
EQUIVARIANT D-MODULES ATTACHED TO NILPOTENT

ORBITS IN A SEMISIMPLE LIE ALGEBRA

T. LEVASSEUR

Abstract. Let gu be a compact Lie algebra and g be its complexification.

Let ζ−
1
2 be the inverse, on the set of regular elements of gu, of a square root

of the discriminant of g. Generalizing a result of W. Lichtenstein in the case

gu = su(n,C) or so(n,R), we prove that ∂(q).ζ−
1
2 is non zero for all harmonic

polynomials q ∈ S(g)\{0}. This fact is deduced from results about equivariant

D-modules supported on the nilpotent cone of g.

1. Introduction

Let Gu be a connected compact semisimple group with Lie algebra gu. Denote
by g = gu ⊗R C the complexification of gu and let G be the adjoint group of g.
Choose a Cartan subalgebra hu of gu and set h = hu ⊗R C. Fix a positive system
of roots R+ for g with respect to hu.

Let O(g) = S(g∗) be the algebra of polynomial functions on g, and denote
by D(g) the algebra of differential operators on g, with coefficients in O(g). For
q ∈ S(g), let ∂(q) ∈ D(g) be the corresponding differential operator with constant
coefficients. The group G acts on g, via the adjoint action, and hence has an
induced action on S(g∗), S(g) and D(g). Denote the differential of this action by
τ : g→ D(g). Let S+(g∗)G be the set of invariant elements without constant term
and let H(g∗) be the space of harmonic polynomials on g. Then H(g∗) is a G-
stable complement of S+(g∗)GS(g∗) in S(g∗), see [9]. We adopt a similar notation
for polynomial functions on g∗, hence S(g) = H(g)⊕S+(g)GS(g).

Let ζ ∈ S(g∗) be the discriminant of g, see [5, §7] or [18, §4]. Hence ζ ∈ S(g∗)G

corresponds, through the Chevalley isomorphism, to π2, where π =
∏
α∈R+ α ∈

S(h∗). Define the set of generic elements by g′ = {x ∈ g : ζ(x) 6= 0} and set

g′u = g′ ∩ gu. Then, one can define a function ζ
1
2 , real analytic on g′u, and one

considers the “potential” ζ−
1
2 on g′u. Clearly, the algebraA(g′u) of analytic functions

(with complex values) on g′u has a natural D(g)-module structure. W. Lichtenstein
has proved the following result:

Theorem 1.1. ([14, Theorem 2]) Suppose that gu = su(n,C) or so(n,R). Then
the map

M : H(g)→ A(g′u), q 7→ ∂(q).ζ−
1
2

is injective.
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Actually, [14] states the result with a map M∗(p) = ∂(p).ζ−
1
2 , p ∈ H(g∗), after

identifying g with g∗ through the Killing form B. These elements are called mul-
tipole potentials. In [14, §3] it is shown that M(p) is the term of lowest degree in
the asymptotic expansion, when λ→ +∞, of the integral∫

O

e−iB(λx,y)p(y)dµ(y),

where O ⊂ gu is a regular orbit and dµ is a Gu-invariant measure on O.
One aim of this note is to establish Theorem 1.1 for an arbitrary compact Lie

algebra gu. We will show in §2 that this result is consequence of the decomposition
of the invariant holonomic systems given in [12], which we now recall. Let W be
the Weyl group associated to (g, h). Denote by Ŵ the set of isomorphism classes
of irreducible W -modules and, for χ ∈W ,̂ let Vχ be a W -module in the class of χ.
Set

M = D(g)
/(
D(g)τ(g) +D(g)S+(g∗)G

)
, N = D(g)

/(
D(g)τ(g) +D(g)S+(g)G

)
.

Then, M and N are semisimple holonomic D(g)-modules and the full subcategory of
D(g)-modules generated by N, or M, is equivalent to the category of W -modules.
Let Nχ and Mχ be the simple submodules of N and M which correspond to Vχ
through these equivalences (see §2 for details).

Then, in the general case, Theorem 1.1 follows from (and is explained by) the
following result.

Theorem 1.2. Let triv ∈Ŵbe the trivial character. Then:

(i) Ntriv
∼= D(g).ζ−

1
2 ;

(ii) The support of Mtriv is the nilpotent cone of g.

This theorem is presumably implicit in [6, 18]. Its significance for this paper
is to show how the results of [12] can be applied to prove the generalization of
Theorem 1.1, see Theorem 2.8.

In order to show that Theorem 1.2 (which deals with the regular nilpotent orbit)
is a particular case of more general results, we present in §3 a construction, due to
Hotta & Kashiwara [6] and Wallach [18], which associates in a natural way to any
nilpotent orbit O ⊂ g a D(g)-module MχO

(equivalently, a representation χO of
W ).

We end this note with some comments regarding the correspondence, via invari-
ant holonomic systems, between nilpotent orbits and irreducible representations of
the Weyl group [12, §7]. In particular, we show that the inverse image of MχO

on O is isomorphic (as a DO-module) to the standard module OO; equivalently,
χO corresponds to the pair (O, triv) where triv is the trivial representation of the
component group A(O) of the orbit O.

2. The modules Ntriv and Mtriv

We begin this section by recalling some facts from [12]. Set n = dim g, ` = dim h
and ν = #R+, hence n = 2ν + `. Let {ei}16i6n be an orthonormal basis of g
with respect to B such that {ei}16i6` is a basis of h. Denote by xi ∈ S(g∗),
1 6 i 6 n, the associated coordinate functions; thus ∂(ei) identifies with the partial
derivative ∂i = ∂

∂xi
. Denote the Euler vector fields on g and h by Eg =

∑n
i=1 xi∂i
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and Eh =
∑`
i=1 xi∂i. Recall that there exists an algebra homomorphism, defined

by Harish-Chandra,

δ : D(g)
G −→ D(h)

W

which extends the Chevalley isomorphisms S(g)G ∼−→S(h)W and S(g∗)G ∼−→S(h∗)W .

The map δ is surjective and its kernel is I = (D(g)τ(g))
G

, see [11]. This enables

one to identify, through δ, modules over D(g)
G
/I with D(h)

W
-modules. Let R be

the full subcategory of D(g)-modules generated by the module N. Then, if M ∈ R,

the D(g)
G

-module MG can be considered as a D(h)
W

-module. Let

H = {f ∈ S(h∗) : ∀q ∈ S+(h)W , ∂(q).f = 0}
be the set of harmonic polynomials on h. The vector space H is graded by the Hj =
H ∩ Sj(h∗) and, as a W -module, H identifies with the left regular representation.

The following theorem summarizes some of the results contained in [12]. (In the
notation of [12], we are only concerned with the case λ = 0 and so the modules M0

and N0 of [12] are denoted by M, respectively N.)

Theorem 2.1. (1) ([6, Theorem 5.3], [12, Theorem A]) M and N are semisimple
(D(g),W )-modules and, as such, have the following decompositions

M ∼=
⊕

χ∈WˆMχ ⊗C Vχ, N ∼=
⊕

χ∈WˆNχ ⊗C Vχ

where the Mχ, resp. Nχ, are pairwise non-isomorphic simple D(g)-modules.
(2) ([12, Corollary 6.11]) The category R is equivalent to (W -mod)op, through

the functor M → Sol(MG) = HomD(h)W (MG, S(h∗)). Moreover,

(i) when M is a quotient of N, Sol(MG) identifies naturally with a W -submo-
dule of H;

(ii) Sol(NG
χ ) ∼= Vχ.

Corollary 2.2. Set L = D(g)τ(g) +D(g)S+(g)G +D(g)(Eg + ν). Then,

Ntriv
∼= D(g)/L.

Proof. Clearly, N = D(g)/L is a quotient of N. Observe that

NG = D(g)
G/(I +D(g)

G
S+(g)G +D(g)

G
(Eg + ν)

)
∼= D(h)

W/(D(h)
W
S+(h)W +D(h)

W
(δ(Eg) + ν)

)
.

It is easily checked that δ(Eg) = Eh − ν, (see, for example, [18, Proof of Theo-
rem 6.1]). Therefore, as W -module,

Sol(NG) ∼= {f ∈ H : Eh.f = 0} = C.

Thus Sol(NG) = Vtriv and the corollary follows from Theorem 2.1. �

Corollary 2.3. The D(g)-modules Ntriv and D(g).ζ−
1
2 are isomorphic.

Proof. By [14, Theorem 1 and Corollary] ζ−
1
2 is a Gu-invariant harmonic function

on g′u. Hence, τ(g).ζ−
1
2 = S+(g)G.ζ−

1
2 = 0. Observe that, since ζ is homogeneous

of degree 2ν, Eg.ζ
− 1

2 = −ν ζ− 1
2 . The result then follows from Corollary 2.2. �

Remark. Let sgn be the sign representation of W . Recall that the unique copy of
Vsgn in H is Hν = Cπ. The modules Nsgn and Msgn are easy to describe:

Nsgn = D(g).1 = D(g)/D(g)g, Msgn = D(g).T0 = D(g)/D(g)g∗,
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where T0 is the Dirac distribution at 0 on a real form of g. This can be proved as
follows. Set:

N = D(g)
/(
D(g)τ(g) +D(g)S+(g)G +D(g)Eg

)
Then, the D(g)G-module NG is isomorphic to the D(h)W -module

D(h)W
/(
D(h)WS+(h)W +D(h)W (Eh − ν)

)
and it follows that Sol(NG) = Cπ. This proves N ∼= Nsgn. Clearly, D(g).1 =
D(g)/D(g)g is a factor of N , hence N = D(g).1. The description of Msgn can be
deduced from that of Nsgn by Fourier transform (see below), or from a general
argument (see §3).

Recall [12, §7] that the modules Nχ are the Fourier transforms of the modules
Mχ. The Fourier transformation is defined as follows: Use the G-invariant bilinear
form B to define an isomorphism B : g ∼−→ g∗. Since one has a G-module isomor-
phism D(g) ∼= S(g∗) ⊗ S(g), B induces an algebra automorphism F of D(g) by
F (f) = −B−1(f) and F (x) = B(x) for f ∈ g∗ and x ∈ g. Moreover, F is a
G-automorphism of D(g) such that F (τ(x)) = τ(x) for all x ∈ g. Given a D(g)-
module M , define the Fourier transform MF of M to be the abelian group M with
multiplication given by a �m = F (a)m, for a ∈ D(g) and m ∈ M . Then, as in [6,
§6], N = MF . Notice that, by definition, Nχ = MF

χ . For example, one deduces
from Corollary 2.2 that

Mtriv
∼= D(g)

/(
D(g)τ(g) +D(g)S+(g∗)G +D(g)(Eg + ν + `)

)
.

Let χ ∈W .̂ Set

b(χ) = inf
{
j : [Sj(h∗) : Vχ] 6= 0

}
= inf

{
j : [Hj : Vχ] 6= 0

}
.

Lemma 2.4. ([18, Lemma 6.5]) The highest eigenvalue of Eg on MG
χ is ν−n−b(χ);

this eigenvalue occurs with multiplicity [Hb(χ) : Vχ].

Proof. Recall [12] that as a D(h)
W

-module, NG
χ
∼= V χ, where

V χ = HomW (Vχ, S(h∗)).

Since Eh acts semisimply on S(h∗), the same is true on V χ. Moreover, the smallest

eigenvalue of Eh on V χ is b(χ). Indeed: realize V χ as a D(h)
W

-submodule of S(h∗),
and note that CW.u ∼= Vχ for all u ∈ V χ; this implies that the degree of each u is
> b(χ). Observe also that the simple module V χ occurs in S(h∗) with multiplicity
dimVχ, hence the multiplicity of the eigenvalue b(χ) is [Hb(χ) : Vχ].

Now, since δ(Eg) = Eh− ν, the smallest eigenvalue of Eg on NG
χ is b(χ)− ν. The

lemma is then consequence of F (Eg) = −Eg − n and Nχ = MF
χ . �

Let N(g) be the set of nilpotent elements in g. Then, N(g) is a finite union of
G-orbits and its defining ideal is generated by S+(g∗)G, see [9]. If O = G.x ⊂ g is
a nilpotent orbit, one sets [6, §7]

λO =
1

2
dimO− dim g = −1

2
(dim g + dim gx),

where gx is the stabilizer of x. Note that if O1 ⊂ O2, then λO1 6 λO2 , with
equality if and only if O1 = O2.

The support of a coherent D(g)-module M will be denoted by SuppM . (We
refer to [4] for definitions related to D-modules.) The next proposition provides an
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analogue for G-equivariant D(g)-modules of [1, Corollary 3.9] and [18, Lemma 6.2].
A version of this result is proved, in slightly more generality, in [13].

Proposition 2.5. Let M be a finitely generated G-equivariant D(g)-module such
that SuppM ⊂ N(g).

(i) Set λM = max{λO : O nilpotent orbit contained in SuppM}; then every
eigenvalue of Eg on MG is 6 λM .

(ii) Assume that: SuppM = O, O nilpotent orbit, and M = D(g).v with 0 6= v ∈
MG such that Eg.v = λOv. Then, the λO-eigenspace of Eg in MG has dimension
one.

Proof. Recall first that, since M is G-equivariant, the differential of the G-action on
M coincides with the multiplication by the elements τ(ξ), ξ ∈ g (see, for example,
[17, Proposition 2.6] and Appendix A). In particular, τ(g).v = 0 for all v ∈ MG;
it then follows from [16, §6], or [12, Lemma 6.1], that any subquotient of D(g).v is
G-equivariant.

(i) Let 0 6= v ∈ MG be an eigenvector of Eg. Set N = D(g).v. By the previous
remark and the inclusion SuppN ⊂ N(g), the annihilator of v in D(g) contains
τ(g) and a power of S+(g∗)G. Then, [13, Remark 3.6] applied to N implies that
the eigenvalue of v is 6 λN 6 λM (see [13, Remark following Lemma 3.4]).

(ii) Let v′ ∈ MG be such that Eg.v
′ = λOv

′. By [13, Lemma 3.4], there exists

c ∈ C such that M ′ = D(g).(v′ − cv) satisfies SuppM ′ ( O. Since SuppM ′ is a
finite union of nilpotent orbits, (i) yields λM ′ < λO. Suppose that v′ − cv 6= 0, so
that v′ − cv is a non-zero eigenvector for λO. Then, by (i) again, λO 6 λM ′ and a
contradiction. �

As explained in [12, §7], Mχ is a G-equivariant D(g)-module, i.e. compatible in

the sense of [12, §6], and SuppMχ = O(χ) is the closure of some nilpotent orbit.

Corollary 2.6. One has: b(χ) + 1
2 dimO(χ) > ν.

Proof. By Lemma 2.4 and Proposition 2.5, ν−n− b(χ) 6 λO(χ) = 1
2 dimO(χ)−n,

as desired. �

Recall [9] that N(g) is the closure of a nilpotent orbit, Oreg , of dimension 2ν.
As observed in [6, §5] one has the following result, which proves Theorem 1.2(ii).

Proposition 2.7. SuppMtriv = N(g).

Proof. Since b(triv) = 0, Corollary 2.6 implies that dimO(triv) > 2ν, forcing
dimO(triv) = 2ν and O(triv) = Oreg . �

We can now complete the proof of Theorem 1.1 in the general case.

Theorem 2.8. The multipole mapping

M : H(g∗)→ A(g′u), p 7→ ∂(F−1(p)).ζ−
1
2

is injective.

Proof. Let L = D(g)τ(g) + D(g)S+(g)G + D(g)(Eg + ν) be as in Corollary 2.2.
Assume that M(p) = 0 for some p ∈ H(g∗); by Corollary 2.3, this is equivalent to
saying that ∂(F−1(p)) ∈ L. Thus p = F (∂(F−1(p))) ∈ F (L). Note that Mtriv =

NF−1

triv
∼= D(g)/F (L). Therefore, by definition of support, SuppMtriv ⊂ p−1({0}) ⊂

g and Proposition 2.7 then implies that N(g) ⊂ p−1({0}). Since the defining ideal
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of the variety N(g) is the prime ideal generated by S+(g∗)G (see [9]) it follows that
p ∈ S+(g∗)GS(g∗). Hence p ∈ H(g∗) ∩ S+(g∗)GS(g∗) = 0. �

Remark. In the case when gu = so(3,R) the previous result is due to J. C. Maxwell,
who used it in his work on electro-magnetism. We would like to thank V. Ginzburg
for this historical remark.

3. Additional results

This section collects various results from [6, 18] which make more precise the cor-
respondence (implied by Theorem 2.1) between nilpotent orbits and representations
of the Weyl group.

We begin with a construction, using the results of [18], of some simple summands
of M. Let g0 be a real form of g with adjoint group G0. Let x ∈ g0 be a nilpotent
element and set Ox = G.x. Define [18, §6] a distribution Tx on g0 by the formula

Tx(f) =

∫
G0.x

fdµx, f ∈ C∞c (g0)

(dµx being the canonical G0-invariant measure on G0.x). Then, Tx is G-invariant
and ϕ.Tx = 0 if ϕ ∈ O(g) vanishes on Ox, thus SuppD(g).Tx ⊂ Ox. Notice that
Eg.Tx = λOx

Tx, see [18, Lemma 6.4]. The next result should be compared to [6,
Proposition 8.4.1].

Proposition 3.1. There exists χx ∈ Ŵ such that D(g).Tx ∼= Mχx . Furthermore,

the highest eigenvalue of Eg on MG
χx is λOx , and SuppD(g).Tx = Ox.

Proof. Set M = D(g).Tx and observe that M is a quotient of M. By [18, Theo-
rem 6.3] and Theorem 2.1, M ∼= Mχx for some χx ∈ W .̂ Note also that, by [18,
Theorem 6.3] again, b(χx) = 1

2 (dim gx− `). Thus the second assertion follows from

Lemma 2.4. Let O be the support of M . By Proposition 2.5, λOx
6 λO; therefore

O ⊂ Ox yields the third assertion. �

Corollary 3.2. Let g0 be a (split) real form of g and x ∈ g0 ∩Oreg . Then,

Mtriv
∼= D(g).Tx.

Proof. By Proposition 3.1, D(g).Tx ∼= Mχx . Since λOreg = −ν − `, we obtain from
the same proposition and Lemma 2.4 that b(χx) = 0. Hence χx = triv. �

Remark. Let x ∈ g0 be nilpotent. Denote by T̂x the Fourier transform of the
distribution Tx. Let h0 ⊂ g0 be a real form of h. Then, by [18, Theorem 6.7], the

restriction of T̂x to each connected component C of h0 ∩ g′ writes pC/π for some
polynomial pC ∈ Hb(χx). In particular, when x is regular, b(χx) = 0 implies that

T̂x|C = pC/π for some constant pC . (Recall that ζ−
1
2 = ±1/

√
π2 on each connected

component of hu ∩ g′.)

We now recall how one can attach, in a natural way, to any nilpotent orbit O a
representation χO ofW . This result is due to Hotta & Kashiwara [6, Corollary 7.1.5]
but we include a proof for completeness. If O ⊂ g is a nilpotent orbit, we denote
by J(O) ⊂ O(g) the prime ideal defining O.
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Theorem 3.3. Let O be a nilpotent orbit in g.
(1) There exists χO ∈Ŵ such that

MχO
∼= D(g)

/(
D(g)τ(g) +D(g)S+(g∗)G +D(g)J(O)k +D(g)(Eg − λO)

)
for all k ∈ N∗.

(2) Let g0 be a real form of g and x ∈ g0 be a nilpotent element. Set Ox = G.x.
Then, χx = χOx , i.e. D(g).Tx ∼= MχOx

.

Proof. Denote by Mk the D(g)-module on the right hand side of the isomorphism
in (1). Observe that Mk is a quotient of Mk+1 and

(3.1) M1 = D(g)
/(
D(g)τ(g) +D(g)J(O) +D(g)(Eg − λO)

)
Assume that Mk 6= 0 and denote by v its canonical generator (the class of

1). Notice that Eg.v = λOv. It is clear that Mk is a quotient of M with support

contained in O. Therefore, by Theorem 2.1, Mk
∼=
⊕

χ∈WˆM
(mχ)
χ for some integers

mχ. Recall that SuppMχ = O(χ) and that the eigenvalues of Eg on MG
χ are

6 λO(χ), see Proposition 2.5(i). Suppose that mχ 6= 0. Then Mk surjects onto
Mχ; therefore Mχ = D(g).v̄ with Eg.v̄ = λOv̄. Hence λO 6 λO(χ) and, since

O(χ) ⊂ O, we obtain that O(χ) = O. It follows that SuppMk = O. But, by
Proposition 2.5(ii), the λO-eigenspace of Eg in MG

k has dimension 1, thus Mk
∼= Mχ

for some χ = χO.
To complete the proof of the theorem it suffices to show that, if g0 is a real form

of g such that O ∩ g0 6= ∅, then D(g).Tx ∼= M1 for all x ∈ O ∩ g0. Observe that

τ(g).Tx = J(O).Tx = (Eg − λO).Tx = 0.

Therefore, D(g).Tx is a quotient of M1. This proves that M1 6= 0 and, by the first
part of the proof, D(g).Tx ∼= Mχ

∼= Mk for all k ∈ N∗. �

Remark. Set L(O) = D(g)τ(g)+D(g)J(O)+D(g)(Eg−λO). From (3.1) we get that
MχO

= D(g)/L(O); thus, NχO
= MF

χO
= D(g)/F−1(L(O)) with F−1(L(O)) =

D(g)τ(g)+D(g)F−1(J(O))+D(g)(F−1(Eg)−λO). By definition of F , the defining
ideal of the closure of the (nilpotent) orbit B(O) ⊂ g∗ is I(O) = F−1(J(O)).
Hence,

NχO
= D(g)

/(
D(g)τ(g) +D(g)I(O) +D(g)(Eg + 1

2 dimO)
)
.

Setting K(O) = δ
(
(D(g)I(O))G

)
and dO = 1

2 codimN(g) O, we obtain that

NG
χO
∼= D(h)

W/(
K(O) +D(h)

W
(Eh − dO)

)
as a D(h)

W
-module. Therefore, the representation χO is defined by

VχO
∼= Sol(NG

χO
)

= {ϕ ∈ SdO(h∗) : ∀D ∈ K(O), D.ϕ = 0}

= {ϕ ∈ HdO : ∀D ∈ K(O), D.ϕ = 0}.
One can also observe that (in particular cases) the description of the left ideal
L(O) can be simpler than the one given above. For example, when O = {0}, i.e.
χO = sgn, the previous definition gives L({0}) = D(g)g∗ but we have seen in §2
that L({0}) = D(g)τ(g) +D(g)S+(g∗)G +D(g)(Eg + n).

We end this section by showing how the module MχO
is related to the trivial

representation of the component group of O via the “Springer correspondence”.
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We first need to recall a few facts from [12, §7]. Let χ ∈ Ŵ and consider the
module Mχ. Set O = O(χ) and denote by ı : O ↪→ g the natural inclusion. Fix
x ∈ O and set A(O) = Gx/Gx0 , where Gx0 is the identity component of the stabilizer
Gx of x in G. We denote by mx ⊂ O(g) the maximal ideal associated to x. Then
(see [4, 10.4 & 10.6]) Mχ, or equivalently χ, is uniquely determined by the coherent
connection Lχ = ı!Mχ. This connection is, in turn, defined by an irreducible
representation ψ ∈ A(O)̂ on the geometric fibre Lχ(x) = (Lχ)x/mx(Lχ)x [7,
Proposition 4.11.1]. We express these facts by setting χ = σ(O, ψ). Thus, we have
a correspondence (O, ψ) → σ(O, ψ) from a subset of {nilpotent orbits O} × {ψ ∈
A(O)̂} onto W .̂ This correspondence is related to the Springer correspondence,
see [6, 18]. The results of Appendix A show how the representation ψ ∈ A(O)̂can
be computed. We summarize below some of these results.

When O = {0}, A(O) is trivial and we have seen in §2 that sgn = σ({0}, triv).
In the rest of this section we assume that x 6= 0. Then, there exists y ∈ N(g), z ∈ g
such that [z, x] = 2x, [z, y] = −2y, [x, y] = z. Let Gφ = {g ∈ G : g.x = x, g.y = y}
be the centralizer of Cx+Cy+Cz ∼= sl(2,C) and let Gφ0 be its identity component.

By [2, Proposition 2.4], A(O) = Gφ/Gφ0 and Gφ is reductive. Note that we have the
Gφ-stable decomposition g = gy⊕[g, x]. Let {y1, . . . , ym} and {ym+1, . . . , yn} be
coordinate functions on gy and [g, x] respectively. Define Gφ-stable ideals of O(g)
by Jx = (ym+1 − ym+1(x), . . . , yn − yn(x)) and nx = (y1 − y1(x), . . . , ym − ym(x)).
Set:

T =
{
v ∈Mχ/JxMχ : v ∈Mχ and nx.v = 0

}
Observe that Gφ acts naturally on T by g.v = g.v.

Theorem 3.4. (1) The natural action of Gφ on T yields the irreducible represen-
tation ψ : A(O)→ GL(T ).

(2) Write Mχ = D(g).v with 0 6= v ∈MG
χ . Assume that Eg.v = λOv. Then,

T = C v and χ = χO = σ(O, triv).

Proof. (1) follows from Theorem A.4.
(2) By Corollary A.5 and the proof of [13, Lemma 3.4(i)] we obtain that nx.v = 0

and T = C v. Since τ(g).v = 0, Eg.v = λOv and SuppMχ = O, it follows from
Theorem 3.3 that Mχ = MχO

. Thus χ = χO and χO = σ(O, triv) is consequence
of (1) and v ∈MG

χ . �

Remark. As pointed out by a referee and M. Van den Bergh, Theorem 3.4(2) can
be proved in the following alternative way. Let Y be a non empty affine open
subset of O and let ı : Y ↪→ g be the inclusion. We aim to show that MχO

is isomorphic to the unique irreducible submodule of ı+(OY ), see [4, VII.10.5,
VII.10.6]. Set X = g \ (Y \ Y ). Then ı′ : Y ↪→ X is a closed embedding,  : X ↪→ g
is open and ı+(OY ) = +(ı′+(OY )). Recall [4, VI.7.1, VI.7.8] that ı′+(OY ) contains

ωY/X := ωY ⊗OX ω−1X . The orbit O carries a G-invariant symplectic form βO, thus

β
1
2 dimO

Y is a non zero section of ωY . On the other hand, since g is unimodular, ωg

is generated by a G-invariant form dx. Hence,

γ = β
1
2 dimO

Y ⊗ dx−1|X
gives a non zero section of ωY/X . It is not difficult to see that γ ∈ Γ(X, ı′+(OY ))
extends to a section of ı+(OY ) and satisfies τ(g).γ = (Eg − λO).γ = J(O).γ = 0.
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It follows then from Theorem 3.3 that MχO
∼= D(g).γ is the socle of the D(g)-

module ı+(OY ).

Appendix A

The material of this section is taken from [10]. A lot of results stated here
are probably well known but do not appear in the literature in the form we need.
The proofs are very often straightforward (but lengthy) verifications and we will
sometimes only give a sketch of them.

Let G be a linear algebraic group and g = Lie(G). We first recall a few definitions
about G-equivariant D-modules, see [3, 4, 7, 8, 17]. All the varieties considered are
quasi-projective algebraic varieties defined over C. If X is a smooth algebraic
variety, OX is the sheaf of regular functions on X and DX the sheaf of differential
operators. We refer to [4] for the basic properties of DX -modules; all the DX -
modules encountered in the sequel will be quasi-coherent and the category of quasi-
coherent DX -modules is denoted by ModDX . Suppose that Z = X × Y is the
product of two varieties. Let M be an OX -module and N be an OY -module, we
will write M �N for the OZ-module M ⊗C N .

Let F : Y → X be a morphism between smooth varieties. The comorphism
of F is denoted by F# and the inverse image of an OX -module M by F ∗M =
OY ⊗F#M . When X and Y are affine, there exists a natural map F# : M → F ∗M ,
v 7→ F#(v) = 1Y ⊗F# v. Recall that if M ∈ ModDX one defines the inverse image
of M by setting

F !M =
(
DY→X ⊗LDX M

)
[dY,X ]

where DY→X = F ∗DX = OY ⊗F# DX and dY,X = dimY − dimX. The inverse
image is an object of the derived category Db(DY ) of ModDY , and the construction
of F ! extends to Db(DX). When F is smooth and M ∈ ModDX , F !M is a complex
concentrated in degree −dY,X and H−dY,X (F !M) coincides, as an OY -module, with
F ∗M .

Assume that X is a smooth G-variety, define: µ : G × X → X, (g, v) 7→ g.v
(the action of G on X), µG : G×G→ G, µG(g, h) = gh (the multiplication in G),
εX : X ↪→ G×X, εX(v) = (e, v), p2 : G×X → X, p2(g, v) = v, p23 : G×G×X →
G×X, p23(g, h, v) = (h, v).

Let M ∈ ModDX ; then M is a G-equivariant DX -module if there exists an
isomorphism of DG×X -modules

(A.1) θ : p∗2M = OG �M ∼−−→µ∗M

such that ε∗X(θ) = 1M , (µG × 1X)∗(θ) = (1G × µ)∗(θ) ◦ p∗23(θ). One can then con-
struct the category of G-equivariant DX -modules, which we denote by M(DX , G).
Notice that if F : Y → X is a G-equivariant morphism between smooth G-varieties
and M ∈ M(DX , G), the DY -modules Hj(F !M) have a natural structure of G-
equivariant DY -modules (see [17, §2]).

Remark. Suppose that X is affine. The differential of the G-action on X yields a
Lie algebra map, τX , from g to the Lie algebra of vector fields on X, defined by
(τX(ξ).ϕ)(x) = d

dt |t=0
ϕ(exp(−tξ).x), ξ ∈ g, ϕ ∈ O(X), x ∈ X. Then, the D(X)-

module M is G-equivariant if, and only if, M has a rational G-module structure
such that g.(D.v) = (g.D).(g.v) and τX(ξ).v = ξ.v, for all g ∈ G, D ∈ D(X), ξ ∈ g,
v ∈M , where ξ.v = d

dt |t=0
(exp(tξ).v). (See [17, Proposition 2.6] for a proof.)
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Now, let G, g be as in §1 and consider the adjoint action of G on X = g. Let
x ∈ N(g) and set O = G.x. Let M be a G-equivariant coherent Dg-module such

that SuppM = O. If x = 0, it follows from Kashiwara’s equivalence [4, VI.7.11]
that M is isomorphic to Hn

[0](Og)⊕k for some k ∈ N∗, where Hn
[0](Og) ∼= Dg/Dgg

∗.

Therefore, we will suppose from now on that x 6= 0. Then we can find an S-
triplet {x, y, z} containing x, i.e. [x, y] = z, [z, x] = 2x, [z, y] = −2y and s =
Cx + Cy + Cz ∼= sl(2,C). Recall that gy = {ξ ∈ g : [ξ, y] = 0} and set n = dim g,
m = dim gy, thus dimO = n −m. In this situation it is well known [15, III.5.1,
III.7.4] that x+ gy is a transverse slice to O at the point x. Let µx : G× gy → g be
given by µx(g, u) = g.(x + u). The following lemma is classical (see, for example,
[13, Proposition 2.3]).

Lemma A.1. There exists an affine open neighborhood U of 0 in gy such that:

(1) ψ = µx|Y is smooth on Y = G × U , Ω = ψ(Y ) = G.(x + U) is a G-stable
open subset of g;

(2) Ω ∩O = O and O ∩ {x+ U} = {x}.

Observe that, since ψ is smooth on Y , we have

Hj(ψ!M) =

{
0 if j 6= −m,
ψ∗M if j = −m.

Furthermore, it follows from Ω ⊃ O and the flatness of ψ that ψ∗M 6= 0.
Denote by tx : g → g the translation by x, tx(v) = x+ v, and set X = tx(U) =

x + U . Let β : U ↪→ g, βx : X ↪→ g, x : X ↪→ x + gy be the canonical inclusions
(note that βx ◦ tx = tx ◦ β).

Recall that [g, x] is a complementary subspace to gy. Let {v1, . . . , vm} be a basis
of gy and {vm+1, . . . , vn} be a basis of [g, x]. Denote by {yj = v∗j }j the dual basis
and set fj = tx.yj = yj − yj(x), 1 6 j 6 n. Then, O(x + gy) = O(g)/Jx where
Jx = (fm+1, . . . , fn)O(g). Let mx = (f1, . . . , fn)O(g) and nx = (f1, . . . , fm)O(gy)
be the maximal ideals asociated to x ∈ g and x ∈ (x+ gy) (respectively).

Theorem A.2. (1) There exists an isomorphism of G-equivariant DY -modules
ψ!M ∼= (O(G)� β!t∗xM)[n] (where G acts by left translation on O(G)). Moreover,

Hj(β!t!xM) =

{
0 if j 6= dimO,

β∗t∗xM if j = dimO.

(2) Set M|X = β∗xM . Then, β!
xM = M|X [−dimO] and M|X = β∗x(M/JxM) is

a DX-module isomorphic to Hm
[x](OX)

⊕k
for some k > 1.

(3) One has β∗t∗xM
∼= Hm

[0](OU )
⊕k

and ψ!M ∼=
(
OG �Hm

[0](OU )
⊕k)

[m].

Proof. (1) Notice first that, since tx is an isomorphism, we can identify t!xM with
t∗xM . From ψ = µx ◦ (1G × β) we deduce that ψ!M = (1G × β)!µ!

xM . Therefore,
using the G-equivariant morphisms 1G × β and 1G × tx, we obtain

(1G × β)!(1G × tx)!(θ) : (1G × β)!p!2t
∗
xM

∼−−→ψ!M

(θ being as in (A.1)). Then, (1G × β)!p!2t
∗
xM = (1G × β)!(OG � t∗xM)[n] = (OG �

β!t∗xM)[n] yields ψ!M ∼= (OG�β!t∗xM)[n]. From this isomorphism one deduces that
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Hj−n(ψ!M) ∼= OG � Hj(β!t∗xM). Therefore, Hj(β!t∗xM) = 0 unless j = dimO,
and

HdimO(β!t∗xM) = HdimO
(
(OU ⊗Lβ# t

∗
xM)[dimO]

)
= OU ⊗β# t∗xM,

as required.
(2) Let β̃x : x + gy ↪→ g be the inclusion. Thus βx = β̃x ◦ x. Since x is an

open immersion, Hj(β!
xM) = OX ⊗#x Hj(β̃!

xM) for all j. Recall that β̃!
xM =(

D(x+gy)→g ⊗LDg
M
)
[m− n]. Set Vx = ⊕n

i=m+1Cdfi and C−px =
∧p

Vx �Dg. By [4,

VI.7.4], β̃!
xM =

(
C•x ⊗Dg

M,∂x
)
[m− n], with Cpx ⊗Dg

M =
∧−p

Vx �M and

∂x(dfj1 ∧ · · · ∧ dfjp�v) =
∑p
a=1(−1)a+1dfj1 ∧ · · · ∧ d̂fja ∧ · · · ∧ dfjp�fjav.

It follows that Hn−m(β̃!
xM) = H0

(
C•x ⊗Dg

M,∂x
)

= M/JxM = Ox+gy ⊗β̃#
x
M .

Hence, M|X identifies with the DX -module HdimO(β!
xM).

Now, the support of M|X = OX ⊗β#
x
M is clearly contained in X ∩ SuppM ⊂

X ∩O. But, X ∩O ⊂ X ∩Ω∩O = X ∩O = {x}. Thus M|X is a DX -module whose
support is contained in {x}; therefore, by Kashiwara’s equivalence [4, VI.7.11],

M|X ∼= Hm
[x](OX)

⊕k
for some k. Notice that it follows easily from βx ◦ tx = tx ◦ β

(on U) that t∗x
(
M|X

)
= β∗t∗xM . Since ψ∗M 6= 0, (1) implies that k 6= 0.

(3) is an easy consequence of (1) and (2). �

In the sequel, thanks to Theorem A.2(3), we will currently identify ψ!M with(
OG �Hm

[0](OU )
⊕k)

[m].

We factorize the inclusion ı : {x} ↪→ g as the composition {x} ı1
↪→ O

ı2
↪→ g and we

set M|O = H0(ı!2M).

Lemma A.3. The cohomology of ı!2M is concentrated in degree 0.

Proof. Notice first that ψ ◦ 2 = ı2 ◦ π, where π : G× {0} → O, π(g, 0) = g.x, and

2 : G× {0} ↪→ Y is the natural inclusion. From ψ∗M = OG �Hm
[0](OU )

⊕k
we get

that ψ∗M = H−m(ψ!M) is supported on G× {0}. Since 2 is a closed embedding,
[4, VI.7.4] gives that !2ψ

∗M has cohomology concentrated in degree 0; equivalently,
!2ψ

!M has cohomology concentrated in degree −m. On the other hand,

Hj(π!ı!2M) = Hj
(
(DG×{0}→O ⊗LDO

ı!2M)[m]
)

= Hj+m
(
DG×{0}→O ⊗LDO

ı!2M
)
.

From π smooth and DG×{0}→O = π∗DO it follows that, as an OG×{0}-module,

Hj(π!ı!2M) = OG×{0}⊗π# Hj+m(ı!2M). Now, since π is faithfully flat and π!ı!2M =

!2ψ
!M , we deduce that ı!2M has cohomology concentrated in degree 0. �

Since ı2 : O ↪→ g is G-equivariant, ı!2M = M|O (Lemma A.3) is in M(DO, G).
Therefore, see [7, Proposition 4.11.1] and [8, §4], M|O is the (integrable) connection
on O associated to the representation of A(O) on the geometric fibre M|O(x) =

(M|O)x
/
mx(M|O)x. In particular, M|O is flat as an OO-module and it follows that

ı!M = ı!1ı
!
2M = ı!1M|O =

(
D{x}→O ⊗LDO

M|O
)
[m− n]

has cohomology concentrated in degree dimO with HdimO(ı!M) = M|O(x).

Let Gφ = {g ∈ G : g.a = a for all a ∈ s} be the centralizer of the Lie subalgebra

s and denote by Gφ0 its identity component. Recall that Gφ is reductive and that
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the map Gφ ↪→ Gx induces the identification A(O) = Gφ/Gφ0 [2, Proposition 2.4].
Observe that the subspaces⊕m

i=1 Cyi,
⊕n

i=m+1 Cyi,
⊕m

i=1 Cfi,
⊕n

i=m+1 Cfi

are Gφ-stable. Set

ω−1 = df1 ∧ · · · ∧ dfm and T = {ū ∈M/JxM : nx.ū = 0}.

It is easily shown that ω−1 = dy1∧· · ·∧dym is Gφ-invariant. Furthermore, Gφ acts
naturally on M/JxM and T . Therefore, Cω−1⊗C T carries a representation of Gφ

isomorphic to T . A consequence of the next result is that Gφ0 acts trivially on T (it
is not difficult to prove this fact directly).

Theorem A.4. The DO-module M|O is the connection on O defined by repre-

sentation HdimO(ı!M) = ω−1 ⊗C T of the group A(O). Furthermore, T ∼=
{
v ∈

Hm
[x](OX)

⊕k
: nxv = 0

}
is a C-vector space of dimension k.

Proof. Write ı = β̃x ◦ γ, where γ : {x} ↪→ x + gy and β̃x : x + gy ↪→ g. Since

the maps γ and β̃x are Gφ-equivariant, we have a natural Gφ-action on M|O(x) =

HdimO(ı!M) which yields the representation of the group A(O) that we want to
compute.

Set Vx = ⊕n
i=m+1Cdfi = ⊕n

i=m+1Cdyi; then Vx is a Gφ-stable subspace of g∗.
We have seen in the proof of Theorem A.2 that (setting ∂II = ∂x),

β̃!
xM =

(
C•II = C•x ⊗Dg

M,∂II
)
[m− n].

Let Gφ act diagonally on C
p
II = Cp+m−nx ⊗Dg

M =
∧−p+dimO

Vx � M . Then,

∂II is Gφ-equivariant and the Gφ-action on the cohomology group Hj(β̃!
xM) ∈

M(Dx+gy , G
φ) is induced by the diagonal action of Gφ on C•II . Notice, in particular,

that HdimO(β̃!
xM) = Tor

Og

0 (Ox+gy ,M) = M/JxM is endowed with the natural

action of Gφ. By Theorem A.2(1), Hj(β!
xM) = OX ⊗Ox+gy

Hj(β̃!
xM) = 0 when

j 6= dimO. Thus,

SuppHj(β̃!
xM) ⊂ (x+ gy) \X ⊂ (x+ gy) \ {x} if j 6= dimO.

Now, ı!M = γ!β̃!
xM =

(
D{x}→x+gy ⊗LDx+gy

β̃!
xM
)
[−m] can be computed as follows.

Notice that nx/n
2
x = ⊕m

j=1Cdfj and consider the complex
(
C•I , ∂I

)
where C

p
I =∧−p

(nx/n
2
x)�Dx+gy and

∂I(dfj1 ∧ · · · ∧ dfjp�D) =
∑p
s=1(−1)s+1dfj1 ∧ · · · ∧ d̂fjs ∧ · · · ∧ dfjp�fjsD.

Observe thatGφ acts diagonally on C
p
I and that ∂I isGφ-equivariant. Let

(
C•tot, ∂tot

)
be the total complex associated to the double complex C• = C•I ⊗Dx+gy

C•II . Then,

ı!M = γ!β̃!
xM =

(
C•tot, ∂tot

)
[−m]

and therefore Hj(ı!M) = Hj−m(C•tot). This group is computed by the spectral

sequence Epq2 = H
p
I (H

q
II(C

•)) =⇒ Hp+q(C•tot). But, Epq2 = Tor
Ox+gy

−p (Cx,Hq(CII))
as Ox+gy -module, where Cx = O(g)/mxO(g), and we have noticed that the support

of Hq(CII) = Hq(β̃!
xM) is contained in (x + gy) \ {x} when q 6= dimO. Therefore

Epq2 = 0 for all q 6= dimO and Ep dimO
2 = Tor

Ox+gy

−p (Cx,HdimO(β̃!
xM)). Hence,
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the spectral sequence Epq2 collapses to Ep dimO
2 = Hp+dimO(C•tot). In particular, we

obtain

HdimO(ı!M) = HdimO−m(C•tot) = TorOx+gy

m (Cx,HdimO(β̃!
xM))

= TorOx+gy

m (Cx,M/JxM) = ω−1 ⊗C T.

Furthermore, the group Gφ acts diagonally on the complexes C•, Ctot and it follows
from the previous computation that the action of A(O) on HdimO(ı!M) is coming

from the induced action of Gφ on E−m dimO
2 = ω−1 ⊗C T .

To finish the proof it suffices, since M|X = OX ⊗#x M/JxM ∼= Hm
[x](OX)

⊕k
by

Theorem A.2, to apply the following standard result to the module N = M/JxM :
Let N be any Ox+gy -module; then, if N ′ = OX ⊗#x N , one has

{u ∈ N : nx.u = 0} ∼−−→{u′ ∈ N ′ : nx.u
′ = 0}

through the natural map #x : N → N ′. �

Recall that we identify ψ∗M with OG �Hm
[0](OU )

⊕k ∈M(DY , G), where G acts

by left translation on OG; thus (ψ∗M)G = Hm
[0](OU )

⊕k
. By Theorem A.2 we can

identify M|X with Hm
[x](OX)

⊕k
and, by Theorem A.4, the A(O)-module M|O(x)

identifies with T .
Let v ∈MG and denote by v̄ the class of v in M/JxM . Then, ψ#(v) ∈ (ψ∗M)G

and we write ψ#(v) = 1G�ρ(v) with ρ(v) ∈ Hm
[0](OU )

⊕k
. Denote by ϕ : {e} ×

U ∼−→X the restriction of ψ. Following the previous identifications, it is not difficult

to see that ϕ yields an isomorphism C � Hm
[0](OU )

⊕k ∼−→M|X = OX ⊗#x M/JxM

such that 1�ρ(v)↔ #x (v̄). For simplicity we will still denote the element #x (v̄) by

v̄. Set n0 = (y1, . . . , ym)O(gy) and T0 =
{
f ∈ Hm

[0](OU )
⊕k

: n0.f = 0
}

. Under the

previous identifications, we have C� T0 ∼−→T .

Corollary A.5. Assume that M = Dg.v with v ∈ MG. Then ψ∗M is generated
by 1G�ρ(v). Moreover, if k = 1 and ρ(v) ∈ T0, then M|O(x) = Cv̄ is the trivial
representation of A(O) and the connection M|O is the standard DO-module OO.

Proof. Since ψ is smooth, it is easy to see [13, Lemma 3.2] that ψ∗M = DY ψ#(v).
Now, assume that k = 1 and n0.ρ(v) = 0. Since dimT0 = 1 and ρ(v) 6= 0,
we obtain that T0 = Cρ(v) and, by the previous identifications, T = Cv̄. Since
v ∈ MG, the group Gφ acts trivially on M|O(x) = T . The corollary then follows
from Theorem A.4. �
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[8] M. Kashiwara and W. Schmid, Quasi-Equivariant D-modules, Equivariant Derived Category,

and Representaions of Reductive Lie Groups, in “Lie theory and geometry”, 457-488, Progr.

Math., 123, Birkhuser, Boston, 1994.
[9] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math., 85 (1963),

327- 404.
[10] T. Levasseur, Notes on equivariant D-modules, (1997).

[11] T. Levasseur and J. T. Stafford, The kernel of an homomorphism of Harish-Chandra, Ann.
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