NOTES ON EQUIVARIANT D-MODULES

T. LEVASSEUR

1. GENERALITIES

All the varieties considered in these notes are quasi-projective algebraic varieties
defined over C.

Let X be a smooth algebraic variety. We denote by Ox the sheaf of regular
functions on X and by Dx the sheaf of differential operators. The rings of global
sections will be denoted by O(X) and D(X) respectively. We refer to [3] for the
basic properties of Dx-modules. All the Dx-modules encountered in the sequel
will be quasi-coherent. The category of quasi-coherent D x-modules is denoted by
Mod Dx.

Let FF : Y — X be a morphism between varieties. The comorphism of F' is
denoted by F# and the inverse image of an Ox-module M by

F*M = Oy Qp+ M.
When X and Y are affine, there exists a natural map
F#* .M — F*M, v—ly @psv.

Suppose that Z = X xY is the product of two varieties. Let M be an O x-module
and N be an Oy-module; the Oz-module M ®¢ N will be denoted by M X N.

In this section we recall the definitions, and well known properties, of equivariant
D-modules. Our main references are [2, 3, 5, 6, 7, 8, 11, 12, 15] where the reader
will find the proof of the results stated below.

Let G be a linear algebraic group and V' be a smooth affine algebraic G-variety.
Let e be the unit in G and set

pw:GxV =V, (g,v)— g.v (the action of G on V)

pe: G xG— G, pglg,h)=gh (the multiplication in G)
s:G =G, s(g)=g ' (theinverse in G)

(1.1) e:{e} — G (the inclusion)
p2:GXV =V, pa(g,v) =0
P23 GXG XV = GxV, palg,h,v)=(h,v)
ey :V—oGxV, ey =(ev)

We then set: A = ;ﬂ"é, S =57, e=ce".

Let M be a rational G-module; the G-action on M is denoted by g.a, g € G, a €

M. Recall that the G-module structure is equivalent to a left comodule structure
Ay i M — O(G) K M, such that

g.a=aw(g Naw)
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where we have used the (abbreviated) Sweedler notation Ays(a) = a(1y®a(2), agy €
O(G), a2y € M. This applies in particular to M = O(V') with the action (g.¢)(z) =
o(g~t.x) for p € O(V), g € G, x € V. The corresponding coaction is denoted by
Av. When V = G and G acts via left translations, we have A\g = A.

Suppose furthermore that the G-module M has an Oy -module structure. Then
we say that M is a G-equivariant Ox-module if the G and O(V') actions are com-
patible, i.e. g.(pa) = (g9.9)(g.a), g € G, ¢ € O(V), a € M. This translates into
A (pa) = Av(@)An(a) for the coactions. We denote by M(Oy, G) the category of
G-equivariant Oy -modules.

Recall that M € M(Oy, G) if and only if there exists an isomorphism of Ogxy-
modules

(1.2) 0:psM=0(G)®RM =% u"M
such that
(13) 0 (0) = Tar, (e % 1v)*(0) = (1 x 1)(0) 0 ps(0):
When the coaction Ay is given the isomorphism 6 is:
0(axv) = aSv(y) ®,# v(2)-

Endow O(G), O(G x V) = O(G) K O(V) and p5M = O(G) K M with the action
induced by left translation on G. It is then easily seen that 6 is G-linear when G
acts on u*M by

g-(b®@,x m) =gb®, gm
forallg € G, b € O(G)XO(V) and m € M. For these actions, since (O(G)XM) =
CX M, we obtain the isomorphism

0:CX M -=%(u*M)C.

Recall that the G-action on V induces a rational G-module structure on the

algebra D(V), given by
(9-D) -9 =g.(D-(g7"9))

forall g € G, D € D(V), ¢ € O(V). (We denote by D - ¢ the natural action of
D(V) on O(V).) The corresponding coaction extends the coaction Ay and we will
still denote it by Ay : D(V) — O(G) X D(V).

Let M € ModDy. The module M is said to be a weakly G-equivariant Dy -
module if M € M(Oy,G) and

g.(D.w) = (9.D).(g.v)

forall g€ G, D € D(V) and v € M. (This is equivalent to saying that Ay (D.v) =
Av(D)Ap(v).) We denote by IM(Dy,G™) the category of weakly G-equivariant
D(V)-modules. Then, a module M € Mod Dy is weakly G-equivariant if, and only
if, there exists a map 6 as in (1.2) & (1.3) which is O(G) X D(V) linear.

The differential of the G-action on V yields a Lie algebra map, 7y, from g =
Lie(G) to the Lie algebra Oy of vector fields on V. It is defined by

(v (&) - p)(z) = £|t:0

for all £ € g, ¢ € O(V), x € V. Notice that 7y (§) identifies with a derivation
of O(V) and that 7y (Ad(g).£) = g.7v (&) for all ¢ € G. The differential of the

p(exp(—t).z)



G-action on D(V) is then given by
€.D = [ry(€),D], forall D e D(V).

Let M € M(Oy,G). The differential of the G-action on M gives a g-module
structure on M:

v 4 (exp(tf).v), forall £ € gand v e M.

- dt |t=0
The module M is called a G-equivariant Dy -module if M € M(Dy,G™) and
(1.4) Tv(§)v==¢&wv, forall{ € gandve M.

Then, a module M € Mod Dy is G-equivariant if, and only if, there exists a map 6
as in (1.2) & (1.3) which is D(G) K D(V) linear.
Remarks. (1) Let M € M(Oy, Q). If v € ME we have Aps(v) = 1g®v and therefore
9(1@&’0) =lgxv Qu# .

(2) Set
(1.5) N = Dy /Dy1v(g).
Then N € M(Dy, G). Moreover, when G is connected every subquotient of N is in
M(Dy,G) (see [9, 14]).

(3) Suppose that M € 9M(Dy, G). Then, when G is connected:

{M =Dy.vwithv e MG} <= {M is a quotient of N}

The definitions of M(Oy, G), M(Dy, G*) and M(Dy, G) carry over to the case
when the smooth variety V' is not necessarily affine, see [3, 8, 15]. For instance,
M € Mod Dy is G-equivariant if there exists an isomorphism 6 : Og X M = u* M
of Dgxv-modules which satisfies the conditions of (1.3).

Let F': Y — X be a G-equivariant morphism between (not necessarily affine)
smooth G-varieties. Recall that if M € Mod Dx one defines the inverse image of
M by setting

F'M =(Dy_x ®%  M)[dy,x]
where Dy _,x = F*Dx = Oy @p# Dx and dy,x = dimY — dim X. The inverse
image is an object in the derived category D®(Dy) of Mod Dy, and the construction
of F! extends to Db(DX). Observe that Dy ., x is a weakly G-invariant right D x-
module for the G-action g.(¢ ®p# D) = 9.0 Q@p# 9.D, o € O(Y), D € D(X).

Assume that M € 9MM(Dx,G) and let Oy @ p; xM — pi M be the associated
isomorphism (with obvious notation). Set r = dimG. Since py x and px are
smooth, p!27 xM and /ﬁXM have cohomology concentrated in degree —r, equal to
p5 xM and p’ M respectively. Thus one can consider #p; as an isomorphism of
Da « x-modules between p!2, xM and ,u!XM . It follows from base change that we

have an isomorphism in D*(Dgxy)

Opinr : Doy F'M 22 1y F' M.
Indeed, the isomorphism 0z, is defined by the left vertical arrow which makes the
following diagram commutative:

T T(lch)’(em

p!Q’YF!M (1g x F)!plz’XM



Therefore, since pa y and py are smooth, we obtain isomorphisms of D¢ xy-modules
in cohomology:
Opiar : Py 30O (F'M) 22 103 30 (F'M).

This implies that 3/ (F'M) has a natural induced structure of G-equivariant Dy-
module. In particular, the G-action on H7(F'M) is uniquely determined by the
action of G on M. To compute this action one may proceed as follows.

Suppose that we are given a resolution (P*,d) of Dy _, x by weakly G-equivariant
right Dx-modules, see [6, Lemma 4.7] and [8, Proposition 2.1], such that each P*
is projective as a Dx-module and d is G-equivariant. Then, since (P®* ®p, M,d®
1y) = F'M[—dy x], the G-action on 3}/ (F' M) is induced by the diagonal G-action
on P*®@p, M.

Moreover, since Daxy sexx = Dg W Dy_, x, the objects (1g % F)!,uIXM and
(1g x F)!p;’XM are represented, up to a shift, by

(DG X P.) QDeyx /L!XM and (DG X P.) XDy x pIZ,XM'
Thus the isomorphism 01 ,, is induced by
(1gX1pe) @0y : (D X P*) ®p§7XM — (DX P*) @ ux M.

This applies for instance to the morphisms p, and p, and the isomorphism 6 of
(1.2) can be viewed as an isomorphism in 9M(Dgxv,G) between py M = piM|r]
and p'M = p*Mlr).

2. REDUCTION TO A SLICE

In this section we apply the results of §1 to the case where the variety V is a
finite dimensional rational G-module, which we denote by E. We keep the notation
of (1.1). We set r = dim G, n = dim F and we fix € E. Denote by ¢, : y — y+x
the translation by = and let p, = po (1g xt;) : G X E — E, (g,v) = g.(x + v).

Let F C FE be a linear subspace of dimension m. We assume in this section that
the following hypothesis holds:

(1) pz : G X F'— FE is a smooth morphism and F = F® g.x

Set O = G.z, which is a quasi-affine subvariety of E. Then, by (), z + F is a
transverse slice to O at the point z, see [13, §5.1]. Let g* be the stabilizer of x in
g and set s = dim g*. Then, (}) implies that

dmO=r—s=n—m.

Proposition 2.1. There ezists an affine open neighborhood U of 0 in F' such that,
if ¥ is the restriction of p, to G x F,
(1) ¥ is smooth on' Y := G x U, Q = (YY) = G.(x + U) is a G-stable open
subset of E;
(2) QN0 =0 and ON{z+U} = {z}.

Proof. Let T = (x + F) xg O be the intersection of x + F' and Oj; thus T is
a subscheme of E. From (f) and [4, TV.17.13.8] it follows that this intersection
is transverse of dimension 0 at the point xz. Hence [ibid], there exists an affine
open subset 0 € Uy C F such that the intersection (z + Up) N O is transverse at
z. In particular dim ((z + Up) N O) = 0, therefore (x + Up) N O is a finite set [4,
0.14.1.9], say {z = o, x1,...,2¢}. For each i = 1,... ¢, pick an affine open subset
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0 € U(x;) C F such that x; ¢ £+ U(x;). Set Uy =UpgNU(x1)N---NU(x;). Then,
U, is an affine open neighborhood of 0 and (z + U1) N O = {z}.
Since O is open in its closure, we can find a G-stable open subset V' C E such
that VN O = O. Define an open neighborhood of 0 in F' by:
Uy =pop Y (V) ={ueF:3g€ G g(x+u)cV}

Let v € Us; since 9 is G-equivariant, we have (G x {v}) C V. Hence, G x Uy C
¥~ 1(V). Observe that, if 0 € U C U, is any open subset, ¢)(G x U) is open and
PY(GxU)NO = 0.

Now, let U; be as in the first paragraph and choose an affine open subset 0 €
U C U;NUs,. Then U satisfies the required properties. ([

We will keep the notation of Proposition 2.1 for the rest of this section. In
particular, 1) will be the smooth morphism

v:Y=GxU—E, ¢(g,u)=g.(x+u).

Set X = x + U and notice that ¢, induces an isomorphism (of varieties) from U
onto X, with inverse ¢_,. Define:

(2.1) B:U—=E, B,: X —E, 1:{z} — E (the natural inclusions)

Observe that 8, =t, 0B ot_, and ¥ = p, o (1g X B).

Let M € M(Dg,G). We assume that M is a coherent Dg-module, i.e. M is
a finitely generated G-equivariant D(E)-module. Recall from §1 that we have an
isomorphism of G-equivariant Dg« g-modules,

0 : phM = psM[r] =% p* M(r] = pu' M.
By using the translation ¢, we can construct the Dg-module ¢} M, which iden-
tifies with ¢, M. Observe that t, € Aut(E) induces an automorphism of O(F),
(tz.0)(y) = p(y—=x) for p € O(E), y € E, and therefore yields an automorphism of
D(E), (ty.D)(p) = ty.D(t_z.) for D € D(E). Then, the D(E)-module 3 M can
be identified with the vector space M endowed with the action D.u = (¢,.D)u. As
in §1 we have maps t7 : M — t*M and tig M — t* M. We set:
t_pv=tFW), tew=t"(v).
We will adopt a similar notation for the inverse images by t,, or t_,, for modules
over X, or U.
Lemma 2.2. There exists an isomorphism of G-equivariant Dgx g-modules:
0, pyti M =2 pt M
Proof. Since py and g are smooth, phyt,, M = pit* M[r] and u\,M = p*M]|r]. Notice
that ' M = (1g x to)'u'M = (1g x t,)*u'M and pht: M = (O(G) K t:M)[r] =
(1g x t;)*py M. Now, the G-equivariant isomorphism 1g xt, : G x E — G x E
yields the isomorphism, in M(Dgx g, G),
0. =g xt:)"(0) : (1 X tw)*p!zM = plzt;M (1g X tm)*,u!M = ,u;M
as desired. (]
Remark. The isomorphism 6, yields the isomorphism
O : H 7 (phty M) = O(G) K5 M =2 s M = 7 (uf, M),

which is given by 0, (a®t_,.v) = aSva) ® # v(2) for a € O(G) and v € M.



Since ¢ is smooth and G-equivariant, ¢*M is coherent [3, V1.4.8] and ¢'M =
Y*Mr+m —n] € M(Dgxv,G). Thus,
0 lf]#_szn_T_TTL
YM ifj=—s=n—r—m.

The G-action on Y*M = O(G x U) ®@y# M is given by g.(b ®y# v) = g.b @y# g.v,
be O(GxU),veM.

(2.2) 369 (' M) = {

Lemma 2.3. There exists an isomorphism of G-equivariant Dy -modules
WM = (0(G) B A5 M) 1]
and B't, M = (B*t:M)[m — n]. Hence
WBLM) =1 J7amo,
Ov ®p# tyM if j = dim O.

Proof. Notice first that, since t, is an isomorphism, we can identify tIxM with ¢ M.
From ¢ = u, o (1g x B) we deduce that ' M = (1g x B)'u\, M. Therefore, using
the G-equivariant morphism 14 X 3, we obtain

(1 x B)(02) : (La x B)'phty M = ' M.
Then, (1g x B)'phtyM = (lg x B)(O(G) Bz M)[r] = (O(G) B B, M)[r] yields
Y'M = (O(G)RB't: M)[r]. From this isomorphism one deduces that 37" (1)' M) =
Og R HI(B't:M). Then, by (2.2), H’(B't: M) = 0 unless j = n — m, and

:Hn—m(ﬁ!t;«:M) — g_(n—m((OU ®é‘# t;M)[m — n]) =0y Qp# tr M.
This completes the proof of the lemma. O
In order to simplify the notation we set
My = HIO (B M) = Op @44 5 M.

Recall that the natural inclusion g, : X — F is equal to t; o f ot_,. Therefore,
BLM = t'  B't. M has non-zero cohomology only in degree dim O = n — m, where
HIMO(BEM) = Ox @54 M. We set

Mx = KW O(B,M) = Ox ® 44 M.

Thus we have:

(2.3) By M = M x[m —n]
Notice that it follows easily from 8, ot, = t, o 8 (on U) that
(2.4) t(Mx) =tiMy.

Let S be a complementary subspace to F, E = F®S. Let {v1,...,v,} be a
basis of F' and {vp1,...,vn} be a basis of S. Denote by {y; = vj}; the dual basis
and set f; =t,.y; =y; —y;(x), 1 <j < n. Then,

OF)=S(E")/J, O+ F)=S(E")/]
where J = (Ym+1,---,Yn)S(E*) and Jy = tp.J = (frt1s- -, fn)S(E).

Let 5: U < F and j, : X — x + F be the natural inclusions.

Lemma 2.4. We have:
(1) Mix =Ox ® 4 (M/J.M);



(2) My = Ou ®% (taM/JtyM) = Oy @, t5(M/J, M).
Proof. 1. Let Bx : x + F — FE be the inclusion. Thus g, = Bx 0 Jp. Since
Je is an open immersion, 37 (B, M) = Ox ® # HI(BLM) for all j. Recall that
BLM = (Dyip—p ®%5, M)m—n]. Set V; = @, ,Cdfi and C;7 = APV, K Dg.
By [3, VL.7.4], Bt M = (2 ®p,, M, d,)[m — n], with €2 ®p, M = APV, KM and

Ou(dfjy, N+ Ndfj ®O) =30 (=1)*Fdf;, A A d/fj\ A Ndf Bfj,0.

a=1
It follows that H"~" (5L M) = HO (C2 ®py M,0,) = M/J,M = Opip Rz M.
2. follows from 1. and (2.4). O

Let Supp M be the support of the Dg-module M. Since M is coherent and
G-equivariant, Supp M is a closed G-stable subvariety of E and we have Supp M =
Uvens Supp Op.v. From now on we assume that

Supp M C O.

Recall that the local cohomology group H[’(T)‘] (Oy) is a Dy-module isomorphic
to Du/ (Duyr + -+ + Dyym). It is easily seen that tHiy(Ov) = Hj3(Ox) =
Dx/(Dxfi+ -+ Dx fm).

Proposition 2.5. Let M be as above. Then, there exists k € N such that
(1) Mx = H(0x)®, My = H (00) ™
(2) ¢'M = (Og ¥ Hgi (On)®F)[s];
(3) if Supp M = O, then k > 1.
Proof. 1. Clearly, the support of M|x = Ox Qg# M is contained in X NSupp M C

XNO. But, XNO € XNQNO = XNO = {z}. Thus M|y is a Dx-module whose
support is contained in {z}; therefore, by Kashiwara’s equivalence [3, VI.7.11],
M x = H[T] (OX)@k for some k. The proof is similar for ¢} M.

2. follows from 1. and Lemma 2.3.

3. The hypothesis implies that there exists v € M such that O NSupp Og.v # 0.
Then, since ¢ is flat and © D O, we have 1 ®g# v € ¥*M \ {0}. Thus ¥*M # 0,
le. k>1. O

Denote by m, = (f1,...,fn)O(E) and n, = (f1,..., fm)O(F) the maximal
ideals asociated to x € F and © € (z+ F') (respectively). Set C, = O(E)/m,O(E).

Theorem 2.6. Let 1 : {x} — E be the inclusion. Set
wlt=dfi AN ANdfpp and T = {u € M/J,M : ngu = 0}.
Then,
(1) T={ve Hi, (0x)%* :ngv = 0} is a C-vector space of dimension k;
(2) +'M has cohomology concentrated in degree dim O and

HImO (! A1) = TorQE)(C,, M) = w! &, T.

m

Proof. Recall [3, VL.4.2] that 30 (/M) = Tor\%) (C,, M). Let v : {z} < X

be the inclusion. Then, ¢ = B, oy and /M = '8, M. Recall from (2.3) that
BLM = Mx[m —n]. By Lemma 2.4 and Proposition 2.5, we know that My =
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Ox @ (M/J, M) = H[’;’C‘]((’)X)@k is supported on {x}. Thus, Tjx = {u € Mx :
n,u = 0} is a C-vector space of dimension k. Furthermore, by [3, VI.7.4],
4 0 if j £ 0,
J{](’)’!MX):{ -1 T Fi—0
Wiay/x ®C: Hx HI=0.
Since w{j} /X = dfi A -+ A dfm, we obtain that +'M has cohomology concentrated
in degree n — m with H"~"(/!M) = w™" ®¢, Tx. To finish the proof it suffices
to apply the following standard result to the module N = M/J,M: Let N be any
O+ p-module; then, if N' = Ox ®,# IV, one has
{u € N:nu=0}3{u € N :n,u =0}
through the natural map 7% : N — N’, 7% (u) = 1x ® # u. O

One can factorize the inclusion 2 : {z} < E as follows: ¢ : {z} <> O < E. We
now compute 25 M, the “restriction to O”.

Proposition 2.7. 1,M has cohomology concentrated in degree 0 and, as an Oo-
module, HO(1,M) = Tor®= (0o, M).

Proof. Notice first the following commutative diagram of G-equivariant morphisms

Y=GxU > E

JzT le
Gx{0} —/—— O
where 7(g,0) = g.x.

Recall that, by Proposition 2.5, ¢' M = ¢* M[s] with 1)* M = Og X H; (Op)®*,
Thus *M = H~*(¢)'M) is supported on G x {0}. Since 75 : G x {0} — Y is
a closed embedding, [3, VI.7.4] gives that 71* M has cohomology concentrated in
degree 0; equivalently, 751' M has cohomology concentrated in degree —s.

On the other hand,

3 (w1 M) = 3 ((Dax jo1—0 @b toM)[s]) = 7T (Dax o0 @ 1 M).
Since 7 is smooth and D¢y (010 = 7" Do, it follows that, as an Ogy fo3-module,
36 (' b M) = Ogix o) © T (1 M).

Now, since 7 is faithfully flat and 7's5 M = j5' M, the previous paragraph implies
that 15, M has cohomology concentrated in degree 0. By definition, 1, M = (Do ®%E

M)[-m]. Hence, see [3, V1.4.2], HO(:, M) = Tor" (0o, M). 0
We set:
(2.5) Mo = H°(25M)

Denote by G* the stabilizer of x in G and let G be its connected component.
Define the component group of O by

A(O) = G*/GE.

Let 7 : G — O, g — g.x, be the natural morphism and L be a rational representa-
tion of G*. Define an Og-module £ by setting, for any open subset W C O,

TW,L)={f:a"(W)—=L: f(gh)=h"".f(g) forall g € (W), h € G"}.
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Then £ € M(Op, G) |7, Theorem 4.8.1]. When L is a representation of the (finite)
group A(O), i.e. when G§ acts trivially on L, £L € M(Do, G) and, conversely, any
G-equivariant Dg-module is of this form, see |7, Proposition 4.11.1] and [8, §4].
An object of M(Do,G) will be called a connection on O. The representation of
A(O) associated to a connection £ is the “geometric fibre at the point 27, L(x) =

Cy ®0o L = L;/m,L,, where the A(O)-action is coming from the natural action
of G*.

Proposition 2.8. The Do-module M| is a connection and its geometric fibre at

the point x is
M|0(33) =w ! ®cT.

Proof. Since 15 : O — E is G-equivariant, the results of §1 ensure that 15 M = Mo
(see Proposition 2.7) is in M(Do, G). Therefore, by the remarks above, Mg is a
connection. In particular, Mo is flat as an Op-module and it follows that

M =M = 1;Mio = (Diaj—0 ®pg Mjo)[m — 1]

has cohomology concentrated in degree n—m, where H" ™" (1! M) = C, ®po M o=
Mo (x). The proposition then follows from Theorem 2.6. t

Remark. We will see (in a particular case) in the next section how to compute the
A(O)-action on w™! @¢ T.

Recall that 3 My = Ou Qp# 1z M, M|x = Ox ®g# M. Thus we have maps
ﬂ# : t;M — t;M|U, ﬂ#(t) =1y ®/3# t, and ﬂf M — M|X, 5#(1)) =1x ®B# v.
We set:

(2.6) p(v) = BF(t _pv) = 1y Qps t_pv
Recall also from Lemma 2.4 that t; My = Oy ®,# (t;M/Jt;M) and Mx =
Ox ®,, (M/J;M). Let w : t:M — t:M/Jt:M and w,M — M/J,M be the
canonical projections. It is easy to see that, since tXM/Jt:M = t*(M/JM), one
has t_,.(w,(v)) = w(t_,.v). One obtains from the definitions that, for all v € M,

lx @ @o(v) = 1x ®pz v, p(v) =1lu p# t—5.v = 1y @ W(t—s.0).
It is also easily seen that the map t# : M|y — t5(Mx) = t; M)y is a bijection given
by

t#(a ®# Wa(v)) = t—0.04 @y W(t—2.v) = (t—5.a)p(v)

for all a € O(X) and v € M.

Recall from Lemma 2.2, and the remark thereafter, that 6, yields an isomorphism
O(G) B pz M = pz M, 05 (aRt_.v) = aSv(1) ®,# v(z). It follows that 6, = (1g x
B)*(6,) is the isomorphism:

0_1; : O(G) X t;M|U l)1/)*]\4', Gz(axp(v)) = aSv(l) ®w# V(2)-

Lemma 2.9. Let a: {e} x U = Y be the inclusion and ¢ : {e} x U "> X be the
restriction of 1. Then, KO (a'y' M) = a**M = ©*Mx and 0, induces an
isomorphism

o (0;) : CREMy =5 ¢*Mix, 18(t_y.a)p(v) = ¢¥(a ®,# wWa(v)),
acO0X),ve M.
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Proof. Recall that
! Lo Lo
P’ M = (Dieyxv—y @p, ¥ M)[=1] = (Dieyxv—y ©p, " M)[m - n].
It follows that "™ (a'y' M) = a*p* M. On the other hand, ¢ o a = B3, o ¢ yields
a* P M = o By M = p* M x.
Let v € M, then we have:

a*(0,)(18p(v)) = L{eyxv @a# SV(1) Qy# V(2)
= (5v(1))(€) Boa)# V(2)
= 1®yoay# v

= % (1x @4p )

=" (1x @ @, (v)),

as required. (I

From now on, in order to simplify the notation, we will identify the Dy -modules
Y* M and O(G)Xt; My through the isomorphism 6,. By Lemma 2.9, the Dyeyxuv-
module ¢*M|x then identifies with C X t; M|y via ©#; this imply that we will
identify the elements 1=Kp(v) and ¢# (1x ®,, @, (v)).

Let o : {0} < U be the inclusion and recall that v : {z} — X. We have a
commutative diagram:

y —“, E

S

{eyxU —— X
exo| [E
e} x {0} —— {)
It follows that ¢ gives an isomrphism:
M = 'L M 5 (e x 0)'a'p' M

Since CXt;M); is supported on {e} x {0} (see Proposition 2.5), (e x 0)'a't)' M has
cohomology concentrated in degree dim O and @# yields the isomorphism

% L HIMO (M) 2 CRHO (o't Myy).

Let ng = (y1,-..,ym)O(F) be the defining ideal of the point 0 € F. Since f; =
¥ — yi(z), we have

w{ol}/U =dp A Adym =w L =dfs A Adfp,.
Theorem 2.10. Set Ty = {u € t:M/Jt*M : nou = 0}. Then,

(1) To = {ue H; (00)®* : ngu = 0} is a vector space of dimension k and
HO'tEMy) =w™t &c To;
(2) the isomorphism @# : HIMmO () M) =~ CRHO('t2 M|1y) coincides with

" wl@eT — CR W' @cT), w'ew(v)r 18w ®wt_,.v)).
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Proof. Since Oy ®,# (t5M/Jt3M) = H (0)®* (see Lemma 2.4 and Proposi-
tion 2.5), the proof of 1. is the same as the proof of Theorem 2.6. Observe in
particular that

{uetiMpy :nou=0}={uetiM/Jt;M : nou=0}.

The assertion 2. then follows from 1. and the identification of ¢ (1x @,# @, (v))
with 18p(v) = 1R(1y ® % @w(t_z.v)) O

Remark. We notice for further use the following consequence of Theorem 2.10. Let
v € MC. Then, Ay (v) = 1g®v and therefore

V# (v) = 1y @y v = 0,(1gRp(v)).

Thus we may identify ¢#(v) with 1gRp(v). Assume moreover that ngp(v) = 0,
then p(v) = 1y ®,# @w(t—p.v) € H(0'tiM|y;) can be identified with w(t_,.v) € Tp.

3. THE CASE OF THE ADJOINT REPRESENTATION

In this section we consider the case where G is the adjoint group of a semisimple
Lie algebra g of dimension n. We are going to apply the results of §2 to the case of
the adjoint action of G on F = g. Moreover, we will assume that the element = € g
is nilpotent, hence O = G.zx is a nilpotent orbit. We fix a coherent equivariant
Dg-module M € 9M(Dy, G) such that Supp M = O.

Suppose that & = 0. Then, by Kashiwara’s equivalence [3, VI.7.11] one has
M = H?O}(Og)@k for some k > 1. In this case A(O) = {e} and the connection
Mo is the vector space Ck.

Therefore, we now will suppose that x # 0. Then, we can find an S-triplet
{z,y, 2} containing z, i.e. [x,y] = 2z, [z,2] = 2z, [2,y] = —2y and s = Cx + Cy +
Cz=5s1(2,C). We take FF=g¥={¢€g:[y] =0} Thus,

n=r=dimg, m=s=dimg’.

In this situation it is well known [13, 111.5.1, II1.7.4] that x + F = x 4+ g¥ is a trans-
verse slice to O at the point x. Thus the condition (1) of §2 is satisfied. We adopt
the notation of the previous section; in particular, we have a smooth morphism
¥ :Y = GxU — g as in Proposition 2.1. We can summarize the results about
the equivariant Dy-module ¥*M in the following theorem, see Proposition 2.5,
Theorem 2.6 and Proposition 2.8. Recall that we have the natural embedding

1 {2} H 0B

Theorem 3.1. (1) The Dgxp-module 1* M is isomorphic to Og @H{g‘] (OU)@k for
some k > 1.

(2) The Do-module Mo = H°(15M) is the connection defined by the k-dimen-
sional representation HIMO('M) = w™! ®@c T of the finite group A(O), where
wl=dyi A+ ANdym and T = {w,(v) € M/J,M : ngw,(v) = 0}.

We now want to be more explicit on the action of A(O) on Mp(z) =w ' ®T.
We first recall the following “Levi decomposition” of the stabilizer G*.

Lemma 3.2. (|1, Proposition 2.4]) Let G® = {g € G : g.a = a for all a € s} be the
centralizer of the Lie subalgebra s and denote by Gg’ its identity component. Then,
G? is reductive and there exists a semidirect product decomposition G* = U*.G?,
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where U is a normal unipotent subgroup. Furthermore, the map G — G* induces
the identification A(O) = G¢/G{.

Recall that we have chosen a decomposition g = gV@®S. Since F' = g¥ is G?-stable
and G is reductive, we may choose S to be G?-stable (e.g. S = [g,z] = T,.(G.x)).
Hence, with the notation of §2, the subspaces

69:,;1 (Cylv @?:m-t,-l (Cyl? @1711 (Cfla @;L:nz-&-l Cfl

are G?-stable. Observe that Cw™' = Cdy; A --- A dy,, carries a representation of
G?. Furthermore, G acts naturally on M/J, M and T. We will need the following
well known result.

Lemma 3.3. Let g € G? and € € g® = Lie(G?). Then,

(1) det Adgy(g) = det Adg,gv(g) = 1;

(2) gwt=w"1

(3) tradgy (&) = trady g (§) = 0.
Proof. Since g is semisimple, det Adg(g) = 1 for all g € G. Recall that the Killing
form B induces a symplectic form B, on g/g¥ by the formula B, (¢, 7) = B(y, [£,1]).
It is easily seen that B, is GY-invariant. Hence, if g € G?, Adg,4v(g) belongs to the
symplectic group Sp(g/g¥, By). This implies det Ady/qv(g) = 1. Now, the G-stable
decomposition g = g?@®S with S = g/g¥ (as a G¥-module) yields det Adgv(g) = 1.
This proves 1., and 2. follows from g.w™! = det Adgy (¢~ !) w™!. The proof of 3. is
similar. (]

Theorem 3.4. The representation of A(O) on the fibre Mio(x) = w™' @c T is
induced by the natural G®-action on T.

Proof. Write 1 = 3,09, where 7 : {x} < z+F and 3, : x4+ F < g. The maps 7 and
B, being G?-equivariant, we have a natural G®-action on Mo(z) = HImOL! M)
which yields the representation of the group A(O) that we want to compute.

Set V, = @, 1Cdf; = @7, 1Cdy;; then V, is a G?-stable subspace of g*.
We have seen in the proof of Lemma 2.4 that (setting O = 95),

BLM = (€3 = €3 ®p, M,dy)[m — n).
Let G? act diagonally on €}, = CEY™ " @p M = N\ “PTEmO Y R AL Then,
Oqr is G?-equivariant and the G®-action on the cohomology group H7 (B;M ) €

IM(D,yr, G?) is induced by the diagonal action of G? on €%, (see §1). Notice, in
particular, that

HEMO(FLM) = Tory” (Ouyr, M) = M/J: M
is endowed with the natural action of G®. By (2.3), H/(B,M) = Ox ®o,
HI (B M) = 0 when j # dim O. Thus,
Supp H/ (BLM) C (z+ F)\ X C (z+ F) \ {z} if j # dim O.
Now,
VM =4 B,M = (Diay i r @5, B M)[-m]
can be computed as follows. Notice that n,/n? = 721 Cdf; and consider the

complex (€%,9r) where € = A" (n,/n2) XD, r and
Or(dfj, N--- Ndfj,®D) =3P (=1)*TXdfj, A A c?f; N Ndf Bf;,D.
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Observe that G? acts diagonally on €} and that 0 is G?-equivariant. Let (C$,¢, diot)
be the total complex associated to the double complex C* = C} ®p,_ . €7;. Then,

M = 3 EM = (€, Ouot) -]

and therefore 37(+*' M) = H/~™(€¢.,). This group is computed by the spectral
sequence:

EfT = HG (3G (%)) = HITI(EL,,)
But, EY? = Tor(_of,” (Cy, H%(Cp)) as Op4 p-module, and we have noticed that the
support of H4(Cp) = HI(BLM) is contained in (z + F) \ {z} when ¢ # dimO.
Therefore EY? = 0 for all ¢ # dim O and Egdimo = Tor?;” (Cp, HI™O(B M),
Hence, the spectral sequence E5? collapses to EL™© — gqp+dimO(@e ) I par-

ticular, we obtain
3O M) = 3 O(€L,,) = TorGre (Cy, 3O (3L 41))
= Tor9=+7(Cp, M/ J,M) =w ' @c T
(as expected). Furthermore, the group G¢ acts diagonally on the complexes C*,
Ciot and it follows from the previous computation that the action of A(O) on
HAMO (4! M) is coming from the induced action of G¢ on Ey™4mO = (=1 @ T
Then, by Lemma 3.3,
g W ®w,(v) =gw ' ®g.w.(v) =w ! @ w.(g.v)

for all w,(v) € T. Hence the result. O

Remark. A consequence of Theorem 3.4 is that the identity component Gg acts
trivially on w™! ®c T. It is not difficult to prove this fact directly. Denote by
7o : % — Der O(z + F) the differential of the (adjoint) action of G® on x + F (thus
T4 = Te+r in the notation of §1). Let ¢ € g®. Since O(x + F) = O(g)/J.O(g) =
Cly1, -+ Ym), we may write 74(§) = Y70, £;0;, where 0; = %, 1<j<m.
Lemma 3.3 and a straightforward computation yield

7(§) = D010, 955 + tradgy (§) = X071, 95¢;.
Notice that &;(z) = y;([z,&]) = 0, hence & € n,. Recall that M/J,M =
HIMO (B M) € M(Dyy r, G?). Then, for all w,(v) €T C M/J, M,

(W ®w,(v)) = 4 (e .w™! @ e* ., (v))
dt|t=0
=wl® 4 (e'®.w,(v)) (by Lemma 3.3)
dt |t=0

=w ' @74(8w(v) (since M/J,M € M(Dyy 1, G?))
= w T ® 98w (v)
=0.

Thus g¢ = Lie(G{) acts trivially on w™' ®c T and the result follows.

We end these notes by the following particular case of Theorem 3.4. Recall that
Do = (s - > Ym)O(F) and p(v) = Ly @y w(t—y.0).

Corollary 3.5. Let M = Dgv € M(Dy, G) with v € MC. Then, t: My = Dyp(v)
and Y*M = Dy (1gRp(v)). Furthermore, if k =1 and ngp(v) = 0, then we have
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(i) T'= Cwy(v);
(ii) the representation of A(O) on M|o(x) is the trivial representation and the
connection M|o is isomorphic to the standard Do-module Og .

Proof. Since 1 is smooth, it is easy to see [10, Lemma 3.2] that ¢* M = Dy# (v).
As explained in §2 (cf. Lemma 2.9, Theorem 2.10 and Remark at the end of §2) we
may identify the Dy-module ¢*M with O(G) K t% M)y, and, since v € M, ¢#(v)
identifies with 16®Rp(v). Thus,

V*M = Og Rt My = Daxu(la®p(v)) = Og K Dyp(v),

proving the first assertions of the corollary.

Now, assume that & = 1 and nop(v) = 0. Then, {7 My = Hy(Oy) and p(v)
identifies with w(t_,.v) inside Tp = {u € t;Mjy : nou = 0} (loc. cit.). Since
dim Ty = 1 and p(v) # 0, we obtain Ty = Cp(v). It follows then from Theorem 2.10
that w™! ®c T = C(w™' ® w,(v)). By Theorem 3.4, since v € M, the group G*
acts trivially on M|o(z) = w™' @c T. The isomorphism Mo = Op then follows
from Proposition 2.8. O
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