \psi^{!} M=\left(\mathcal{D}_{\{e\} \times U \rightarrow y} \otimes_{\mathcal{D} y}^{L} \psi^{!} M\right)[-r]=\left(\mathcal{D}_{\{e\} \times U \rightarrow y} \otimes_{\mathcal{D} y}^{L} \psi^{*} M\right)[m-n] .
$$

It follows that $\mathcal{H}^{n-m}\left(\alpha^{!} \psi^{!} M\right)=\alpha^{*} \psi^{*} M$. On the other hand, $\psi \circ \alpha=\beta_{x} \circ \varphi$ yields $\alpha^{*} \psi^{*} M=\varphi^{*} \beta_{x}^{*} M=\varphi^{*} M_{\mid X}$.

Let $v \in M$, then we have:

$$
\begin{aligned}
\alpha^{*}\left(\bar{\theta}_{x}\right)(1 \boxtimes \rho(v)) & =1_{\{e\} \times U} \otimes_{\alpha^{\#}} S v_{(1)} \otimes_{\psi \#} v_{(2)} \\
& =\left(S v_{(1)}\right)(e) \otimes_{(\psi \circ \alpha) \#} v_{(2)} \\
& =1 \otimes_{(\psi \circ \alpha) \#} v \\
& =\varphi^{\#}\left(1_{X} \otimes_{\beta_{x}^{\#}} v\right) \\
& =\varphi^{\#}\left(1_{X} \otimes_{\jmath_{x}^{\#}} \varpi_{x}(v)\right),
\end{aligned}
$$

as required.
From now on, in order to simplify the notation, we will identify the \mathcal{D}_{Y}-modules $\psi^{*} M$ and $\mathcal{O}(G) \boxtimes t_{x}^{*} M_{\mid U}$ through the isomorphism $\bar{\theta}_{x}$. By Lemma 2.9, the $\mathcal{D}_{\{e\} \times U^{-}}$ module $\varphi^{*} M_{\mid X}$ then identifies with $\mathbb{C} \boxtimes t_{x}^{*} M_{\mid U}$ via $\varphi^{\#}$; this imply that we will identify the elements $1 \boxtimes \rho(v)$ and $\varphi^{\#}\left(1_{X} \otimes_{\jmath_{x}} \varpi_{x}(v)\right)$.

Let $o:\{0\} \hookrightarrow U$ be the inclusion and recall that $\gamma:\{x\} \hookrightarrow X$. We have a commutative diagram:

It follows that $\bar{\varphi}$ gives an isomrphism:

$$
\imath^{!} M=\gamma^{!} \beta_{x}^{!} M \xrightarrow{\sim}(\varepsilon \times o)^{!} \alpha^{!} \psi^{!} M
$$

Since $\mathbb{C} \boxtimes t_{x}^{*} M_{\mid U}$ is supported on $\{e\} \times\{0\}$ (see Proposition 2.5), $(\varepsilon \times o)^{!} \alpha^{!} \psi^{!} M$ has cohomology concentrated in degree $\operatorname{dim} \mathbf{O}$ and $\bar{\varphi}^{\#}$ yields the isomorphism

$$
\bar{\varphi}^{\#}: \mathcal{H}^{\operatorname{dim} \mathbf{O}}\left(\imath^{!} M\right) \xrightarrow{\sim} \mathbb{C} \boxtimes \mathcal{H}^{0}\left(o^{!} t_{x}^{*} M_{\mid U}\right)
$$

Let $\mathbf{n}_{0}=\left(y_{1}, \ldots, y_{m}\right) \mathcal{O}(F)$ be the defining ideal of the point $0 \in F$. Since $f_{i}=$ $y_{i}-y_{i}(x)$, we have

$$
\omega_{\{0\} / U}^{-1}=d y_{1} \wedge \cdots \wedge d y_{m}=\omega^{-1}=d f_{1} \wedge \cdots \wedge d f_{m}
$$

Theorem 2.10. Set $T_{0}=\left\{u \in t_{x}^{*} M / J t_{x}^{*} M: \mathbf{n}_{0} u=0\right\}$. Then,
(1) $T_{0} \cong\left\{u \in H_{[0]}^{m}\left(\mathcal{O}_{U}\right)^{\oplus k}: \mathbf{n}_{0} u=0\right\}$ is a vector space of dimension k and $\mathcal{H}^{0}\left(o^{\prime} t_{x}^{*} M_{\mid U}\right)=\omega^{-1} \otimes_{\mathbb{C}} T_{0} ;$
(2) the isomorphism $\bar{\varphi}^{\#}: \mathcal{H}^{\operatorname{dim} \mathbf{O}}\left(\imath^{!} M\right) \leadsto \mathbb{C} \boxtimes \mathcal{H}^{0}\left(o^{!} t_{x}^{*} M_{\mid U}\right)$ coincides with

$$
\bar{\varphi}^{\#}: \omega^{-1} \otimes_{\mathbb{C}} T \longrightarrow \mathbb{C} \boxtimes\left(\omega^{-1} \otimes_{\mathbb{C}} T_{0}\right), \quad \omega^{-1} \otimes \varpi_{x}(v) \mapsto 1 \boxtimes\left(\omega^{-1} \otimes \varpi\left(t_{-x} \cdot v\right)\right) .
$$

Proof. Since $\mathcal{O}_{U} \otimes_{\jmath^{\#}}\left(t_{x}^{*} M / J t_{x}^{*} M\right) \cong H_{[0]}^{m}\left(\mathcal{O}_{U}\right)^{\oplus k}$ (see Lemma 2.4 and Proposition 2.5), the proof of 1 . is the same as the proof of Theorem 2.6. Observe in particular that

$$
\left\{u \in t_{x}^{*} M_{\mid U}: \mathbf{n}_{0} u=0\right\} \equiv\left\{u \in t_{x}^{*} M / J t_{x}^{*} M: \mathbf{n}_{0} u=0\right\}
$$

The assertion 2. then follows from 1. and the identification of $\varphi^{\#}\left(1_{X} \otimes_{\jmath \#} \varpi_{x}(v)\right)$ with $1 \boxtimes \rho(v)=1 \boxtimes\left(1_{U} \otimes_{\jmath^{\#}} \varpi\left(t_{-x} . v\right)\right)$

Remark. We notice for further use the following consequence of Theorem 2.10. Let $v \in M^{G}$. Then, $\lambda_{M}(v)=1_{G} \boxtimes v$ and therefore

$$
\psi^{\#}(v)=1_{Y} \otimes_{\psi^{\#}} v=\bar{\theta}_{x}\left(1_{G} \boxtimes \rho(v)\right) .
$$

Thus we may identify $\psi^{\#}(v)$ with $1_{G} \boxtimes \rho(v)$. Assume moreover that $\mathbf{n}_{0} \rho(v)=0$, then $\rho(v)=1_{U} \otimes_{\jmath^{\#}} \varpi\left(t_{-x} \cdot v\right) \in \mathcal{H}^{0}\left(o^{!} t_{x}^{*} M_{\mid U}\right)$ can be identified with $\varpi\left(t_{-x} \cdot v\right) \in T_{0}$.

3. The case of the adjoint representation

In this section we consider the case where G is the adjoint group of a semisimple Lie algebra \mathfrak{g} of dimension n. We are going to apply the results of $\S 2$ to the case of the adjoint action of G on $E=\mathfrak{g}$. Moreover, we will assume that the element $x \in \mathfrak{g}$ is nilpotent, hence $\mathbf{O}=G . x$ is a nilpotent orbit. We fix a coherent equivariant $\mathcal{D}_{\mathfrak{g}}$-module $M \in \mathfrak{M}\left(\mathcal{D}_{\mathfrak{g}}, G\right)$ such that $\operatorname{Supp} M=\overline{\mathbf{O}}$.

Suppose that $x=0$. Then, by Kashiwara's equivalence [3, VI.7.11] one has $M \cong H_{\{0\}}^{n}\left(\mathcal{O}_{\mathfrak{g}}\right)^{\oplus k}$ for some $k \geqslant 1$. In this case $A(\mathbf{O})=\{e\}$ and the connection $M_{\mid \mathbf{O}}$ is the vector space \mathbb{C}^{k}.

Therefore, we now will suppose that $x \neq 0$. Then, we can find an S-triplet $\{x, y, z\}$ containing x, i.e. $[x, y]=z,[z, x]=2 x,[z, y]=-2 y$ and $\mathfrak{s}=\mathbb{C} x+\mathbb{C} y+$ $\mathbb{C} z \cong \mathfrak{s l}(2, \mathbb{C})$. We take $F=\mathfrak{g}^{y}=\{\xi \in \mathfrak{g}:[\xi, y]=0\}$. Thus,

$$
n=r=\operatorname{dim} \mathfrak{g}, \quad m=s=\operatorname{dim} \mathfrak{g}^{y}
$$

In this situation it is well known [13, III.5.1, III.7.4] that $x+F=x+\mathfrak{g}^{y}$ is a transverse slice to \mathbf{O} at the point x. Thus the condition (\dagger) of $\S 2$ is satisfied. We adopt the notation of the previous section; in particular, we have a smooth morphism $\psi: Y=G \times U \rightarrow \mathfrak{g}$ as in Proposition 2.1. We can summarize the results about the equivariant \mathcal{D}_{Y}-module $\psi^{*} M$ in the following theorem, see Proposition 2.5, Theorem 2.6 and Proposition 2.8. Recall that we have the natural embedding $\imath:\{x\} \stackrel{\imath_{1}}{\hookrightarrow} \mathbf{O} \stackrel{\imath_{2}}{\hookrightarrow} \mathfrak{g}$.
Theorem 3.1. (1) The $\mathcal{D}_{G \times U}$-module $\psi^{*} M$ is isomorphic to $\mathcal{O}_{G} \boxtimes H_{[0]}^{m}\left(\mathcal{O}_{U}\right)^{\oplus k}$ for some $k \geqslant 1$.
(2) The $\mathcal{D}_{\mathbf{O}}$-module $M_{\mathbf{O}}=\mathcal{H}^{0}\left(\imath_{2}^{!} M\right)$ is the connection defined by the k-dimensional representation $\mathcal{H}^{\operatorname{dim} \mathbf{O}}(\imath!M)=\omega^{-1} \otimes_{\mathbb{C}} T$ of the finite group $A(\mathbf{O})$, where $\omega^{-1}=d y_{1} \wedge \cdots \wedge d y_{m}$ and $T=\left\{\varpi_{x}(v) \in M / J_{x} M: \mathbf{n}_{x} \varpi_{x}(v)=0\right\}$.

We now want to be more explicit on the action of $A(\mathbf{O})$ on $M_{\mid \mathbf{O}}(x)=\omega^{-1} \otimes T$. We first recall the following "Levi decomposition" of the stabilizer G^{x}.

Lemma 3.2. ([1, Proposition 2.4]) Let $G^{\phi}=\{g \in G: g . a=a$ for all $a \in \mathfrak{s}\}$ be the centralizer of the Lie subalgebra \mathfrak{s} and denote by G_{0}^{ϕ} its identity component. Then, G^{ϕ} is reductive and there exists a semidirect product decomposition $G^{x}=U^{x} \cdot G^{\phi}$,
where U^{x} is a normal unipotent subgroup. Furthermore, the map $G^{\phi} \hookrightarrow G^{x}$ induces the identification $A(\mathbf{O})=G^{\phi} / G_{0}^{\phi}$.

Recall that we have chosen a decomposition $\mathfrak{g}=\mathfrak{g}^{y} \oplus S$. Since $F=\mathfrak{g}^{y}$ is G^{ϕ}-stable and G^{ϕ} is reductive, we may choose S to be G^{ϕ}-stable (e.g. $S=[\mathfrak{g}, x]=T_{x}(G . x)$). Hence, with the notation of $\S 2$, the subspaces

$$
\bigoplus_{i=1}^{m} \mathbb{C} y_{i}, \quad \bigoplus_{i=m+1}^{n} \mathbb{C} y_{i}, \quad \bigoplus_{i=1}^{m} \mathbb{C} f_{i}, \quad \bigoplus_{i=m+1}^{n} \mathbb{C} f_{i}
$$

are G^{ϕ}-stable. Observe that $\mathbb{C} \omega^{-1}=\mathbb{C} d y_{1} \wedge \cdots \wedge d y_{m}$ carries a representation of G^{ϕ}. Furthermore, G^{ϕ} acts naturally on $M / J_{x} M$ and T. We will need the following well known result.
Lemma 3.3. Let $g \in G^{\phi}$ and $\xi \in \mathfrak{g}^{\phi}=\operatorname{Lie}\left(G^{\phi}\right)$. Then,
(1) $\operatorname{det} \operatorname{Ad}_{\mathfrak{g}^{y}}(g)=\operatorname{det} \operatorname{Ad}_{\mathfrak{g} / \mathfrak{g}^{y}}(g)=1$;
(2) $g \cdot \omega^{-1}=\omega^{-1}$;
(3) $\operatorname{trad} \mathfrak{g}^{y}(\xi)=\operatorname{trad} \mathfrak{g}^{g} \mathfrak{g}^{y}(\xi)=0$.

Proof. Since \mathfrak{g} is semisimple, $\operatorname{det} \operatorname{Ad}_{\mathfrak{g}}(g)=1$ for all $g \in G$. Recall that the Killing form B induces a symplectic form B_{y} on $\mathfrak{g} / \mathfrak{g}^{y}$ by the formula $B_{y}(\bar{\xi}, \bar{\eta})=B(y,[\xi, \eta])$. It is easily seen that B_{y} is G^{y}-invariant. Hence, if $g \in G^{\phi}, \operatorname{Ad}_{\mathfrak{g} / \mathfrak{g}^{y}}(g)$ belongs to the symplectic group $\operatorname{Sp}\left(\mathfrak{g} / \mathfrak{g}^{y}, B_{y}\right)$. This implies $\operatorname{det} \operatorname{Ad}_{\mathfrak{g} / \mathfrak{g}^{y}}(g)=1$. Now, the G^{ϕ}-stable decomposition $\mathfrak{g}=\mathfrak{g}^{y} \oplus S$ with $S \cong \mathfrak{g} / \mathfrak{g}^{y}$ (as a G^{ϕ}-module) yields $\operatorname{det} \operatorname{Ad}_{\mathfrak{g}^{y}}(g)=1$. This proves 1., and 2. follows from $g \cdot \omega^{-1}=\operatorname{det} \operatorname{Ad}_{\mathfrak{g}^{y}}\left(g^{-1}\right) \omega^{-1}$. The proof of 3. is similar.

Theorem 3.4. The representation of $A(\mathbf{O})$ on the fibre $M_{\mid \mathbf{O}}(x)=\omega^{-1} \otimes_{\mathbb{C}} T$ is induced by the natural G^{ϕ}-action on T.

Proof. Write $\imath=\tilde{\beta_{x}} \circ \tilde{\gamma}$, where $\tilde{\gamma}:\{x\} \hookrightarrow x+F$ and $\tilde{\beta}_{x}: x+F \hookrightarrow \mathfrak{g}$. The maps $\tilde{\gamma}$ and $\tilde{\beta}_{x}$ being G^{ϕ}-equivariant, we have a natural G^{ϕ}-action on $M_{\mid \mathbf{O}}(x)=\mathcal{H}^{\operatorname{dim} \mathbf{O}}\left(\imath^{!} M\right)$ which yields the representation of the group $A(\mathbf{O})$ that we want to compute.

Set $V_{x}=\oplus_{i=m+1}^{n} \mathbb{C} d f_{i}=\oplus_{i=m+1}^{n} \mathbb{C} d y_{i}$; then V_{x} is a G^{ϕ}-stable subspace of \mathfrak{g}^{*}. We have seen in the proof of Lemma 2.4 that (setting $\partial_{I I}=\partial_{x}$),

$$
\tilde{\beta}_{x}^{!} M=\left(\mathcal{C}_{I I}^{\bullet}=\mathcal{C}_{x}^{\bullet} \otimes_{\mathcal{D}_{\mathfrak{g}}} M, \partial_{I I}\right)[m-n]
$$

Let G^{ϕ} act diagonally on $\mathcal{C}_{I I}^{p}=\mathcal{C}_{x}^{p+m-n} \otimes_{\mathcal{D}_{\mathfrak{g}}} M=\bigwedge^{-p+\operatorname{dim} \mathbf{O}} V_{x} \boxtimes M$. Then, $\partial_{I I}$ is G^{ϕ}-equivariant and the G^{ϕ}-action on the cohomology group $\mathcal{H}^{j}\left(\tilde{\beta}_{x}^{!} M\right) \in$ $\mathfrak{M}\left(\mathcal{D}_{x+F}, G^{\phi}\right)$ is induced by the diagonal action of G^{ϕ} on $\mathcal{C}_{I I}^{\bullet}$ (see $\left.\S 1\right)$. Notice, in particular, that

$$
\mathcal{H}^{\operatorname{dim} \mathbf{O}}\left(\tilde{\beta}_{x}^{!} M\right)=\operatorname{Tor}_{0}^{\mathcal{O}_{\mathfrak{g}}}\left(\mathcal{O}_{x+F}, M\right)=M / J_{x} M
$$

is endowed with the natural action of G^{ϕ}. By $(2.3), \mathcal{H}^{j}\left(\beta_{x}^{!} M\right)=\mathcal{O}_{X} \otimes_{\mathcal{O}_{x+F}}$ $\mathcal{H}^{j}\left(\tilde{\beta}_{x}^{!} M\right)=0$ when $j \neq \operatorname{dim} \mathbf{O}$. Thus,

$$
\text { Supp } \mathcal{H}^{j}\left(\tilde{\beta}_{x}^{!} M\right) \subseteq(x+F) \backslash X \subset(x+F) \backslash\{x\} \quad \text { if } j \neq \operatorname{dim} \mathbf{O}
$$

Now,

$$
\imath^{!} M=\tilde{\gamma}^{!} \tilde{\beta}_{x}^{!} M=\left(\mathcal{D}_{\{x\} \rightarrow x+F} \otimes_{\mathcal{D}_{x+F}}^{L} \tilde{\beta}_{x}^{!} M\right)[-m]
$$

can be computed as follows. Notice that $\mathbf{n}_{x} / \mathbf{n}_{x}^{2}=\oplus_{j=1}^{m} \mathbb{C} d f_{j}$ and consider the complex $\left(\mathcal{C}_{I}^{\bullet}, \partial_{I}\right)$ where $\mathcal{C}_{I}^{p}=\bigwedge^{-p}\left(\mathbf{n}_{x} / \mathbf{n}_{x}^{2}\right) \boxtimes \mathcal{D}_{x+F}$ and

$$
\partial_{I}\left(d f_{j_{1}} \wedge \cdots \wedge d f_{j_{p}} \boxtimes D\right)=\sum_{s=1}^{p}(-1)^{s+1} d f_{j_{1}} \wedge \cdots \wedge \widehat{d f_{j_{s}}} \wedge \cdots \wedge d f_{j_{p} \boxtimes f_{j_{s}}} D
$$

Observe that G^{ϕ} acts diagonally on \mathcal{C}_{I}^{p} and that ∂_{I} is G^{ϕ}-equivariant. Let $\left(\mathcal{C}_{\text {tot }}^{\bullet}, \partial_{\text {tot }}\right)$ be the total complex associated to the double complex $\mathcal{C}^{\bullet}=\mathcal{C}_{I}^{\bullet} \otimes_{\mathcal{D}_{x+F}} \mathcal{C}_{I I}^{\bullet}$. Then,

$$
\imath^{!} M=\tilde{\gamma}^{!} \tilde{\beta}_{x}^{!} M=\left(\mathcal{C}_{\mathrm{tot}}^{\bullet}, \partial_{\mathrm{tot}}\right)[-m]
$$

and therefore $\mathcal{H}^{j}\left(\imath^{!} M\right)=\mathcal{H}^{j-m}\left(\mathcal{C}_{\text {tot }}^{\bullet}\right)$. This group is computed by the spectral sequence:

$$
E_{2}^{p q}=\mathcal{H}_{I}^{p}\left(\mathcal{H}_{I I}^{q}\left(\mathcal{C}^{\bullet}\right)\right) \Longrightarrow \mathcal{H}^{p+q}\left(\mathcal{C}_{\mathrm{tot}}^{\bullet}\right)
$$

But, $E_{2}^{p q}=\operatorname{Tor}_{-p}^{\mathcal{O}_{x+F}}\left(\mathbb{C}_{x}, \mathcal{H}^{q}\left(\mathcal{C}_{I I}\right)\right)$ as \mathcal{O}_{x+F}-module, and we have noticed that the support of $\mathcal{H}^{q}\left(\mathcal{C}_{I I}\right)=\mathcal{H}^{q}\left(\tilde{\beta}_{x}^{!} M\right)$ is contained in $(x+F) \backslash\{x\}$ when $q \neq \operatorname{dim} \mathbf{O}$. Therefore $E_{2}^{p q}=0$ for all $q \neq \operatorname{dim} \mathbf{O}$ and $E_{2}^{p \operatorname{dim} \mathbf{O}}=\operatorname{Tor}_{-p}^{\mathcal{O}_{x+F}}\left(\mathbb{C}_{x}, \mathcal{H}^{\operatorname{dim} \mathbf{O}}\left(\tilde{\beta}_{x}^{!} M\right)\right)$. Hence, the spectral sequence $E_{2}^{p q}$ collapses to $E_{2}^{p \operatorname{dim} \mathbf{O}}=\mathcal{H}^{p+\operatorname{dim} \mathbf{O}}\left(\mathcal{C}_{\text {tot }}\right)$. In particular, we obtain

$$
\begin{aligned}
\mathcal{H}^{\operatorname{dim} \mathbf{O}}\left(\imath^{!} M\right) & =\mathcal{H}^{\operatorname{dim} \mathbf{O}-m}\left(\mathcal{C}_{\mathrm{tot}}^{\bullet}\right)=\operatorname{Tor}_{m}^{\mathcal{O}_{x+F}}\left(\mathbb{C}_{x}, \mathcal{H}^{\operatorname{dim} \mathbf{O}}\left(\tilde{\beta}_{x}^{!} M\right)\right) \\
& =\operatorname{Tor}_{m}^{\mathcal{O}_{x+F}}\left(\mathbb{C}_{x}, M / J_{x} M\right)=\omega^{-1} \otimes_{\mathbb{C}} T
\end{aligned}
$$

(as expected). Furthermore, the group G^{ϕ} acts diagonally on the complexes \mathcal{C}^{\bullet}, $\mathcal{C}_{\text {tot }}$ and it follows from the previous computation that the action of $A(\mathbf{O})$ on $\mathcal{H}^{\operatorname{dim} \mathbf{O}}\left(\imath^{!} M\right)$ is coming from the induced action of G^{ϕ} on $E_{2}^{-m \operatorname{dim} \mathbf{O}}=\omega^{-1} \otimes_{\mathbb{C}} T$. Then, by Lemma 3.3,

$$
g \cdot\left(\omega^{-1} \otimes \varpi_{x}(v)\right)=g \cdot \omega^{-1} \otimes g \cdot \varpi_{x}(v)=\omega^{-1} \otimes \varpi_{x}(g \cdot v)
$$

for all $\varpi_{x}(v) \in T$. Hence the result.
Remark. A consequence of Theorem 3.4 is that the identity component G_{0}^{ϕ} acts trivially on $\omega^{-1} \otimes_{\mathbb{C}} T$. It is not difficult to prove this fact directly. Denote by $\tau_{\phi}: \mathfrak{g}^{\phi} \rightarrow \operatorname{Der} \mathcal{O}(x+F)$ the differential of the (adjoint) action of G^{ϕ} on $x+F$ (thus $\tau_{\phi}=\tau_{x+F}$ in the notation of $\left.\S 1\right)$. Let $\xi \in \mathfrak{g}^{\phi}$. Since $\mathcal{O}(x+F)=\mathcal{O}(\mathfrak{g}) / J_{x} \mathcal{O}(\mathfrak{g}) \equiv$ $\mathbb{C}\left[y_{1}, \ldots, y_{m}\right]$, we may write $\tau_{\phi}(\xi)=\sum_{j=1}^{m} \xi_{j} \partial_{j}$, where $\partial_{j}=\frac{\partial}{\partial y_{j}}, 1 \leqslant j \leqslant m$. Lemma 3.3 and a straightforward computation yield

$$
\tau_{\phi}(\xi)=\sum_{j=1}^{m} \partial_{j} \xi_{j}+\operatorname{tr} \operatorname{ad}_{\mathfrak{g}^{y}}(\xi)=\sum_{j=1}^{m} \partial_{j} \xi_{j}
$$

Notice that $\xi_{j}(x)=y_{j}([x, \xi])=0$, hence $\xi_{j} \in \mathbf{n}_{x}$. Recall that $M / J_{x} M=$ $\mathcal{H}^{\operatorname{dim} \mathbf{O}}\left(\tilde{\beta}_{x}^{!} M\right) \in \mathfrak{M}\left(\mathcal{D}_{x+F}, G^{\phi}\right)$. Then, for all $\varpi_{x}(v) \in T \subset M / J_{x} M$,

$$
\begin{aligned}
\xi .\left(\omega^{-1} \otimes \varpi_{x}(v)\right) & =\left.\frac{d}{d t}\right|_{t=0}\left(e^{t \xi} \cdot \omega^{-1} \otimes e^{t \xi} \cdot \varpi_{x}(v)\right) \\
& =\omega^{-1} \otimes \frac{d}{d t}{ }_{\mid t=0}\left(e^{t \xi} \cdot \varpi_{x}(v)\right) \quad(\text { by Lemma 3.3) } \\
& =\omega^{-1} \otimes \tau_{\phi}(\xi) \varpi_{x}(v) \quad\left(\text { since } M / J_{x} M \in \mathfrak{M}\left(\mathcal{D}_{x+F}, G^{\phi}\right)\right) \\
& =\sum_{j=1}^{m} \omega^{-1} \otimes \partial_{j} \xi_{j} \varpi_{x}(v) \\
& =0 .
\end{aligned}
$$

Thus $\mathfrak{g}^{\phi}=\operatorname{Lie}\left(G_{0}^{\phi}\right)$ acts trivially on $\omega^{-1} \otimes_{\mathbb{C}} T$ and the result follows.
We end these notes by the following particular case of Theorem 3.4. Recall that $\mathbf{n}_{0}=\left(y_{1}, \ldots, y_{m}\right) \mathcal{O}(F)$ and $\rho(v)=1_{U} \otimes_{\jmath^{\#}} \varpi\left(t_{-x} \cdot v\right)$.
Corollary 3.5. Let $M=\mathcal{D}_{\mathfrak{g}} v \in \mathfrak{M}\left(\mathcal{D}_{\mathfrak{g}}, G\right)$ with $v \in M^{G}$. Then, $t_{x}^{*} M_{\mid U}=\mathcal{D}_{U} \rho(v)$ and $\psi^{*} M=\mathcal{D}_{Y}\left(1_{G} \boxtimes \rho(v)\right)$. Furthermore, if $k=1$ and $\mathbf{n}_{0} \rho(v)=0$, then we have
(i) $T=\mathbb{C} \varpi_{x}(v)$;
(ii) the representation of $A(\mathbf{O})$ on $M_{\mid \mathbf{O}}(x)$ is the trivial representation and the connection $M_{\mid \mathbf{O}}$ is isomorphic to the standard $\mathcal{D}_{\mathbf{O}}$-module $\mathcal{O}_{\mathbf{O}}$.

Proof. Since ψ is smooth, it is easy to see [10, Lemma 3.2] that $\psi^{*} M=\mathcal{D}_{Y} \psi^{\#}(v)$. As explained in $\S 2$ (cf. Lemma 2.9, Theorem 2.10 and Remark at the end of $\S 2$) we may identify the \mathcal{D}_{Y}-module $\psi^{*} M$ with $\mathcal{O}(G) \boxtimes t_{x}^{*} M_{\mid U}$, and, since $v \in M^{G}, \psi^{\#}(v)$ identifies with $1_{G} \boxtimes \rho(v)$. Thus,

$$
\psi^{*} M=\mathcal{O}_{G} \boxtimes t_{x}^{*} M_{\mid U}=\mathcal{D}_{G \times U}\left(1_{G} \boxtimes \rho(v)\right)=\mathcal{O}_{G} \boxtimes \mathcal{D}_{U} \rho(v),
$$

proving the first assertions of the corollary.
Now, assume that $k=1$ and $\mathbf{n}_{0} \rho(v)=0$. Then, $t_{x}^{*} M_{\mid U} \cong H_{[0]}^{m}\left(\mathcal{O}_{U}\right)$ and $\rho(v)$ identifies with $\varpi\left(t_{-x} \cdot v\right)$ inside $T_{0}=\left\{u \in t_{x}^{*} M_{\mid U}: \mathbf{n}_{0} u=0\right\}$ (loc. cit.). Since $\operatorname{dim} T_{0}=1$ and $\rho(v) \neq 0$, we obtain $T_{0}=\mathbb{C} \rho(v)$. It follows then from Theorem 2.10 that $\omega^{-1} \otimes_{\mathbb{C}} T=\mathbb{C}\left(\omega^{-1} \otimes \varpi_{x}(v)\right)$. By Theorem 3.4, since $v \in M^{G}$, the group G^{ϕ} acts trivially on $M_{\mid \mathbf{O}}(x)=\omega^{-1} \otimes_{\mathbb{C}} T$. The isomorphism $M_{\mid \mathbf{O}} \cong \mathcal{O}_{\mathbf{O}}$ then follows from Proposition 2.8.

References

[1] D. Barbasch and D. Vogan, Unipotent representations of complex semisimple groups, Annals of Mathematics, 121 (1985), 41-110.
[2] J. Bernstein and V. Lunts, Localization for derived categories of (\mathfrak{g}, K)-modules, J. Amer. Math. Soc., 8 (1995), 819-856.
[3] A. Borel et al., Algebraic D-modules, Academic Press, Boston, 1987.
[4] A. Grothendieck, Éléments de Géométrie Algébrique, Chapitres O et IV, Inst. Hautes Etudes Sci. Publ. Math., 20 (1964) et 32 (1967).
[5] R. Hotta, Introduction to D-modules, (Lectures at the Inst. Math. Sci., Madras), Math. Institute, Tôhoku University, Sendai, 1986.
[6] R. Joshua, Riemann Roch for equivariant \mathfrak{D}-modules-I, Math. Z., 206 (1991), 131-144.
[7] M. Kashiwara, Representation theory and D-modules on flag varieties, in "Orbites unipotentes et représentations, III", Astérisque, 173-174 (1989), 55-109.
[8] M. Kashiwara and W. Schmid, Quasi-Equivariant D-modules, Equivariant Derived Category, and Representaions of Reductive Lie Groups, in Lie theory and geometry, 457-488, Progr. Math., 123, Birkhäuser, Boston, 1994.
[9] T. Levasseur and J. T. Stafford, Semi-simplicity of invariant holonomic systems on a reductive Lie algebra, Amer. J. Math., to appear.
[10] T. Levasseur and J. T. Stafford, Invariant differential operators on the tangent space of some symmetric spaces, in preparation, (1996).
[11] D. Mumford, Geometric Invariant Theory, Springer-Verlag, Heidelberg/New-York, 1973.
[12] M. Saito, A localization theorem for \mathcal{D}-modules, Tôhoku Math. J., 43 (1991), 213-234.
[13] P. Slodowy, Simple singularities and Simple Algebraic Groups, Lecture Notes in Mathematics 815, Springer-Verlag, Berlin/New York, 1980.
[14] M. Van den Bergh, Some rings of differential operators for Sl_{2}-invariants are simple, J. Pure and Applied Algebra, 107 (1996), 309-335.
[15] M. Van den Bergh, Some generalities on G-equivariant quasi-coherent \mathcal{O}_{X} and \mathcal{D}_{X}-modules, Preprint Université Louis Pasteur, Strasbourg, (1994).

Département de Mathématiques, Université de Poitiers, 86022 Poitiers, France.
E-mail address: levasseu@mathlabo.univ-poitiers.fr

