NOTES ON EQUIVARIANT D-MODULES

T. LEVASSEUR

1. Generalities

All the varieties considered in these notes are quasi-projective algebraic varieties defined over \mathbb{C} .

Let X be a smooth algebraic variety. We denote by \mathcal{O}_X the sheaf of regular functions on X and by \mathcal{D}_X the sheaf of differential operators. The rings of global sections will be denoted by $\mathcal{O}(X)$ and $\mathcal{D}(X)$ respectively. We refer to [3] for the basic properties of \mathcal{D}_X -modules. All the \mathcal{D}_X -modules encountered in the sequel will be quasi-coherent. The category of quasi-coherent \mathcal{D}_X -modules is denoted by Mod \mathcal{D}_X .

Let $F: Y \to X$ be a morphism between varieties. The comorphism of F is denoted by $F^{\#}$ and the inverse image of an \mathcal{O}_X -module M by

$$F^*M = \mathcal{O}_Y \otimes_{F^{\#}} M$$

When X and Y are affine, there exists a natural map

$$F^{\#}: M \to F^*M, \quad v \mapsto 1_Y \otimes_{F^{\#}} v.$$

Suppose that $Z = X \times Y$ is the product of two varieties. Let M be an \mathcal{O}_X -module and N be an \mathcal{O}_Y -module; the \mathcal{O}_Z -module $M \otimes_{\mathbb{C}} N$ will be denoted by $M \boxtimes N$.

In this section we recall the definitions, and well known properties, of equivariant D-modules. Our main references are [2, 3, 5, 6, 7, 8, 11, 12, 15] where the reader will find the proof of the results stated below.

Let G be a linear algebraic group and V be a smooth affine algebraic G-variety. Let e be the unit in G and set

 $\mu: G \times V \to V, \quad (g, v) \mapsto g.v \text{ (the action of } G \text{ on } V)$ $\mu_G: G \times G \to G, \quad \mu_G(g, h) = gh \text{ (the multiplication in } G)$ $s: G \to G, \quad s(g) = g^{-1} \text{ (the inverse in } G)$

(1.1) $\begin{aligned} \varepsilon : \{e\} &\hookrightarrow G \quad \text{(the inclusion)} \\ p_2 : G \times V \to V, \quad p_2(g,v) = v \\ p_{23} : G \times G \times V \to G \times V, \quad p_{23}(g,h,v) = (h,v) \\ \varepsilon_V : V \to G \times V, \quad \varepsilon_V(v) = (e,v) \end{aligned}$

We then set: $\Delta = \mu_G^{\#}$, $S = s^{\#}$, $\epsilon = \varepsilon^{\#}$.

Let M be a rational G-module; the G-action on M is denoted by $g.a, g \in G, a \in M$. Recall that the G-module structure is equivalent to a left comodule structure $\lambda_M : M \to \mathcal{O}(G) \boxtimes M$, such that

$$g.a = a_{(1)}(g^{-1})a_{(2)}$$

Date: October 1, 1997.

Suppose furthermore that the *G*-module *M* has an \mathcal{O}_V -module structure. Then we say that *M* is a *G*-equivariant \mathcal{O}_X -module if the *G* and $\mathcal{O}(V)$ actions are compatible, i.e. $g.(\varphi a) = (g.\varphi)(g.a), g \in G, \varphi \in \mathcal{O}(V), a \in M$. This translates into $\lambda_M(\varphi a) = \lambda_V(\varphi)\lambda_M(a)$ for the coactions. We denote by $\mathfrak{M}(\mathcal{O}_V, G)$ the category of *G*-equivariant \mathcal{O}_V -modules.

Recall that $M \in \mathfrak{M}(\mathcal{O}_V, G)$ if and only if there exists an isomorphism of $\mathcal{O}_{G \times V}$ modules

(1.2)
$$\theta: p_2^*M = \mathcal{O}(G) \boxtimes M \xrightarrow{\sim} \mu^*M$$

such that

(1.3)
$$\varepsilon_V^*(\theta) = 1_M, \quad (\mu_G \times 1_V)^*(\theta) = (1_G \times \mu)^*(\theta) \circ p_{23}^*(\theta).$$

When the coaction λ_M is given the isomorphism θ is:

 $\theta(a \boxtimes v) = aSv_{(1)} \otimes_{\mu^{\#}} v_{(2)}.$

Endow $\mathcal{O}(G)$, $\mathcal{O}(G \times V) = \mathcal{O}(G) \boxtimes \mathcal{O}(V)$ and $p_2^*M = \mathcal{O}(G) \boxtimes M$ with the action induced by left translation on G. It is then easily seen that θ is G-linear when G acts on μ^*M by

$$g.(b \otimes_{\mu^{\#}} m) = g.b \otimes_{\mu^{\#}} g.m$$

for all $g \in G$, $b \in \mathcal{O}(G) \boxtimes \mathcal{O}(V)$ and $m \in M$. For these actions, since $(\mathcal{O}(G) \boxtimes M)^G = \mathbb{C} \boxtimes M$, we obtain the isomorphism

$$\theta: \mathbb{C} \boxtimes M \xrightarrow{\sim} (\mu^* M)^G$$

Recall that the G-action on V induces a rational G-module structure on the algebra $\mathcal{D}(V)$, given by

$$(g.D) \cdot \varphi = g.(D \cdot (g^{-1}.\varphi))$$

for all $g \in G$, $D \in \mathcal{D}(V)$, $\varphi \in \mathcal{O}(V)$. (We denote by $D \cdot \varphi$ the natural action of $\mathcal{D}(V)$ on $\mathcal{O}(V)$.) The corresponding coaction extends the coaction λ_V and we will still denote it by $\lambda_V : \mathcal{D}(V) \to \mathcal{O}(G) \boxtimes \mathcal{D}(V)$.

Let $M \in \operatorname{Mod} \mathcal{D}_V$. The module M is said to be a weakly *G*-equivariant \mathcal{D}_V module if $M \in \mathfrak{M}(\mathcal{O}_V, G)$ and

$$g.(D.v) = (g.D).(g.v)$$

for all $g \in G$, $D \in \mathcal{D}(V)$ and $v \in M$. (This is equivalent to saying that $\lambda_M(D.v) = \lambda_V(D)\lambda_M(v)$.) We denote by $\mathfrak{M}(\mathcal{D}_V, G^w)$ the category of weakly *G*-equivariant $\mathcal{D}(V)$ -modules. Then, a module $M \in \text{Mod } \mathcal{D}_V$ is weakly *G*-equivariant if, and only if, there exists a map θ as in (1.2) & (1.3) which is $\mathcal{O}(G) \boxtimes \mathcal{D}(V)$ linear.

The differential of the G-action on V yields a Lie algebra map, τ_V , from $\mathfrak{g} = \text{Lie}(G)$ to the Lie algebra Θ_V of vector fields on V. It is defined by

$$(\tau_V(\xi) \cdot \varphi)(x) = \frac{d}{dt}_{|t=0} \varphi(\exp(-t\xi).x)$$

for all $\xi \in \mathfrak{g}, \varphi \in \mathcal{O}(V), x \in V$. Notice that $\tau_V(\xi)$ identifies with a derivation of $\mathcal{O}(V)$ and that $\tau_V(\operatorname{Ad}(g).\xi) = g.\tau_V(\xi)$ for all $g \in G$. The differential of the *G*-action on $\mathcal{D}(V)$ is then given by

$$\xi.D = [\tau_V(\xi), D], \text{ for all } D \in \mathcal{D}(V).$$

Let $M \in \mathfrak{M}(\mathcal{O}_V, G)$. The differential of the *G*-action on *M* gives a \mathfrak{g} -module structure on *M*:

$$\xi.v = \frac{d}{dt}_{|t=0}(\exp(t\xi).v), \text{ for all } \xi \in \mathfrak{g} \text{ and } v \in M.$$

The module M is called a G-equivariant \mathcal{D}_V -module if $M \in \mathfrak{M}(\mathcal{D}_V, G^w)$ and

(1.4)
$$\tau_V(\xi).v = \xi.v, \text{ for all } \xi \in \mathfrak{g} \text{ and } v \in M.$$

Then, a module $M \in \text{Mod } \mathcal{D}_V$ is *G*-equivariant if, and only if, there exists a map θ as in (1.2) & (1.3) which is $\mathcal{D}(G) \boxtimes \mathcal{D}(V)$ linear.

Remarks. (1) Let $M \in \mathfrak{M}(\mathcal{O}_V, G)$. If $v \in M^G$ we have $\lambda_M(v) = 1_G \boxtimes v$ and therefore $\theta(1_G \boxtimes v) = 1_{G \times V} \otimes_{\mu^{\#}} v$.

$$(2)$$
 Set

(1.5)
$$\mathcal{N} = \mathcal{D}_V / \mathcal{D}_V \tau_V(\mathfrak{g})$$

Then $\mathcal{N} \in \mathfrak{M}(\mathcal{D}_V, G)$. Moreover, when G is connected every subquotient of \mathcal{N} is in $\mathfrak{M}(\mathcal{D}_V, G)$ (see [9, 14]).

(3) Suppose that $M \in \mathfrak{M}(\mathcal{D}_V, G)$. Then, when G is connected:

 $\{M = \mathcal{D}_V . v \text{ with } v \in M^G\} \iff \{M \text{ is a quotient of } \mathcal{N}\}\$

The definitions of $\mathfrak{M}(\mathcal{O}_V, G)$, $\mathfrak{M}(\mathcal{D}_V, G^w)$ and $\mathfrak{M}(\mathcal{D}_V, G)$ carry over to the case when the smooth variety V is not necessarily affine, see [3, 8, 15]. For instance, $M \in \operatorname{Mod} \mathcal{D}_V$ is G-equivariant if there exists an isomorphism $\theta : \mathcal{O}_G \boxtimes M \xrightarrow{\sim} \mu^* M$ of $\mathcal{D}_{G \times V}$ -modules which satisfies the conditions of (1.3).

Let $F: Y \to X$ be a *G*-equivariant morphism between (not necessarily affine) smooth *G*-varieties. Recall that if $M \in \text{Mod } \mathcal{D}_X$ one defines the *inverse image* of *M* by setting

$$F^! M = (\mathcal{D}_{Y \to X} \otimes^L_{\mathcal{D}_X} M)[d_{Y,X}]$$

where $\mathcal{D}_{Y\to X} = F^*\mathcal{D}_X = \mathcal{O}_Y \otimes_{F^{\#}} \mathcal{D}_X$ and $d_{Y,X} = \dim Y - \dim X$. The inverse image is an object in the derived category $D^b(\mathcal{D}_Y)$ of Mod \mathcal{D}_Y , and the construction of $F^!$ extends to $D^b(\mathcal{D}_X)$. Observe that $\mathcal{D}_{Y\to X}$ is a weakly *G*-invariant right \mathcal{D}_X module for the *G*-action $g.(\varphi \otimes_{F^{\#}} D) = g.\varphi \otimes_{F^{\#}} g.D, \varphi \in \mathcal{O}(Y), D \in \mathcal{D}(X)$.

Assume that $M \in \mathfrak{M}(\mathcal{D}_X, G)$ and let $\theta_M : p_{2,X}^* M \to \mu_X^* M$ be the associated isomorphism (with obvious notation). Set $r = \dim G$. Since $p_{2,X}$ and μ_X are smooth, $p_{2,X}^! M$ and $\mu_X^! M$ have cohomology concentrated in degree -r, equal to $p_{2,X}^* M$ and $\mu_X^* M$ respectively. Thus one can consider θ_M as an isomorphism of $\mathcal{D}_{G \times X}$ -modules between $p_{2,X}^! M$ and $\mu_X^! M$. It follows from base change that we have an isomorphism in $D^b(\mathcal{D}_{G \times Y})$

$$\theta_{F'M}: p_{2,Y}^! F^! M \longrightarrow \mu_Y^! F^! M.$$

Indeed, the isomorphism $\theta_{F'M}$ is defined by the left vertical arrow which makes the following diagram commutative:

$$\begin{array}{ccc} \mu_Y^! F^! M & = & (1_G \times F)^! \mu_X^! M \\ & \uparrow & \uparrow^{(1_G \times F)^! (\theta_M)} \\ p_{2,Y}^! F^! M & = & (1_G \times F)^! p_{2,X}^! M \end{array}$$

Therefore, since $p_{2,Y}$ and μ_Y are smooth, we obtain isomorphisms of $\mathcal{D}_{G \times Y}$ -modules in cohomology:

$$\theta_{F'M}: p_{2,Y}^* \mathcal{H}^j(F'M) \xrightarrow{\sim} \mu_Y^* \mathcal{H}^j(F'M).$$

This implies that $\mathcal{H}^{j}(F^{!}M)$ has a natural induced structure of *G*-equivariant $\mathcal{D}_{Y^{-}}$ module. In particular, the *G*-action on $\mathcal{H}^{j}(F^{!}M)$ is uniquely determined by the action of *G* on *M*. To compute this action one may proceed as follows.

Suppose that we are given a resolution (P^{\bullet}, d) of $\mathcal{D}_{Y \to X}$ by weakly *G*-equivariant right \mathcal{D}_X -modules, see [6, Lemma 4.7] and [8, Proposition 2.1], such that each P^k is projective as a \mathcal{D}_X -module and *d* is *G*-equivariant. Then, since $(P^{\bullet} \otimes_{\mathcal{D}_X} M, d \otimes 1_M) = F^! M[-d_{Y,X}]$, the *G*-action on $\mathcal{H}^j(F^!M)$ is induced by the diagonal *G*-action on $P^{\bullet} \otimes_{\mathcal{D}_X} M$.

Moreover, since $\mathcal{D}_{G \times Y \to G \times X} = \mathcal{D}_G \boxtimes \mathcal{D}_{Y \to X}$, the objects $(1_G \times F)! \mu_X^! M$ and $(1_G \times F)! p_{2,X}^! M$ are represented, up to a shift, by

$$(\mathcal{D}_G \boxtimes P^{\bullet}) \otimes_{\mathcal{D}_{G \times X}} \mu_X^! M$$
 and $(\mathcal{D}_G \boxtimes P^{\bullet}) \otimes_{\mathcal{D}_{G \times X}} p_{2,X}^! M.$

Thus the isomorphism $\theta_{F^!M}$ is induced by

$$(1_G \boxtimes 1_{P^{\bullet}}) \otimes \theta_M : (\mathcal{D}_G \boxtimes P^{\bullet}) \otimes p_{2,X}^* M \longrightarrow (\mathcal{D}_G \boxtimes P^{\bullet}) \otimes \mu_X^* M.$$

This applies for instance to the morphisms p_2 and μ , and the isomorphism θ of (1.2) can be viewed as an isomorphism in $\mathfrak{M}(\mathcal{D}_{G\times V}, G)$ between $p_2^! M = p_2^* M[r]$ and $\mu^! M = \mu^* M[r]$.

2. Reduction to a slice

In this section we apply the results of §1 to the case where the variety V is a finite dimensional rational G-module, which we denote by E. We keep the notation of (1.1). We set $r = \dim G$, $n = \dim E$ and we fix $x \in E$. Denote by $t_x : y \mapsto y + x$ the translation by x and let $\mu_x = \mu \circ (1_G \times t_x) : G \times E \to E$, $(g, v) \mapsto g.(x + v)$.

Let $F \subseteq E$ be a linear subspace of dimension m. We assume in this section that the following hypothesis holds:

(†)
$$\mu_x: G \times F \to E$$
 is a smooth morphism and $E = F \oplus \mathfrak{g}.x$

Set $\mathbf{O} = G.x$, which is a quasi-affine subvariety of E. Then, by (\dagger) , x + F is a transverse slice to \mathbf{O} at the point x, see [13, §5.1]. Let \mathfrak{g}^x be the stabilizer of x in \mathfrak{g} and set $s = \dim \mathfrak{g}^x$. Then, (\dagger) implies that

$$\dim \mathbf{O} = r - s = n - m.$$

Proposition 2.1. There exists an affine open neighborhood U of 0 in F such that, if ψ is the restriction of μ_x to $G \times F$,

- (1) ψ is smooth on $Y := G \times U$, $\Omega = \psi(Y) = G.(x + U)$ is a G-stable open subset of E;
- (2) $\Omega \cap \overline{\mathbf{O}} = \mathbf{O} \text{ and } \mathbf{O} \cap \{x + U\} = \{x\}.$

Proof. Let $T = (x + F) \times_E \mathbf{O}$ be the intersection of x + F and \mathbf{O} ; thus T is a subscheme of E. From (†) and [4, IV.17.13.8] it follows that this intersection is transverse of dimension 0 at the point x. Hence [ibid], there exists an affine open subset $0 \in U_0 \subseteq F$ such that the intersection $(x + U_0) \cap \mathbf{O}$ is transverse at x. In particular dim $((x + U_0) \cap \mathbf{O}) = 0$, therefore $(x + U_0) \cap \mathbf{O}$ is a finite set [4, O.14.1.9], say $\{x = x_0, x_1, \ldots, x_t\}$. For each $i = 1, \ldots, t$, pick an affine open subset Since **O** is open in its closure, we can find a *G*-stable open subset $V \subset E$ such that $V \cap \overline{\mathbf{O}} = \mathbf{O}$. Define an open neighborhood of 0 in *F* by:

$$U_2 = p_2 \psi^{-1}(V) = \{ u \in F : \exists g \in G, g.(x+u) \in V \}$$

Let $v \in U_2$; since ψ is *G*-equivariant, we have $\psi(G \times \{v\}) \subset V$. Hence, $G \times U_2 \subset \psi^{-1}(V)$. Observe that, if $0 \in U \subset U_2$ is any open subset, $\psi(G \times U)$ is open and $\psi(G \times U) \cap \overline{\mathbf{O}} = \mathbf{O}$.

Now, let U_1 be as in the first paragraph and choose an affine open subset $0 \in U \subseteq U_1 \cap U_2$. Then U satisfies the required properties.

We will keep the notation of Proposition 2.1 for the rest of this section. In particular, ψ will be the smooth morphism

$$\psi: Y = G \times U \longrightarrow E, \quad \psi(g, u) = g.(x + u).$$

Set X = x + U and notice that t_x induces an isomorphism (of varieties) from U onto X, with inverse t_{-x} . Define:

(2.1) $\beta: U \hookrightarrow E, \ \beta_x: X \hookrightarrow E, \ i: \{x\} \hookrightarrow E$ (the natural inclusions) Observe that $\beta_x = t_x \circ \beta \circ t_{-x}$ and $\psi = \mu_x \circ (1_G \times \beta)$.

Let $M \in \mathfrak{M}(\mathcal{D}_E, G)$. We assume that M is a coherent \mathcal{D}_E -module, i.e. M is a finitely generated G-equivariant $\mathcal{D}(E)$ -module. Recall from §1 that we have an isomorphism of G-equivariant $\mathcal{D}_{G \times E}$ -modules,

$$\theta: p_2^! M = p_2^* M[r] \longrightarrow \mu^* M[r] = \mu^! M.$$

By using the translation t_x we can construct the \mathcal{D}_E -module t_x^*M , which identifies with $t_x^!M$. Observe that $t_x \in \operatorname{Aut}(E)$ induces an automorphism of $\mathcal{O}(E)$, $(t_x \cdot \varphi)(y) = \varphi(y - x)$ for $\varphi \in \mathcal{O}(E)$, $y \in E$, and therefore yields an automorphism of $\mathcal{D}(E)$, $(t_x \cdot D)(\varphi) = t_x \cdot D(t_{-x} \cdot \varphi)$ for $D \in \mathcal{D}(E)$. Then, the $\mathcal{D}(E)$ -module t_x^*M can be identified with the vector space M endowed with the action $D \cdot u = (t_x \cdot D)u$. As in §1 we have maps $t_x^{\#} : M \to t_x^*M$ and $t_{-x}^{\#} : M \to t_{-x}^*M$. We set:

$$t_{-x} v = t_x^{\#}(v), \quad t_x v = t_{-x}^{\#}(v).$$

We will adopt a similar notation for the inverse images by t_x , or t_{-x} , for modules over X, or U.

Lemma 2.2. There exists an isomorphism of G-equivariant $\mathcal{D}_{G \times E}$ -modules:

$$\mathcal{D}_x: p_2^! t_x^* M \longrightarrow \mu_x^! M$$

Proof. Since p_2 and μ are smooth, $p_2^! t_x^! M = p_2^* t_x^* M[r]$ and $\mu_x^! M = \mu^* M[r]$. Notice that $\mu_x^! M = (1_G \times t_x)! \mu^! M = (1_G \times t_x)* \mu^! M$ and $p_2^! t_x^* M = (\mathcal{O}(G) \boxtimes t_x^* M)[r] = (1_G \times t_x)* p_2^! M$. Now, the *G*-equivariant isomorphism $1_G \times t_x : G \times E \to G \times E$ yields the isomorphism, in $\mathfrak{M}(\mathcal{D}_{G \times E}, G)$,

$$\theta_x = (1_G \times t_x)^* (\theta) : (1_G \times t_x)^* p_2^! M = p_2^! t_x^* M \xrightarrow{\sim} (1_G \times t_x)^* \mu^! M = \mu_x^! M$$

as desired.

Remark. The isomorphism θ_x yields the isomorphism

$$\theta_x: \mathcal{H}^{-r}(p_2^! t_x^* M) = \mathcal{O}(G) \boxtimes t_x^* M \xrightarrow{\sim} \mu_x^* M = \mathcal{H}^{-r}(\mu_x^! M),$$

which is given by $\theta_x(a \boxtimes t_{-x}.v) = aSv_{(1)} \otimes_{\mu_x^{\#}} v_{(2)}$ for $a \in \mathcal{O}(G)$ and $v \in M$.

Since ψ is smooth and *G*-equivariant, $\psi^* M$ is coherent [3, VI.4.8] and $\psi^! M = \psi^* M[r+m-n] \in \mathfrak{M}(\mathcal{D}_{G \times U}, G)$. Thus,

(2.2)
$$\mathfrak{H}^{j}(\psi^{!}M) = \begin{cases} 0 & \text{if } j \neq -s = n - r - m, \\ \psi^{*}M & \text{if } j = -s = n - r - m. \end{cases}$$

The G-action on $\psi^* M = \mathcal{O}(G \times U) \otimes_{\psi^{\#}} M$ is given by $g.(b \otimes_{\psi^{\#}} v) = g.b \otimes_{\psi^{\#}} g.v$, $b \in \mathcal{O}(G \times U), v \in M$.

Lemma 2.3. There exists an isomorphism of G-equivariant \mathcal{D}_Y -modules $\psi^! M \cong (\mathcal{O}(G) \boxtimes \beta^! t^*_x M)[r]$

and $\beta^! t_x^! M = (\beta^* t_x^* M) [m - n]$. Hence

$$\mathcal{H}^{j}(\beta^{!}t_{x}^{!}M) = \begin{cases} 0 & \text{if } j \neq \dim \mathbf{O}, \\ \mathcal{O}_{U} \otimes_{\beta^{\#}} t_{x}^{*}M & \text{if } j = \dim \mathbf{O}. \end{cases}$$

Proof. Notice first that, since t_x is an isomorphism, we can identify $t_x^! M$ with $t_x^* M$. From $\psi = \mu_x \circ (1_G \times \beta)$ we deduce that $\psi^! M = (1_G \times \beta)! \mu_x^! M$. Therefore, using the *G*-equivariant morphism $1_G \times \beta$, we obtain

$$(1_G \times \beta)^! (\theta_x) : (1_G \times \beta)^! p_2^! t_x^* M \xrightarrow{\sim} \psi^! M.$$

Then, $(1_G \times \beta)! p_2! t_x^* M = (1_G \times \beta)! (\mathcal{O}(G) \boxtimes t_x^* M)[r] = (\mathcal{O}(G) \boxtimes \beta! t_x^* M)[r]$ yields $\psi^! M \cong (\mathcal{O}(G) \boxtimes \beta! t_x^* M)[r]$. From this isomorphism one deduces that $\mathcal{H}^{j-r}(\psi!M) \cong \mathcal{O}_G \boxtimes \mathcal{H}^j(\beta! t_x^* M)$. Then, by (2.2), $\mathcal{H}^j(\beta! t_x^* M) = 0$ unless j = n - m, and

$$\mathcal{H}^{n-m}(\beta^! t_x^* M) = \mathcal{H}^{n-m}\big((\mathcal{O}_U \otimes_{\beta^{\#}}^L t_x^* M)[m-n]\big) = \mathcal{O}_U \otimes_{\beta^{\#}} t_x^* M.$$

This completes the proof of the lemma.

In order to simplify the notation we set

$$t_x^* M_{|U} = \mathcal{H}^{\dim \mathbf{O}}(\beta^! t_x^! M) = \mathcal{O}_U \otimes_{\beta^{\#}} t_x^* M.$$

Recall that the natural inclusion $\beta_x : X \hookrightarrow E$ is equal to $t_x \circ \beta \circ t_{-x}$. Therefore, $\beta_x^! M = t_{-x}^! \beta_x^! t_x^! M$ has non-zero cohomology only in degree dim $\mathbf{O} = n - m$, where $\mathcal{H}^{\dim \mathbf{O}}(\beta_x^! M) = \mathcal{O}_X \otimes_{\beta^{\#}} M$. We set

$$M_{|X} = \mathcal{H}^{\dim \mathbf{O}}(\beta_x^! M) = \mathcal{O}_X \otimes_{\beta_x^{\#}} M.$$

Thus we have:

$$\beta_x^! M = M_{|X|}[m-n]$$

Notice that it follows easily from $\beta_x \circ t_x = t_x \circ \beta$ (on U) that

(2.4)
$$t_x^*(M_{|X}) = t_x^*M_{|U}$$

Let S be a complementary subspace to $F, E = F \oplus S$. Let $\{v_1, \ldots, v_m\}$ be a basis of F and $\{v_{m+1}, \ldots, v_n\}$ be a basis of S. Denote by $\{y_j = v_j^*\}_j$ the dual basis and set $f_j = t_x \cdot y_j = y_j - y_j(x), 1 \leq j \leq n$. Then,

$$\mathcal{O}(F) = S(E^*)/J, \quad \mathcal{O}(x+F) = S(E^*)/J_x$$

where $J = (y_{m+1}, \ldots, y_n)S(E^*)$ and $J_x = t_x J = (f_{m+1}, \ldots, f_n)S(E^*)$. Let $j: U \hookrightarrow F$ and $j_x: X \hookrightarrow x + F$ be the natural inclusions.

Lemma 2.4. We have:

(1) $M_{|X} = \mathcal{O}_X \otimes_{\eta_{\pi}^{\#}} (M/J_x M);$

(2)
$$t_x^* M_{|U} = \mathcal{O}_U \otimes_{\mathcal{I}} (t_x^* M/Jt_x^* M) = \mathcal{O}_U \otimes_{\mathcal{I}} t_x^* (M/J_x M).$$

Proof. 1. Let $\tilde{\beta}_x : x + F \hookrightarrow E$ be the inclusion. Thus $\beta_x = \tilde{\beta}_x \circ j_x$. Since j_x is an open immersion, $\mathcal{H}^j(\beta_x^! M) = \mathcal{O}_X \otimes_{j_x^{\#}} \mathcal{H}^j(\tilde{\beta}_x^! M)$ for all j. Recall that $\tilde{\beta}_x^! M = (\mathcal{D}_{x+F \to E} \otimes_{\mathcal{D}_E}^L M)[m-n]$. Set $V_x = \bigoplus_{i=m+1}^n \mathbb{C}df_i$ and $\mathbb{C}_x^{-p} = \bigwedge^p V_x \boxtimes \mathcal{D}_E$. By [3, VI.7.4], $\tilde{\beta}_x^! M = (\mathbb{C}_x^\bullet \otimes_{\mathcal{D}_E} M, \partial_x)[m-n]$, with $\mathbb{C}_x^p \otimes_{\mathcal{D}_E} M = \bigwedge^{-p} V_x \boxtimes M$ and

$$\partial_x (df_{j_1} \wedge \dots \wedge df_{j_p} \boxtimes v) = \sum_{a=1}^p (-1)^{a+1} df_{j_1} \wedge \dots \wedge \widehat{df_{j_a}} \wedge \dots \wedge df_{j_p} \boxtimes f_{j_a} v.$$

It follows that $\mathcal{H}^{n-m}(\tilde{\beta}_x^!M) = \mathcal{H}^0(\mathcal{C}^{\bullet}_x \otimes_{\mathcal{D}_E} M, \partial_x) = M/J_xM = \mathcal{O}_{x+F} \otimes_{\tilde{\beta}_x^{\#}} M.$ 2. follows from 1. and (2.4).

Let Supp M be the support of the \mathcal{D}_E -module M. Since M is coherent and G-equivariant, Supp M is a closed G-stable subvariety of E and we have Supp $M = \bigcup_{v \in M} \text{Supp } \mathcal{O}_E.v.$ From now on we assume that

$$\operatorname{Supp} M \subseteq \mathbf{O}$$

Recall that the local cohomology group $H^m_{[0]}(\mathcal{O}_U)$ is a \mathcal{D}_U -module isomorphic to $\mathcal{D}_U/(\mathcal{D}_U y_1 + \cdots + \mathcal{D}_U y_m)$. It is easily seen that $t^*_{-x} H^m_{[0]}(\mathcal{O}_U) = H^m_{[x]}(\mathcal{O}_X) \cong$ $\mathcal{D}_X/(\mathcal{D}_X f_1 + \cdots + \mathcal{D}_X f_m)$.

Proposition 2.5. Let M be as above. Then, there exists $k \in \mathbb{N}$ such that

- (1) $M_{|X} \cong H^m_{[x]}(\mathcal{O}_X)^{\oplus k}, t^*_x M_{|U} \cong H^m_{[0]}(\mathcal{O}_U)^{\oplus k};$
- (2) $\psi^! M \cong \left(\mathcal{O}_G \boxtimes H^m_{[0]}(\mathcal{O}_U)^{\oplus k}\right)[s];$
- (3) if Supp $M = \overline{\mathbf{O}}$, then $k \ge 1$.

Proof. 1. Clearly, the support of $M_{|X} = \mathcal{O}_X \otimes_{\beta_x^{\#}} M$ is contained in $X \cap \text{Supp } M \subseteq X \cap \overline{\mathbf{O}}$. But, $X \cap \overline{\mathbf{O}} \subseteq X \cap \Omega \cap \overline{\mathbf{O}} = X \cap \mathbf{O} = \{x\}$. Thus $M_{|X}$ is a \mathcal{D}_X -module whose support is contained in $\{x\}$; therefore, by Kashiwara's equivalence [3, VI.7.11], $M_{|X} = H^m_{[x]}(\mathcal{O}_X)^{\oplus k}$ for some k. The proof is similar for $t_x^*M_{|U}$.

2. follows from 1. and Lemma 2.3.

3. The hypothesis implies that there exists $v \in M$ such that $\mathbf{O} \cap \operatorname{Supp} \mathcal{O}_E . v \neq \emptyset$. Then, since ψ is flat and $\Omega \supset \mathbf{O}$, we have $1 \otimes_{\beta^{\#}} v \in \psi^*M \setminus \{0\}$. Thus $\psi^*M \neq 0$, i.e. $k \ge 1$.

Denote by $\mathbf{m}_x = (f_1, \ldots, f_n)\mathcal{O}(E)$ and $\mathbf{n}_x = (f_1, \ldots, f_m)\mathcal{O}(F)$ the maximal ideals associated to $x \in E$ and $x \in (x+F)$ (respectively). Set $\mathbb{C}_x = \mathcal{O}(E)/\mathbf{m}_x \mathcal{O}(E)$.

Theorem 2.6. Let $i: \{x\} \hookrightarrow E$ be the inclusion. Set

$$\omega^{-1} = df_1 \wedge \cdots \wedge df_m \text{ and } T = \{ u \in M/J_x M : \mathbf{n}_x u = 0 \}.$$

Then,

- (1) $T \cong \{ v \in H^m_{[x]}(\mathcal{O}_X)^{\oplus k} : \mathbf{n}_x v = 0 \}$ is a \mathbb{C} -vector space of dimension k;
- (2) i!M has cohomology concentrated in degree dim \mathbf{O} and

$$\mathcal{H}^{\dim \mathbf{O}}(i^!M) = \operatorname{Tor}_m^{\mathcal{O}(E)}(\mathbb{C}_x, M) = \omega^{-1} \otimes_{\mathbb{C}_x} T.$$

Proof. Recall [3, VI.4.2] that $\mathcal{H}^{j}(i^{!}M) = \operatorname{Tor}_{-j+n}^{\mathcal{O}(E)}(\mathbb{C}_{x}, M)$. Let $\gamma : \{x\} \hookrightarrow X$ be the inclusion. Then, $i = \beta_{x} \circ \gamma$ and $i^{!}M = \gamma^{!}\beta_{x}^{!}M$. Recall from (2.3) that $\beta_{x}^{!}M = M_{|X}[m-n]$. By Lemma 2.4 and Proposition 2.5, we know that $M_{|X} =$

 \square

 $\mathcal{O}_X \otimes_{j_x^{\#}} (M/J_x M) \cong H^m_{[x]}(\mathcal{O}_X)^{\oplus k}$ is supported on $\{x\}$. Thus, $T_{|X} = \{u \in M_{|X} : \mathbf{n}_x u = 0\}$ is a \mathbb{C} -vector space of dimension k. Furthermore, by [3, VI.7.4],

$$\mathcal{H}^{j}(\gamma^{!}M_{|X}) = \begin{cases} 0 & \text{if } j \neq 0\\ \omega_{\{x\}/X}^{-1} \otimes_{\mathbb{C}_{x}} T_{|X} & \text{if } j = 0 \end{cases}$$

Since $\omega_{\{x\}/X}^{-1} = df_1 \wedge \cdots \wedge df_m$, we obtain that i'M has cohomology concentrated in degree n - m with $\mathcal{H}^{n-m}(i'M) = \omega^{-1} \otimes_{\mathbb{C}_x} T_{|X}$. To finish the proof it suffices to apply the following standard result to the module $N = M/J_x M$: Let N be any \mathcal{O}_{x+F} -module; then, if $N' = \mathcal{O}_X \otimes_{J_x^{\#}} N$, one has

$$\{u \in N : \mathbf{n}_x u = 0\} \xrightarrow{\sim} \{u' \in N' : \mathbf{n}_x u' = 0\}$$

through the natural map $j_x^{\#} : N \to N', \ j_x^{\#}(u) = \mathbf{1}_X \otimes_{j_x^{\#}} u.$

One can factorize the inclusion $i : \{x\} \hookrightarrow E$ as follows: $i : \{x\} \stackrel{i_1}{\hookrightarrow} \mathbf{O} \stackrel{i_2}{\hookrightarrow} E$. We now compute $i_2^! M$, the "restriction to \mathbf{O} ".

Proposition 2.7. $i_2^! M$ has cohomology concentrated in degree 0 and, as an $\mathcal{O}_{\mathbf{O}}$ -module, $\mathfrak{H}^0(i_2^! M) = \operatorname{Tor}_m^{\mathcal{O}_E}(\mathcal{O}_{\mathbf{O}}, M).$

Proof. Notice first the following commutative diagram of G-equivariant morphisms

$$Y = G \times U \xrightarrow{\psi} E$$

$$\downarrow^{j_2} \qquad \qquad \uparrow^{i_2}$$

$$G \times \{0\} \xrightarrow{\pi} \mathbf{O}$$

where $\pi(g, 0) = g.x$.

Recall that, by Proposition 2.5, $\psi^! M \cong \psi^* M[s]$ with $\psi^* M = \mathcal{O}_G \boxtimes H^m_{[0]}(\mathcal{O}_U)^{\oplus k}$. Thus $\psi^* M = \mathcal{H}^{-s}(\psi^! M)$ is supported on $G \times \{0\}$. Since $j_2 : G \times \{0\} \hookrightarrow Y$ is a closed embedding, [3, VI.7.4] gives that $j_2^! \psi^* M$ has cohomology concentrated in degree 0; equivalently, $j_2^! \psi^! M$ has cohomology concentrated in degree -s.

On the other hand,

$$\mathcal{H}^{j}(\pi^{l}i_{2}^{l}M) = \mathcal{H}^{j}((\mathcal{D}_{G\times\{0\}\to\mathbf{O}}\otimes^{L}_{\mathcal{D}\mathbf{O}}i_{2}^{l}M)[s]) = \mathcal{H}^{j+s}(\mathcal{D}_{G\times\{0\}\to\mathbf{O}}\otimes^{L}_{\mathcal{D}\mathbf{O}}i_{2}^{l}M).$$

Since π is smooth and $\mathcal{D}_{G \times \{0\} \to \mathbf{O}} = \pi^* \mathcal{D}_{\mathbf{O}}$, it follows that, as an $\mathcal{O}_{G \times \{0\}}$ -module,

$$\mathcal{H}^{j}(\pi^{!}i_{2}^{!}M) = \mathcal{O}_{G \times \{0\}} \otimes_{\pi^{\#}} \mathcal{H}^{j+s}(i_{2}^{!}M).$$

Now, since π is faithfully flat and $\pi^! i_2^! M = j_2^! \psi^! M$, the previous paragraph implies that $i_2^! M$ has cohomology concentrated in degree 0. By definition, $i_2^! M = (\mathcal{D}_{\mathbf{O}} \otimes_{\mathcal{D}_E}^L M)[-m]$. Hence, see [3, VI.4.2], $\mathcal{H}^0(i_2^! M) = \operatorname{Tor}_m^{\mathcal{O}_E}(\mathcal{O}_{\mathbf{O}}, M)$.

We set:

(2.5)
$$M_{|\mathbf{O}} = \mathcal{H}^0(i_2^! M)$$

Denote by G^x the stabilizer of x in G and let G_0^x be its connected component. Define the component group of **O** by

$$A(\mathbf{O}) = G^x / G_0^x$$

Let $\pi: G \to \mathbf{O}, g \mapsto g.x$, be the natural morphism and L be a rational representation of G^x . Define an $\mathcal{O}_{\mathbf{O}}$ -module \mathcal{L} by setting, for any open subset $W \subseteq \mathbf{O}$,

$$\Gamma(W,\mathcal{L}) = \{ f : \pi^{-1}(W) \to L : f(gh) = h^{-1} f(g) \text{ for all } g \in \pi^{-1}(W), h \in G^x \}.$$

Then $\mathcal{L} \in \mathfrak{M}(\mathcal{O}_{\mathbf{O}}, G)$ [7, Theorem 4.8.1]. When L is a representation of the (finite) group $A(\mathbf{O})$, i.e. when G_0^x acts trivially on $L, \mathcal{L} \in \mathfrak{M}(\mathcal{D}_{\mathbf{O}}, G)$ and, conversely, any G-equivariant $\mathcal{D}_{\mathbf{O}}$ -module is of this form, see [7, Proposition 4.11.1] and [8, §4]. An object of $\mathfrak{M}(\mathcal{D}_{\mathbf{O}}, G)$ will be called a *connection* on \mathbf{O} . The representation of $A(\mathbf{O})$ associated to a connection \mathcal{L} is the "geometric fibre at the point x", $\mathcal{L}(x) = \mathbb{C}_x \otimes_{\mathcal{O}_{\mathbf{O}}} \mathcal{L} = \mathcal{L}_x/\mathbf{m}_x \mathcal{L}_x$, where the $A(\mathbf{O})$ -action is coming from the natural action of G^x .

Proposition 2.8. The $\mathcal{D}_{\mathbf{O}}$ -module $M_{|\mathbf{O}}$ is a connection and its geometric fibre at the point x is

$$M_{|\mathbf{O}}(x) = \omega^{-1} \otimes_{\mathbb{C}} T.$$

Proof. Since $i_2 : \mathbf{O} \hookrightarrow E$ is *G*-equivariant, the results of §1 ensure that $i'_2 M = M_{|\mathbf{O}|}$ (see Proposition 2.7) is in $\mathfrak{M}(\mathcal{D}_{\mathbf{O}}, G)$. Therefore, by the remarks above, $M_{|\mathbf{O}|}$ is a connection. In particular, $M_{|\mathbf{O}|}$ is flat as an $\mathcal{O}_{\mathbf{O}}$ -module and it follows that

$$i^! M = i_1^! i_2^! M = i_1^! M_{|\mathbf{O}} = \left(\mathcal{D}_{\{x\} \to \mathbf{O}} \otimes_{\mathcal{D}_{\mathbf{O}}}^L M_{|\mathbf{O}} \right) [m-n]$$

has cohomology concentrated in degree n-m, where $\mathcal{H}^{n-m}(i^!M) = \mathbb{C}_x \otimes_{\mathcal{O}_{\mathbf{O}}} M_{|\mathbf{O}} = M_{|\mathbf{O}}(x)$. The proposition then follows from Theorem 2.6.

Remark. We will see (in a particular case) in the next section how to compute the $A(\mathbf{O})$ -action on $\omega^{-1} \otimes_{\mathbb{C}} T$.

Recall that $t_x^*M_{|U} = \mathcal{O}_U \otimes_{\beta^{\#}} t_x^*M$, $M_{|X} = \mathcal{O}_X \otimes_{\beta^{\#}_x} M$. Thus we have maps $\beta^{\#} : t_x^*M \to t_x^*M_{|U}, \ \beta^{\#}(t) = 1_U \otimes_{\beta^{\#}} t$, and $\beta^{\#}_x : M \to M_{|X}, \ \beta^{\#}_x(v) = 1_X \otimes_{\beta^{\#}_x} v$. We set:

(2.6)
$$\rho(v) = \beta^{\#}(t_{-x}.v) = 1_U \otimes_{\beta^{\#}} t_{-x}.v$$

Recall also from Lemma 2.4 that $t_x^*M_{|U} = \mathcal{O}_U \otimes_{J^{\#}} (t_x^*M/Jt_x^*M)$ and $M_{|X} = \mathcal{O}_X \otimes_{J_x} (M/J_xM)$. Let $\varpi : t_x^*M \twoheadrightarrow t_x^*M/Jt_x^*M$ and $\varpi_xM \twoheadrightarrow M/J_xM$ be the canonical projections. It is easy to see that, since $t_x^*M/Jt_x^*M = t_x^*(M/JM)$, one has $t_{-x}.(\varpi_x(v)) = \varpi(t_{-x}.v)$. One obtains from the definitions that, for all $v \in M$,

$$1_X \otimes_{j_x^{\#}} \varpi_x(v) = 1_X \otimes_{\beta_x^{\#}} v, \quad \rho(v) = 1_U \otimes_{\beta^{\#}} t_{-x} \cdot v = 1_U \otimes_{j^{\#}} \varpi(t_{-x} \cdot v).$$

It is also easily seen that the map $t_x^{\#}: M_{|X} \to t_x^*(M_X) = t_x^*M_{|U}$ is a bijection given by

$$t_x^{\#}(a \otimes_{j_x^{\#}} \varpi_x(v)) = t_{-x} \cdot a \otimes_{j^{\#}} \varpi(t_{-x} \cdot v) = (t_{-x} \cdot a)\rho(v)$$

for all $a \in \mathcal{O}(X)$ and $v \in M$.

Recall from Lemma 2.2, and the remark thereafter, that θ_x yields an isomorphism $\mathcal{O}(G) \boxtimes \mu_x^* M \xrightarrow{\sim} \mu_x^* M$, $\theta_x(a \boxtimes t_{-x}.v) = aSv_{(1)} \otimes_{\mu_x^{\#}} v_{(2)}$. It follows that $\bar{\theta}_x = (1_G \times \beta)^*(\theta_x)$ is the isomorphism:

$$\bar{\theta}_x: \mathcal{O}(G) \boxtimes t_x^* M_{|U} \xrightarrow{\sim} \psi^* M, \quad \bar{\theta}_x(a \boxtimes \rho(v)) = aSv_{(1)} \otimes_{\psi^{\#}} v_{(2)}.$$

Lemma 2.9. Let $\alpha : \{e\} \times U \hookrightarrow Y$ be the inclusion and $\varphi : \{e\} \times U \xrightarrow{\sim} X$ be the restriction of ψ . Then, $\mathcal{H}^{\dim \mathbf{O}}(\alpha^! \psi^! M) = \alpha^* \psi^* M = \varphi^* M_{|X}$ and $\overline{\theta}_x$ induces an isomorphism

 $\alpha^*(\bar{\theta}_x): \mathbb{C} \boxtimes t_x^* M_{|U} \xrightarrow{\sim} \varphi^* M_{|X}, \quad 1 \boxtimes (t_{-x}.a) \rho(v) \mapsto \varphi^{\#}(a \otimes_{\tau_x^{\#}} \varpi_x(v)),$

 $a \in \mathcal{O}(X), v \in M.$

Proof. Recall that

$$\alpha^! \psi^! M = \left(\mathcal{D}_{\{e\} \times U \to \mathcal{Y}} \otimes^L_{\mathcal{D}_{\mathcal{Y}}} \psi^! M \right) [-r] = \left(\mathcal{D}_{\{e\} \times U \to \mathcal{Y}} \otimes^L_{\mathcal{D}_{\mathcal{Y}}} \psi^* M \right) [m-n]$$

It follows that $\mathcal{H}^{n-m}(\alpha^! \psi^! M) = \alpha^* \psi^* M$. On the other hand, $\psi \circ \alpha = \beta_x \circ \varphi$ yields $\alpha^* \psi^* M = \varphi^* \beta_x^* M = \varphi^* M_{|X}.$

Let $v \in M$, then we have:

$$\begin{aligned} \alpha^*(\theta_x)(1 \boxtimes \rho(v)) &= \mathbf{1}_{\{e\} \times U} \otimes_{\alpha^{\#}} Sv_{(1)} \otimes_{\psi^{\#}} v_{(2)} \\ &= (Sv_{(1)})(e) \otimes_{(\psi \circ \alpha)^{\#}} v_{(2)} \\ &= \mathbf{1} \otimes_{(\psi \circ \alpha)^{\#}} v \\ &= \varphi^{\#}(\mathbf{1}_X \otimes_{\beta^{\#}_x} v) \\ &= \varphi^{\#}(\mathbf{1}_X \otimes_{j^{\#}_x} \varpi_x(v)), \end{aligned}$$

as required.

From now on, in order to simplify the notation, we will identify the \mathcal{D}_Y -modules ψ^*M and $\mathcal{O}(G) \boxtimes t_x^*M_{|U}$ through the isomorphism $\bar{\theta}_x$. By Lemma 2.9, the $\mathcal{D}_{\{e\}\times U^-}$ module $\varphi^* M_{|X}$ then identifies with $\mathbb{C} \boxtimes t_x^* M_{|U}$ via $\varphi^{\#}$; this imply that we will identify the elements $1 \boxtimes \rho(v)$ and $\varphi^{\#}(1_X \otimes_{j_x} \varpi_x(v))$.

Let $o: \{0\} \hookrightarrow U$ be the inclusion and recall that $\gamma: \{x\} \hookrightarrow X$. We have a commutative diagram:

$$Y \xrightarrow{\psi} E$$

$$\alpha \uparrow \qquad \uparrow \beta_x$$

$$\{e\} \times U \xrightarrow{\varphi} X$$

$$\varepsilon \times o \uparrow \qquad \uparrow \gamma$$

$$e\} \times \{0\} \xrightarrow{\overline{\varphi}} \{x\}$$

It follows that $\bar{\varphi}$ gives an isomrphism:

$$i^! M = \gamma^! \beta_x^! M \xrightarrow{\sim} (\varepsilon \times o)^! \alpha^! \psi^! M$$

Since $\mathbb{C} \boxtimes t_x^* M_{|U}$ is supported on $\{e\} \times \{0\}$ (see Proposition 2.5), $(\varepsilon \times o)! \alpha! \psi! M$ has cohomology concentrated in degree dim **O** and $\bar{\varphi}^{\#}$ yields the isomorphism

$$\bar{\varphi}^{\#}: \mathcal{H}^{\dim \mathbf{O}}(i^!M) \xrightarrow{\sim} \mathbb{C} \boxtimes \mathcal{H}^0(o^!t_x^*M_{|U}).$$

Let $\mathbf{n}_0 = (y_1, \ldots, y_m) \mathcal{O}(F)$ be the defining ideal of the point $0 \in F$. Since $f_i =$ $y_i - y_i(x)$, we have

$$\omega_{\{0\}/U}^{-1} = dy_1 \wedge \dots \wedge dy_m = \omega^{-1} = df_1 \wedge \dots \wedge df_m.$$

Theorem 2.10. Set $T_0 = \{u \in t_x^*M/Jt_x^*M : \mathbf{n}_0u = 0\}$. Then,

ł

- (1) $T_0 \cong \left\{ u \in H^m_{[0]}(\mathcal{O}_U)^{\oplus k} : \mathbf{n}_0 u = 0 \right\}$ is a vector space of dimension k and $\begin{aligned} &\mathcal{H}^{0}(o^{!}t_{x}^{*}M_{|U}) \stackrel{\text{\tiny{(I)}}}{=} \omega^{-1} \otimes_{\mathbb{C}} T_{0}; \\ \end{aligned}$ (2) the isomorphism $\bar{\varphi}^{\#} : \mathcal{H}^{\dim \mathbf{O}}(i^{!}M) \xrightarrow{\sim} \mathbb{C} \boxtimes \mathcal{H}^{0}(o^{!}t_{x}^{*}M_{|U}) \text{ coincides with } \end{aligned}$

$$\bar{\varphi}^{\#} \colon \omega^{-1} \otimes_{\mathbb{C}} T \longrightarrow \mathbb{C} \boxtimes (\omega^{-1} \otimes_{\mathbb{C}} T_{0}), \quad \omega^{-1} \otimes \varpi_{x}(v) \mapsto 1 \boxtimes (\omega^{-1} \otimes \varpi(t_{-x}.v))$$

10

Proof. Since $\mathcal{O}_U \otimes_{j^{\#}} (t_x^*M/Jt_x^*M) \cong H^m_{[0]}(\mathcal{O}_U)^{\oplus k}$ (see Lemma 2.4 and Proposition 2.5), the proof of 1. is the same as the proof of Theorem 2.6. Observe in particular that

$$\left\{ u \in t_x^* M_{|U} : \mathbf{n}_0 u = 0 \right\} \equiv \left\{ u \in t_x^* M / J t_x^* M : \mathbf{n}_0 u = 0 \right\}.$$

The assertion 2. then follows from 1. and the identification of $\varphi^{\#}(1_X \otimes_{j^{\#}} \varpi_x(v))$ with $1 \boxtimes \rho(v) = 1 \boxtimes (1_U \otimes_{j^{\#}} \varpi(t_{-x} \cdot v))$

Remark. We notice for further use the following consequence of Theorem 2.10. Let $v \in M^G$. Then, $\lambda_M(v) = 1_G \boxtimes v$ and therefore

$$\psi^{\#}(v) = 1_Y \otimes_{\psi^{\#}} v = \bar{\theta}_x(1_G \boxtimes \rho(v)).$$

Thus we may identify $\psi^{\#}(v)$ with $1_{G} \boxtimes \rho(v)$. Assume moreover that $\mathbf{n}_{0}\rho(v) = 0$, then $\rho(v) = 1_{U} \otimes_{\eta^{\#}} \varpi(t_{-x}.v) \in \mathcal{H}^{0}(o^{!}t_{x}^{*}M_{|U})$ can be identified with $\varpi(t_{-x}.v) \in T_{0}$.

3. The case of the adjoint representation

In this section we consider the case where G is the adjoint group of a semisimple Lie algebra \mathfrak{g} of dimension n. We are going to apply the results of §2 to the case of the adjoint action of G on $E = \mathfrak{g}$. Moreover, we will assume that the element $x \in \mathfrak{g}$ is nilpotent, hence $\mathbf{O} = G.x$ is a nilpotent orbit. We fix a coherent equivariant $\mathcal{D}_{\mathfrak{g}}$ -module $M \in \mathfrak{M}(\mathcal{D}_{\mathfrak{g}}, G)$ such that $\operatorname{Supp} M = \overline{\mathbf{O}}$.

Suppose that x = 0. Then, by Kashiwara's equivalence [3, VI.7.11] one has $M \cong H^n_{\{0\}}(\mathcal{O}_{\mathfrak{g}})^{\oplus k}$ for some $k \ge 1$. In this case $A(\mathbf{O}) = \{e\}$ and the connection $M_{|\mathbf{O}|}$ is the vector space \mathbb{C}^k .

Therefore, we now will suppose that $x \neq 0$. Then, we can find an S-triplet $\{x, y, z\}$ containing x, i.e. [x, y] = z, [z, x] = 2x, [z, y] = -2y and $\mathfrak{s} = \mathbb{C}x + \mathbb{C}y + \mathbb{C}z \cong \mathfrak{sl}(2, \mathbb{C})$. We take $F = \mathfrak{g}^y = \{\xi \in \mathfrak{g} : [\xi, y] = 0\}$. Thus,

$$n = r = \dim \mathfrak{g}, \quad m = s = \dim \mathfrak{g}^y.$$

In this situation it is well known [13, III.5.1, III.7.4] that $x + F = x + \mathfrak{g}^y$ is a transverse slice to **O** at the point x. Thus the condition (\dagger) of §2 is satisfied. We adopt the notation of the previous section; in particular, we have a smooth morphism $\psi : Y = G \times U \to \mathfrak{g}$ as in Proposition 2.1. We can summarize the results about the equivariant \mathcal{D}_Y -module ψ^*M in the following theorem, see Proposition 2.5, Theorem 2.6 and Proposition 2.8. Recall that we have the natural embedding $i : \{x\} \stackrel{i_1}{\hookrightarrow} \mathbf{O} \stackrel{i_2}{\to} \mathfrak{g}$.

Theorem 3.1. (1) The $\mathcal{D}_{G \times U}$ -module $\psi^* M$ is isomorphic to $\mathcal{O}_G \boxtimes H^m_{[0]}(\mathcal{O}_U)^{\oplus k}$ for some $k \ge 1$.

(2) The $\mathcal{D}_{\mathbf{O}}$ -module $M_{|\mathbf{O}} = \mathcal{H}^{0}(i_{2}^{!}M)$ is the connection defined by the k-dimensional representation $\mathcal{H}^{\dim \mathbf{O}}(i^{!}M) = \omega^{-1} \otimes_{\mathbb{C}} T$ of the finite group $A(\mathbf{O})$, where $\omega^{-1} = dy_{1} \wedge \cdots \wedge dy_{m}$ and $T = \{ \overline{\omega}_{x}(v) \in M/J_{x}M : \mathbf{n}_{x}\overline{\omega}_{x}(v) = 0 \}.$

We now want to be more explicit on the action of $A(\mathbf{O})$ on $M_{|\mathbf{O}}(x) = \omega^{-1} \otimes T$. We first recall the following "Levi decomposition" of the stabilizer G^x .

Lemma 3.2. ([1, Proposition 2.4]) Let $G^{\phi} = \{g \in G : g.a = a \text{ for all } a \in \mathfrak{s}\}$ be the centralizer of the Lie subalgebra \mathfrak{s} and denote by G_0^{ϕ} its identity component. Then, G^{ϕ} is reductive and there exists a semidirect product decomposition $G^x = U^x . G^{\phi}$,

where U^x is a normal unipotent subgroup. Furthermore, the map $G^{\phi} \hookrightarrow G^x$ induces the identification $A(\mathbf{O}) = G^{\phi}/G_0^{\phi}$.

Recall that we have chosen a decomposition $\mathfrak{g} = \mathfrak{g}^y \oplus S$. Since $F = \mathfrak{g}^y$ is G^{ϕ} -stable and G^{ϕ} is reductive, we may choose S to be G^{ϕ} -stable (e.g. $S = [\mathfrak{g}, x] = T_x(G.x)$). Hence, with the notation of §2, the subspaces

$$\bigoplus_{i=1}^{m} \mathbb{C}y_i, \quad \bigoplus_{i=m+1}^{n} \mathbb{C}y_i, \quad \bigoplus_{i=1}^{m} \mathbb{C}f_i, \quad \bigoplus_{i=m+1}^{n} \mathbb{C}f_i$$

are G^{ϕ} -stable. Observe that $\mathbb{C}\omega^{-1} = \mathbb{C}dy_1 \wedge \cdots \wedge dy_m$ carries a representation of G^{ϕ} . Furthermore, G^{ϕ} acts naturally on M/J_xM and T. We will need the following well known result.

Lemma 3.3. Let $g \in G^{\phi}$ and $\xi \in \mathfrak{g}^{\phi} = \operatorname{Lie}(G^{\phi})$. Then,

(1) det $\operatorname{Ad}_{\mathfrak{g}^y}(g) = \det \operatorname{Ad}_{\mathfrak{g}/\mathfrak{g}^y}(g) = 1;$ (2) $g.\omega^{-1} = \omega^{-1};$

(2)
$$g.\omega^{-1} = \omega^{-1}$$

(3) $\operatorname{tr} \operatorname{ad}_{\mathfrak{q}^y}(\xi) = \operatorname{tr} \operatorname{ad}_{\mathfrak{q}/\mathfrak{q}^y}(\xi) = 0.$

Proof. Since \mathfrak{g} is semisimple, det $\mathrm{Ad}_{\mathfrak{g}}(g) = 1$ for all $g \in G$. Recall that the Killing form B induces a symplectic form B_y on $\mathfrak{g}/\mathfrak{g}^y$ by the formula $B_y(\bar{\xi}, \bar{\eta}) = B(y, [\xi, \eta])$. It is easily seen that B_y is G^y -invariant. Hence, if $g \in G^{\phi}$, $\operatorname{Ad}_{\mathfrak{g}/\mathfrak{g}^y}(g)$ belongs to the symplectic group $\operatorname{Sp}(\mathfrak{g}/\mathfrak{g}^y, B_y)$. This implies det $\operatorname{Ad}_{\mathfrak{g}/\mathfrak{g}^y}(g) = 1$. Now, the G^{ϕ} -stable decomposition $\mathfrak{g} = \mathfrak{g}^y \oplus S$ with $S \cong \mathfrak{g}/\mathfrak{g}^y$ (as a G^{ϕ} -module) yields det $\operatorname{Ad}_{\mathfrak{g}^y}(g) = 1$. This proves 1., and 2. follows from $g.\omega^{-1} = \det \operatorname{Ad}_{\mathfrak{g}^y}(g^{-1})\omega^{-1}$. The proof of 3. is similar.

Theorem 3.4. The representation of $A(\mathbf{O})$ on the fibre $M_{|\mathbf{O}}(x) = \omega^{-1} \otimes_{\mathbb{C}} T$ is induced by the natural G^{ϕ} -action on T.

Proof. Write $i = \tilde{\beta}_x \circ \tilde{\gamma}$, where $\tilde{\gamma} : \{x\} \hookrightarrow x + F$ and $\tilde{\beta}_x : x + F \hookrightarrow \mathfrak{g}$. The maps $\tilde{\gamma}$ and $\tilde{\beta}_x$ being G^{ϕ} -equivariant, we have a natural G^{ϕ} -action on $M_{|\mathbf{O}}(x) = \mathcal{H}^{\dim \mathbf{O}}(i^!M)$ which yields the representation of the group $A(\mathbf{O})$ that we want to compute.

Set $V_x = \bigoplus_{i=m+1}^n \mathbb{C}df_i = \bigoplus_{i=m+1}^n \mathbb{C}dy_i$; then V_x is a G^{ϕ} -stable subspace of \mathfrak{g}^* . We have seen in the proof of Lemma 2.4 that (setting $\partial_{II} = \partial_x$),

$$\hat{\beta}_x^! M = \left(\mathfrak{C}_{II}^{\bullet} = \mathfrak{C}_x^{\bullet} \otimes_{\mathcal{D}_{\mathfrak{g}}} M, \partial_{II} \right) [m-n].$$

Let G^{ϕ} act diagonally on $\mathcal{C}^{p}_{II} = \mathcal{C}^{p+m-n}_{x} \otimes_{\mathcal{D}_{\mathfrak{g}}} M = \bigwedge^{-p+\dim \mathbf{O}} V_{x} \boxtimes M$. Then, ∂_{II} is G^{ϕ} -equivariant and the G^{ϕ} -action on the cohomology group $\mathcal{H}^{j}(\tilde{\beta}_{x}^{!}M) \in$ $\mathfrak{M}(\mathcal{D}_{x+F}, G^{\phi})$ is induced by the diagonal action of G^{ϕ} on $\mathcal{C}^{\bullet}_{H}$ (see §1). Notice, in particular, that

$$\mathcal{H}^{\dim \mathbf{O}}(\tilde{\beta}_x^! M) = \operatorname{Tor}_0^{\mathcal{O}_{\mathfrak{g}}}(\mathcal{O}_{x+F}, M) = M/J_x M$$

is endowed with the natural action of G^{ϕ} . By (2.3), $\mathcal{H}^{j}(\beta_{x}^{!}M) = \mathcal{O}_{X} \otimes_{\mathcal{O}_{x+F}}$ $\mathcal{H}^{j}(\tilde{\beta}_{x}^{!}M) = 0$ when $j \neq \dim \mathbf{O}$. Thus,

$$\operatorname{Supp} \mathcal{H}^{j}(\tilde{\beta}_{x}^{!}M) \subseteq (x+F) \setminus X \subset (x+F) \setminus \{x\} \text{ if } j \neq \dim \mathbf{O}.$$

Now,

$$i^! M = \tilde{\gamma}^! \tilde{\beta}_x^! M = \left(\mathcal{D}_{\{x\} \to x+F} \otimes_{\mathcal{D}_{x+F}}^L \tilde{\beta}_x^! M \right) [-m]$$

can be computed as follows. Notice that $\mathbf{n}_x/\mathbf{n}_x^2 = \bigoplus_{j=1}^m \mathbb{C}df_j$ and consider the complex $(\mathcal{C}_{I}^{\bullet}, \partial_{I})$ where $\mathcal{C}_{I}^{p} = \bigwedge^{-p} (\mathbf{n}_{x}/\mathbf{n}_{x}^{2}) \boxtimes \mathcal{D}_{x+F}$ and

$$\partial_I (df_{j_1} \wedge \dots \wedge df_{j_p} \boxtimes D) = \sum_{s=1}^p (-1)^{s+1} df_{j_1} \wedge \dots \wedge \widehat{df_{j_s}} \wedge \dots \wedge df_{j_p} \boxtimes f_{j_s} D.$$

$${}^{!}M = \tilde{\gamma}^{!}\tilde{\beta}_{x}^{!}M = \left(\mathcal{C}_{\mathrm{tot}}^{\bullet}, \partial_{\mathrm{tot}}\right)[-m]$$

and therefore $\mathcal{H}^{j}(i'M) = \mathcal{H}^{j-m}(\mathcal{C}^{\bullet}_{tot})$. This group is computed by the spectral sequence:

$$E_2^{pq} = \mathcal{H}^p_I(\mathcal{H}^q_{II}(\mathcal{C}^{\bullet})) \Longrightarrow \mathcal{H}^{p+q}(\mathcal{C}^{\bullet}_{\mathrm{tot}})$$

But, $E_2^{pq} = \operatorname{Tor}_{-p}^{\mathcal{O}_{x+F}}(\mathbb{C}_x, \mathcal{H}^q(\mathcal{C}_{II}))$ as \mathcal{O}_{x+F} -module, and we have noticed that the support of $\mathcal{H}^q(\mathcal{C}_{II}) = \mathcal{H}^q(\tilde{\beta}_x^! M)$ is contained in $(x + F) \setminus \{x\}$ when $q \neq \dim \mathbf{O}$. Therefore $E_2^{pq} = 0$ for all $q \neq \dim \mathbf{O}$ and $E_2^{p\dim \mathbf{O}} = \operatorname{Tor}_{-p}^{\mathcal{O}_{x+F}}(\mathbb{C}_x, \mathcal{H}^{\dim \mathbf{O}}(\tilde{\beta}_x^! M))$. Hence, the spectral sequence E_2^{pq} collapses to $E_2^{p\dim \mathbf{O}} = \mathcal{H}^{p+\dim \mathbf{O}}(\mathcal{C}_{tot}^{\bullet})$. In particular, we obtain

$$\mathcal{H}^{\dim \mathbf{O}}(i^!M) = \mathcal{H}^{\dim \mathbf{O}-m}(\mathcal{C}^{\bullet}_{\mathrm{tot}}) = \mathrm{Tor}_m^{\mathcal{O}_{x+F}}(\mathbb{C}_x, \mathcal{H}^{\dim \mathbf{O}}(\tilde{\beta}^!_xM))$$
$$= \mathrm{Tor}_m^{\mathcal{O}_{x+F}}(\mathbb{C}_x, M/J_xM) = \omega^{-1} \otimes_{\mathbb{C}} T$$

(as expected). Furthermore, the group G^{ϕ} acts diagonally on the complexes \mathfrak{C}^{\bullet} , $\mathfrak{C}_{\text{tot}}$ and it follows from the previous computation that the action of $A(\mathbf{O})$ on $\mathcal{H}^{\dim \mathbf{O}}(i'M)$ is coming from the induced action of G^{ϕ} on $E_2^{-m \dim \mathbf{O}} = \omega^{-1} \otimes_{\mathbb{C}} T$. Then, by Lemma 3.3,

$$g.(\omega^{-1} \otimes \varpi_x(v)) = g.\omega^{-1} \otimes g.\varpi_x(v) = \omega^{-1} \otimes \varpi_x(g.v)$$

 $\in T.$ Hence the result.

for all $\varpi_x(v) \in T$. Hence the result.

Remark. A consequence of Theorem 3.4 is that the identity component G_0^{ϕ} acts trivially on $\omega^{-1} \otimes_{\mathbb{C}} T$. It is not difficult to prove this fact directly. Denote by $\tau_{\phi} : \mathfrak{g}^{\phi} \to \operatorname{Der} \mathcal{O}(x+F)$ the differential of the (adjoint) action of G^{ϕ} on x+F (thus $\tau_{\phi} = \tau_{x+F}$ in the notation of §1). Let $\xi \in \mathfrak{g}^{\phi}$. Since $\mathcal{O}(x+F) = \mathcal{O}(\mathfrak{g})/J_x\mathcal{O}(\mathfrak{g}) \equiv \mathbb{C}[y_1, \ldots, y_m]$, we may write $\tau_{\phi}(\xi) = \sum_{j=1}^m \xi_j \partial_j$, where $\partial_j = \frac{\partial}{\partial y_j}$, $1 \leq j \leq m$. Lemma 3.3 and a straightforward computation yield

$$\tau_{\phi}(\xi) = \sum_{j=1}^{m} \partial_j \xi_j + \operatorname{tr} \operatorname{ad}_{\mathfrak{g}^y}(\xi) = \sum_{j=1}^{m} \partial_j \xi_j.$$

Notice that $\xi_j(x) = y_j([x,\xi]) = 0$, hence $\xi_j \in \mathbf{n}_x$. Recall that $M/J_xM = \mathfrak{H}^{\dim \mathbf{O}}(\tilde{\beta}^!_xM) \in \mathfrak{M}(\mathcal{D}_{x+F}, G^{\phi})$. Then, for all $\varpi_x(v) \in T \subset M/J_xM$,

$$\begin{aligned} \xi.(\omega^{-1} \otimes \varpi_x(v)) &= \frac{d}{dt}_{|t=0} (e^{t\xi} . \omega^{-1} \otimes e^{t\xi} . \varpi_x(v)) \\ &= \omega^{-1} \otimes \frac{d}{dt}_{|t=0} (e^{t\xi} . \varpi_x(v)) \quad \text{(by Lemma 3.3)} \\ &= \omega^{-1} \otimes \tau_\phi(\xi) \varpi_x(v) \quad (\text{since } M/J_x M \in \mathfrak{M}(\mathcal{D}_{x+F}, G^\phi)) \\ &= \sum_{j=1}^m \omega^{-1} \otimes \partial_j \xi_j \varpi_x(v) \\ &= 0. \end{aligned}$$

Thus $\mathfrak{g}^{\phi} = \operatorname{Lie}(G_0^{\phi})$ acts trivially on $\omega^{-1} \otimes_{\mathbb{C}} T$ and the result follows.

We end these notes by the following particular case of Theorem 3.4. Recall that $\mathbf{n}_0 = (y_1, \ldots, y_m) \mathcal{O}(F)$ and $\rho(v) = \mathbf{1}_U \otimes_{j^{\#}} \varpi(t_{-x}.v)$.

Corollary 3.5. Let
$$M = \mathcal{D}_{\mathfrak{g}} v \in \mathfrak{M}(\mathcal{D}_{\mathfrak{g}}, G)$$
 with $v \in M^G$. Then, $t_x^* M_{|U} = \mathcal{D}_U \rho(v)$
and $\psi^* M = \mathcal{D}_Y(1_G \boxtimes \rho(v))$. Furthermore, if $k = 1$ and $\mathbf{n}_0 \rho(v) = 0$, then we have

- (i) $T = \mathbb{C}\varpi_x(v);$
- (ii) the representation of A(O) on M_{|O}(x) is the trivial representation and the connection M_{|O} is isomorphic to the standard D_O-module O_O.

Proof. Since ψ is smooth, it is easy to see [10, Lemma 3.2] that $\psi^*M = \mathcal{D}_Y \psi^{\#}(v)$. As explained in §2 (cf. Lemma 2.9, Theorem 2.10 and Remark at the end of §2) we may identify the \mathcal{D}_Y -module ψ^*M with $\mathcal{O}(G) \boxtimes t_x^*M_{|U}$, and, since $v \in M^G$, $\psi^{\#}(v)$ identifies with $1_G \boxtimes \rho(v)$. Thus,

$$\psi^* M = \mathcal{O}_G \boxtimes t_x^* M_{|U} = \mathcal{D}_{G \times U}(1_G \boxtimes \rho(v)) = \mathcal{O}_G \boxtimes \mathcal{D}_U \rho(v),$$

proving the first assertions of the corollary.

Now, assume that k = 1 and $\mathbf{n}_0 \rho(v) = 0$. Then, $t_x^* M_{|U} \cong H^m_{[0]}(\mathcal{O}_U)$ and $\rho(v)$ identifies with $\varpi(t_{-x}.v)$ inside $T_0 = \{u \in t_x^* M_{|U} : \mathbf{n}_0 u = 0\}$ (loc. cit.). Since dim $T_0 = 1$ and $\rho(v) \neq 0$, we obtain $T_0 = \mathbb{C}\rho(v)$. It follows then from Theorem 2.10 that $\omega^{-1} \otimes_{\mathbb{C}} T = \mathbb{C}(\omega^{-1} \otimes \varpi_x(v))$. By Theorem 3.4, since $v \in M^G$, the group G^{ϕ} acts trivially on $M_{|\mathbf{O}}(x) = \omega^{-1} \otimes_{\mathbb{C}} T$. The isomorphism $M_{|\mathbf{O}} \cong \mathcal{O}_{\mathbf{O}}$ then follows from Proposition 2.8.

References

- D. Barbasch and D. Vogan, Unipotent representations of complex semisimple groups, Annals of Mathematics, 121 (1985), 41-110.
- [2] J. Bernstein and V. Lunts, Localization for derived categories of (g, K)-modules, J. Amer. Math. Soc., 8 (1995), 819-856.
- [3] A. Borel et al., Algebraic D-modules, Academic Press, Boston, 1987.
- [4] A. Grothendieck, Éléments de Géométrie Algébrique, Chapitres O et IV, Inst. Hautes Etudes Sci. Publ. Math., 20 (1964) et 32 (1967).
- [5] R. Hotta, Introduction to D-modules, (Lectures at the Inst. Math. Sci., Madras), Math. Institute, Tôhoku University, Sendai, 1986.
- [6] R. Joshua, Riemann Roch for equivariant D-modules-I, Math. Z., 206 (1991), 131-144.
- [7] M. Kashiwara, Representation theory and D-modules on flag varieties, in "Orbites unipotentes et représentations, III", Astérisque, 173-174 (1989), 55-109.
- [8] M. Kashiwara and W. Schmid, Quasi-Equivariant D-modules, Equivariant Derived Category, and Representations of Reductive Lie Groups, *in* Lie theory and geometry, 457-488, Progr. Math., 123, Birkhäuser, Boston, 1994.
- [9] T. Levasseur and J. T. Stafford, Semi-simplicity of invariant holonomic systems on a reductive Lie algebra, Amer. J. Math., to appear.
- [10] T. Levasseur and J. T. Stafford, Invariant differential operators on the tangent space of some symmetric spaces, in preparation, (1996).
- [11] D. Mumford, Geometric Invariant Theory, Springer-Verlag, Heidelberg/New-York, 1973.
- [12] M. Saito, A localization theorem for D-modules, Tôhoku Math. J., 43 (1991), 213-234.
- [13] P. Slodowy, Simple singularities and Simple Algebraic Groups, Lecture Notes in Mathematics 815, Springer-Verlag, Berlin/New York, 1980.
- [14] M. Van den Bergh, Some rings of differential operators for Sl₂-invariants are simple, J. Pure and Applied Algebra, 107 (1996), 309-335.
- [15] M. Van den Bergh, Some generalities on G-equivariant quasi-coherent \mathcal{O}_X and \mathcal{D}_X -modules, Preprint Université Louis Pasteur, Strasbourg, (1994).

Département de Mathématiques, Université de Poitiers, 86022 Poitiers, France. *E-mail address*: levasseu@mathlabo.univ-poitiers.fr