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Abstract. In recent work, Astashkevich and Brylinski construct some dif-
ferential operators of Euler degree −1 (thus, they lower the degree of poly-
nomials by one) on the coordinate ring O(Omin(g)) of the minimal nilpotent
orbit Omin(g) for any classical, complex simple Lie algebra g. They term these
operators “exotic” since there is “(apparently) no geometric or algebraic theory
that explains them”.

In this paper, we provide just such an algebraic theory for sl(n) by giving
a complete description of the ring of differential operators on Omin(sl(n)).

The method of proof also works for various related varieties, notably for the
Lagrangian submanifolds of the minimal orbit of classical Lie algebras for which
Kostant and Brylinski have constructed exotic differential operators.

1. Introduction

In [1], Astashkevich and Brylinski construct some differential operators of Euler
degree −1 (thus, they lower the degree of polynomials by one) on the coordinate
ring O(Omin(g)) of the minimal nilpotent orbit Omin(g) for any classical, complex
simple Lie algebra g. They term these operators “exotic” since there is “(apparently)
no geometric or algebraic theory that explains them”.

The aim of this paper is to provide just such an algebraic theory for sl(n),
n ≥ 2, by giving a complete description of the ring of differential operators D(O)

defined over O = Omin(sl(n)). The method of proof also works for various related
varieties, notably for the Lagrangian submanifolds of the minimal orbit of classical
Lie algebras, as defined in [6, 7, 9]. As with those papers, our results can be thought
of as a particular case of geometric quantization, and for a general discussion of the
relationship the reader is referred to [1, 6, 7, 8, 9, 10].

In order illustrate the techniques involved, consider the minimal orbit O in sl(n).
Then the closure O of O is the set of n×n matrices of trace zero and rank less than
or equal to one. As such, it can be identified with the set of closed GL(1)-orbits in
X = {(a, b) ∈ Cn × Cn : a · b = 0}, where GL(1) ∼= C∗ acts by λ.(a, b) = (λ−1a, λb).
From earlier work of the authors, one may explicitly describe the ring of differential
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operators D(X) on X; indeed, D(X) ∼= U(so(2n + 2))/J0 where, for n ≥ 3, J0
is the Joseph ideal. On the other hand, restriction of functions induces a map
ρ : D(X)C

∗ → D(O). Using these observations, it is very easy to write down the
exotic elements of D(O), as we show in Section 2.

However, this technique is still more powerful, since the main result of this paper
shows that ρ is surjective for n ≥ 3 and hence describes all the differential operators
on O. Let τ : gl(1) = C→ D(X) ∼= U(so(2n+ 2))/J0 denote the differential of the
GL(1)-action on X. Then:

Theorem 1.1. Assume that n ≥ 3. Then, the minimal orbit O = Omin(sl(n)) in
sl(n) has ring of differential operators:

D(O) ∼=
(U(so(2n+ 2))/J0)

GL(1)

(τ(gl(1)))
.

For any simple Lie algebra g, Omin(g) r Omin(g) has codimension at least two
in the normal affine variety Omin(g), and so [19, Proposition 2, p. 167] implies that
O(Omin(g)) = O(Omin(g)) and D(Omin(g)) = D(Omin(g)). Thus, it does not matter
whether we work with the orbit or its closure in this, or any related theorem.

When n = 2, one cannot talk about the Joseph ideal, since so(6) ∼= sl(4). How-
ever, the map ρ : D(X)C

∗ → D(O) still exists, and so one can still ask whether ρ is
surjective. It is not (see Section 4).

We are unable to prove an analogue of Theorem 1.1 for the minimal orbit in so(n)

since there is not a sufficiently simple description of Omin(so(n)) as a categorical
quotient. See Section 7 for a more detailed discussion of this and other open
questions. As noted in [1], the remaining case of sp(2n) is less interesting since, here,
D(Omin(sp(2n))) is simply the even degree elements of the Weyl algebra A2n(C).

In Section 5 we prove an analogue to Theorem 1.1 for the Lagrangian submani-
folds L = Omin(g) ∩ p of classical simple Lie algebras g that were considered in [9].
These varieties arise as follows: Let gR be a simple, real Lie algebra with a Cartan
decomposition gR = kR+pR and complexification g = k+p. Following [9], we are in-
terested in the variety L = Omin(g)∩p in the case when L 6= {0} and the symmetric
space corresponding to gR is non-Hermitian. The main result of [9] (which preceded
[1]) also exhibits “exotic” operators in D(L) of negative Euler degree. Now, there
are just two such varieties L for g classical; these being g = sl(n) ⊃ k = so(n) for
n ≥ 3 and g = so(p + q) ⊃ k = so(p) × so(q) for p ≥ q ≥ 3. In both cases, we
give a complete description of D(L), by identifying L as a categorical quotient. In
particular:

Theorem 1.2. For p ≥ q ≥ 3, let g = so(p+q) have Cartan decomposition g = k+p

for k = so(p)× so(q). Set L = Omin(g) ∩ p. Then, under the appropriate action of
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GL(1) and its differential τ :

D(L) ∼=
(
U(so(p+ 2))/J0 ⊗ U(so(q + 2))/J0

)GL(1)

(τ(gl(1)))

Finally, in Section 6 we show that the analogue of Theorem 1.1 also holds for
the next to minimal orbit in sp(2n). This is, again, related to the work of Brylinski
and Kostant, since we use the fact that this orbit is a shared orbit with the minimal
orbit of sl(2n), in the sense of [8].

Although the results described in this paper are considerably stronger than their
analogues in [1] and [9], in one respect they are considerably less satisfactory. Ob-
viously, we are unable to prove the analogues of Theorem 1.1 for so(n) or for the
Lagrangian submanifolds of the exceptional Lie algebras. Perhaps more seriously,
the basic technique we use is to regard the given variety as a categorical quotient of
a second variety and use this to construct the differential operators. Unfortunately,
there is no general pattern to these second varieties, and so our arguments neces-
sarily depend upon case by case analyses. In contrast the earlier work, particularly
that of [9], provides a uniform approach for all the relevant varieties. Obviously
one would like a similarly uniform approach to finding the full ring of differential
operators on these varieties.

2. Construction of some operators

In this section we give a natural construction for the differential operators on
the minimal nilpotent orbit for sl(n) first described in [1]. Throughout the paper,
we write O = Omin(sl(n)), with closure O and assume that n ≥ 2.

Elements a = (ai) ∈ Cn will be written as column vectors. Let a · b denote the
scalar product on Cn and set

X = {(a, b) ∈ Cn × Cn : a · b = 0} ⊂ Y = Cn × Cn,

and

Z = {z = abt where a, b ∈ Cn}.

Clearly, Z is the set of n × n complex matrices of rank at most one. Moreover,
since z ∈ Z satisfies z2 = tr(z)z, one has z2 = 0 if and only if tr(z) = 0. Thus, O is
precisely {z ∈ Z : tr(z) = 0}. Let GL(1) act on Y and X by λ · (a, b) = (λ−1a, λb).

Thus, by classical invariant theory, Z is isomorphic to the variety of closed orbits
Y//GL(1). We will always write O(Y) = C[ui, yj : 1 ≤ i, j ≤ n], in which case

O(Z) = O(Y)GL(1) = C[zij : zij = uiyj , 1 ≤ i, j ≤ n].



4 T. LEVASSEUR AND J. T. STAFFORD

Similarly, O(X) = O(Y)/(
∑n
i=1 uiyi). We will write ui and yj for the generators

of O(X). Since X is GL(1)-stable and GL(1) is reductive,

(2.1)

O(X)GL(1) ∼= O(Y)GL(1)
/

(
∑
iuiyi)

GL(1)

∼= O(Y)GL(1)
/

(
∑
iuiyi)O(Y)GL(1)

∼= O(Z)/O(Z)T ∼= O(O),

where T =
∑n
i=1 zii is the function z 7→ tr(z).

Write ord(D) for the order of a differential operator D and D ∗ f for the action
of D on a function f . Then the next lemma follows immediately from (2.1):

Lemma 2.1. (1) D(O) ∼= D(X//GL(1)).
(2) Restriction of functions provides a map ρ : D(X)GL(1) −→ D(X//GL(1)), with
kernel Ker(ρ) =

{
θ ∈ D(X)GL(1) : θ ∗ O(X)GL(1) = 0

}
. Moreover, ord(ρ(D)) ≤

ord(D), for any operator D ∈ D(X)GL(1). �

This lemma makes it easy to define differential operators on O. Given an inde-
terminate x, we write ∂x to denote the derivation ∂/∂x. Let E =

∑n
i=1 ui∂ui +∑n

i=1 yi∂yi denote the Euler derivation on X and ∆ =
∑n
i=1 ∂ui∂yi the Laplacian.

Then, by [21, Proposition 2.2.2] (see also [23, Remark 3.2(v) and Corollary 5.3A]),
we have

(2.2) D(X) = C 〈ui, yj , Aij , Bij , Cij , E + n− 1,Φj ,Θj : 1 ≤ i, j ≤ n〉 ,

where

Aij = −Aji = yi∂uj − yj∂ui , Bij = −Bji = ui∂yj − uj∂yi , Cij = yi∂yj − uj∂ui ,

for 1 ≤ i, j ≤ n, and

Φj = yj∆− ∂uj (E + n− 2), Θj = uj∆− ∂yj (E + n− 2),

for 1 ≤ j ≤ n. Of these, the interesting ones are the Φj and Θj ; they are the zj
and vj of [21, Proposition 2.2.2]. The generators of D(X) have been chosen so that
they generate a copy of so(2n+ 2). Indeed, by [23], up to a Fourier transform, this
leads to the isomorphism

(2.3) D(X) ∼= U(so(2n+ 2))/J0,

where J0 is a maximal ideal that, for n ≥ 3, is the Joseph ideal.
As remarked earlier, the action of GL(1) on D(X) is defined by λ · ui = λui and

λ · yi = λ−1yi, whence λ · ∂ui
= λ−1∂ui

and λ · ∂yi = λ∂yi . For future reference,
notice that, in the notation of §1,

(2.4) τ(gl(1)) = CΩ where Ω = −
n∑
i=1

Cii =

n∑
i=1

(ui∂ui
− yi∂yi).
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It is clear that

(2.5)

λ ·∆ = ∆, λ · E = E,

λ ·Aij = λ−2Aij , λ ·Bij = λ2Bij , λ · Cij = Cij ,

λ · Φj = λ−1Φj , λ ·Θj = λΘj .

Consequently, D(X)GL(1) is generated by the elements:

(2.6)

uiyj ΘiΦj Cij E

AijBk` uku`Aij yky`Bij ΘkΘ`Aij ΦkΦ`Bij

uiΦj yiΘj ukΘ`Aij ykΦ`Bij

The elements of D(O) that particularly interest us are the ρ(ΦiΘj). Let Ez denote
the Euler derivation on O; thus Ez ∗ zij = zij for all i and j. Since ρ(E) ∗ zij =

E ∗ zij = 2zij we see that ρ(E) = 2Ez. From the equation

−2ρ(ΦiΘj) = ρ([E,ΦiΘj ]) = [ρ(E), ρ(ΦiΘj)] = 2[Ez, ρ(ΦiΘj)],

we see that ρ(ΦiΘj) has Euler degree −1 and order at most 4.

Proposition 2.2. The operator − 1
4ρ(ΦnΘ1) is the element D0 of [1, Proposi-

tion 4.2.3]. Moreover, the elements ρ(ΦiΘj), for 1 ≤ i, j ≤ n, span the sl(n)-
submodule A−1 of D(O) defined in that paper. This module is isomorphic to the
adjoint representation of sl(n).

Remark. We will not define D0 and A−1 as they are complicated; indeed, the
whole point of our approach is that we do not need to write them out explicitly in
terms of the zij .

Proof. For notational reasons, it is easier to consider O as an orbit in gl(n) rather
than in sl(n). Let Eab denote the standard basis of gl(n); thus zij = uiyj are
the functions on O induced by the coordinate functions on the Eij . The action of
GL(n) on O induces a Lie algebra homomorphism η : gl(n) → DerO(O) written
ξ 7→ ηξ. Thus,

ηEab ∗ zij(Euv) = zij([Euv, Eab]) = zij(δavEub − δbuEav),

from which it follows that ηEab ∗ zij = δbjzia − δaizbj . Direct computation shows
that this equals Cab ∗ zij and so

(2.7) ρ(Cab) = ηEab for 1 ≤ a, b ≤ n.

Similarly, one finds that

(2.8) [Ckk,ΦiΘj ] = (δki − δkj)ΦiΘj for 1 ≤ i, j, k ≤ n,

and so, in Bourbaki’s notation ρ(ΦiΘj) has weight εi − εj .
It follows from the computations of the last paragraph that zn1 = uny1 is a

highest weight vector of the gl(n)-module O(O)1 =
∑

Czij ⊂ O(O) and hence that
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zn1 = fe, in the notation of [1, Section 3]. Since ∆ ∗ (uany
b
1) = 0, for all a, b, we see

that
ΦnΘ1 ∗ (urny

r
1) = Φn ∗

(
−(2r + n− 2)rurny

r−1
1

)
= (2r + n− 2)(2r + n− 3)r2ur−1n yr−11 .

Note that, as r appears as a polynomial of degree 4 in this equation, this also shows
that ρ(ΦnΘ1) has order ≥ 4, and hence equal to 4. Comparing this equation with
[1, Proposition 4.2.3] shows that ρ(ΦnΘ1) = −4D0. By computing [Cab,ΦiΘj ] one
finds that

∑
i,j Cρ(ΦiΘj) is, indeed, isomorphic to the adjoint representation of

sl(n) under η (the element
∑
ρ(ΦiΘi) is zero). �

3. Complete Description of D(O)

The aim of this section is to prove Theorem 1.1 from the introduction. The idea
behind the proof is similar to the one used in [23] and [24]: The major step is to
show that A = Im(ρ) satisfies GKdimD(O)/A ≤ GKdimA − 2, after which the
result follows from standard Cohen-Macaulay type arguments. In this section we
need to assume that n ≥ 3 as the analogue of Theorem 1.1 fails for n = 2. We
discuss that case in the next section.

Lemma 3.1. Let A = Im(ρ). If p ∈ O, we write O(O)p for the local ring of O
at p. Then, DerO(O)p ⊂ Ap = A⊗O(O) O(O)p.

Proof. As O is an orbit, it suffices to prove the lemma at any prespecified point
p ∈ O, and we choose p = E1n. One has Cij ∗zab = δjbzai−δaizjb, for all i, j, a, b. It
follows easily that the operators Cj1 and Cnk for j < n, and k ≤ n provide enough
derivations to generate DerO(O)p. More precisely, we define:

d1j = z−11n Cnj , 1 ≤ j ≤ n− 1,

din = −z−11n Ci1 + z11z
−1
1n d11, 2 ≤ i ≤ n− 1,

d1n = z−11n Cnn −
∑n−1
i=2 z

−1
1n zindin.

Note that, as zij(Ekl) = δikδjl, B = {z11, . . . , z1n−1, z1n − 1, z2n, . . . , zn−1n} is a
minimal generating set of the maximal ideal of the local ring O(O)E1n

. Then, {dij}
is a “dual basis” of B. �

Observe that O is stable under the homotheties x 7→ λx, λ ∈ C∗. Thus the
coordinate ring O(O) is naturally graded and we denote its augmentation ideal
by P .

Corollary 3.2. (i) For all p ∈ O, Ap = D(O)p. In particular, A and D(O) have
the same division ring of fractions.
(ii) Let d ∈ D(O) and M = Ad + A/A. Then, Mp = 0 for all p ∈ O and hence
P td ∈ A, for some t. �
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We let GKdim(R) denote the Gelfand-Kirillov dimension of a C-algebra R. Let
R be filtered by {Rm} such that gr(R) = ⊕mR

m/Rm−1 is an affine commutative
domain. Denote by V the variety corresponding to gr(R). Assume that G is a
reductive algebraic group acting regularly on R and preserving the filtration. Then

(3.1) GKdim(RG) ≤ GKdim(R)−max{dimG.v : v ∈ V }.

Indeed, since G is reductive, we have gr(R)G = gr(RG) and (3.1) follows from [16,
II.4.3.E].

Recall that τ : gl(1) → D(X) is the differential of the action of GL(1) on D(X)

and that, by (2.4), τ(gl(1)) = CΩ. By its very definition, τ(gl(1)) ⊂ Ker(ρ).

Lemma 3.3. (1) GKdimD(X) = GKdimU(so(2n+ 2))/J0 = 4n− 2.
(2) GKdimA = 4n− 4.
(3) GKdimD(X)GL(1) = 4n− 3 and hence Ker(ρ) has height one.

Proof. Part (1) is immediate from [21, Lemma 3.2 and Proposition 3.3], while
part (2) follows from Corollary 3.2, combined with the fact that O has dimension
2n − 2. In order to prove (3), we note that Ker(ρ) 6= 0, since it contains the
nonzero element Ω. Since D(X)GL(1) is a domain, [15, Proposition 3.15] implies that
GKdim(D(X)GL(1)) ≥ GKdim(A)+1 = 4n−3. On the other hand, since the GL(1)-
action is not finite on D(X), we have GKdim(D(X)GL(1)) ≤ GKdim(D(X))− 1 =

4n− 3 by (3.1). �

Notation 3.4. For the next few results we wish to study the structure of modules
over so(2n + 2) and here we establish the pertinent notation. For the rest of the
section, we define g = so(2n + 2). In the notation of [23, Remarks 3.2(v)], for g

of type Dn+1, we let p be the parabolic p1 and the corresponding decomposition
g = r+ ⊕m⊕ r− ⊃ p = m⊕ r+ with m = [m,m] ⊕ CH ∼= so(2n) ⊕ CH. Set p− =

m⊕ r−. Recall that the generators of D(X) in (2.2) were chosen to generate a copy
of so(2n+2). (The description of so(2n+2) ⊂ D(X) in [21] differs from that of [23]
by a Fourier transform which interchanges r− and r+.) By [21, Proposition 2.2.2],
this parabolic decomposition is chosen so that r− has basis {ui, yj}, r+ has basis
{Θi,Φj}, and [m,m] has basis {Aij , Bij , Cij}, while H = E + n− 1. Note that
Ω = −

∑
Cii ∈ [m,m]. We let q denote the subalgebra generated by H and the Cij ;

this is isomorphic to gl(n) ⊕ CH.
Let Omin = Omin(so(2n+ 2)) denote the minimal nilpotent orbit of g. It follows

from [23] that X is an irreducible component of Omin ∩ r+ and D(X) ∼= U(g)/J0.
This implies that D(X) has two filtrations; one induced from the standard filtration
on U(g) and the other being that given by order of differential operator. We
emphasize that, except where it is explicitly stated to the contrary, we will always
use the former filtration. Since gr(J0) is prime [11, Theorem V.2], it follows from
[23] that D(X) has associated graded ring isomorphic to O(Omin).
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Lemma 3.5. Let R be a C-algebra and c ∈ R an ad-nilpotent, regular element.
Write C = {cn} and RC for the localization of R at C. IfM is a right R-module, then
GKdimR(M) = max{GKdimRC

(MC),GKdimR(T )}, where T = {m ∈M : mcr = 0

for some r ≥ 1}.

Proof. This is implicit in [3] and proved in detail in [25, Theorem 3.2]. �

The hard work in proving Theorem 1.1 involves estimating GKdim(A/AP ), in
the notation of Lemma 3.1. We obtain this estimate by pulling the question back
to one about D(X)-modules, since this allows us to use the geometry of so(2n+ 2).
The details are given in the next several lemmas.

Lemma 3.6. Assume that n ≥ 3. Set I =
∑n
i=1D(X)ui +D(X)(Ω− λ), for some

λ ∈ C and J = I +
∑n
j=1D(X)yj. If GKdim(D(X)/J) ≤ GKdim(D(X))− 3, then

GKdim(D(X)/I) ≤ GKdim(D(X))− 3.

Proof. Set Ik = Ik,λ = I +
∑k−1
j=1 D(X)yj ; thus In+1 = J and I1 = I. Therefore, by

induction, assume that GKdim(D(X)/Ik+1) ≤ GKdim(D(X))− 3, for some k ≤ n.
We need to prove that GKdim(D(X)/Ik) ≤ GKdim(D(X))− 3.

Let c = yk, set C = {cr} and consider S = D(X)C = D(O(X)C). Clearly,

O(X)C ∼= C
[
ui, yj , y

−1
k : 1 ≤ i, j ≤ n, but i 6= k

]
is a localization of a polynomial ring in 2n − 1 variables and so S is a local-
ization of the corresponding Weyl algebra. By considering the action of Ω on
these generators, one finds that, as an element of S, −c−1Ω is the derivation
δ = ∂yk −

∑
i6=k c

−1(ui∂ui − yj∂yj ). Since I contains the generators {ui : i 6= k}
and δ, it follows easily that GKdim(S/SIk) ≤ GKdim(S/SI) = GKdim(S) − n ≤
GKdim(S) − 3. Set T = {t ∈ D(X) : yrkt ∈ Ik for some r ≥ 1}. Then,
by Lemma 3.5, GKdim(D(X)/Ik) ≤ GKdim(D(X)) − 3 will hold provided that
GKdim(T/Ik) ≤ GKdim(D(X))− 3.

Let t ∈ T , say with yrkt ∈ Ik. Since the yj and ui act ad-nilpotently on D(X),
we may pick r such that uri t ∈ Ik and yrj t ∈ Ik, for 1 ≤ i ≤ n and 1 ≤ j <

k. Also, by Notation 3.4, Ω is an element of so(2n + 2) and so acts ad-finitely
on D(X) ∼= U(so(2n + 2))/J0. Thus, p(Ω)t ∈ Ik, for some nonzero polynomial
p(Ω) ∈ C[Ω]. Hence, Lt ⊂ Ik, for L = D(X)ur1 + · · · + D(X)yrk + D(X)p(Ω).
Since uiΩ = (Ω − 1)ui and yjΩ = (Ω + 1)yj , a routine induction shows that
D(X)/L has a finite composition series where each of the subfactors is a factor
of Ik+1,µ, for some scalars µ. (To begin this induction, note that L′ur−11 ⊂ L,
where L′ = D(X)u1 + D(X)ur2 + · · · + D(X)yrk + D(X)p(Ω + r − 1).) But, by
induction, GKdim(D(X)/Ik+1,µ) ≤ GKdim(D(X)) − 3, for any such µ. Thus,
GKdim(T/Ik) ≤ GKdim(D(X))− 3, as required. �
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In the sequel we will identify g with g∗ through the Killing form κ. Then,
S(g) ≡ O(g) and X ∈ g identifies with κ(X, ) ∈ g∗. If I ⊂ S(g) is an ideal, we
denote its variety of zeroes by V(I) ⊂ g ≡ g∗.

Lemma 3.7. In the notation of Lemma 3.6,

GKdim(D(X)/I) ≤ GKdim(D(X))− 3.

Proof. We work in the associated graded ring R = gr(D(X)) ∼= O(Omin); thus
by Lemma 3.6 it suffices to prove that GKdim(R/J̃) ≤ GKdim(R)− 3, where J̃ =∑

1≤i≤n(Rui+Ryi)+RΩ ⊂ gr(J), and we have identified Ω with its image in R. Set
L =

∑
1≤i≤nRui +Ryi. Thus, by Notation 3.4, L defines the subvariety Omin ∩ p−

of Omin and, by [23, Theorem 4.7], one has dim(Omin ∩ p−) ≤ dim(Omin)− 2. The
proof is now similar to that of analogous results in [23].

The identification R = O(Omin) is induced from identifying gr(U(g)) with O(g).
As such, we may write g = F⊕CΩ, where F is the zero set of Ω. As in Notation 3.4,
Ω ∈ m1 = [m,m]. Now let V be an irreducible subvariety of Omin ∩ p−. We need
to prove that dim(V ∩F ) ≤ dim(Omin)− 3. If V ⊂ Omin ∩ r−, then [23, Table 3.1]
implies that dim(V ) ≤ 2n− 1, while dim(Omin) = 4n− 2. Since n ≥ 3, this implies
that dim(V ∩ F ) ≤ dimV ≤ dim(Omin)− 3.

Thus, we are left with the case when V 6⊂ Omin ∩ r−. We now follow the proof
of [23, Claim 4.4]. Pick W = W1 + µH + W− ∈ V where W1 ∈ m1, W− ∈ r− and
W1 +µH 6= 0. By the argument of [23, (4.4)] this implies that W1 6= 0. Since m1 is
simple, there exists g in the adjoint group of m1, such that g.W1 = λΩ + Z where
λ 6= 0 and Z ∈ F . As in the proof of [23, Claim 4.4], we may replace W by g.W
and assume that W = λΩ + W ′ ∈ Omin ∩ p− with W ′ ∈ F and λ 6= 0. Thus, this
proves that

dim(V ∩ V(J̃)) < dim(V ) ≤ dim(Omin ∩ p−) ≤ dim(Omin)− 2,

as required. �

We remark that the inequality in Lemma 3.7 is actually an equality, which is
why the proof is fairly delicate. One can rephrase (and prove) the result more
geometrically as the assertion that dimOmin ∩ V ((u1, . . . , un,Ω)) = 4n− 5.

Recall the action of GL(1) on g = so(2n+ 2) given in (2.5).

Lemma 3.8. Let q be defined as in Notation 3.4. Let I be an ideal of S(g) that is
stable under the GL(1)-action, and assume that

(3.2) dim(S(g)/I)GL(1) = dimS(g)/I.

Then, V(I) is contained in q.

Proof. Note that q = gGL(1). Let s denote the sum of the nontrivial representations
of GL(1) in g; thus g = s⊕ q. By (3.2), the GL(1) action on S(g)/I must factor
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through a finite action and so, for all homogeneous elements X ∈ S(g), there must
exist i ≥ 1 such that λi ·X ≡ X modulo I, for all λ ∈ C∗. However, if x ∈ s, (2.5)
implies that λ · x = λεx, where ε ∈ {±1,±2}. Thus, for all x ∈ s, there exists m
such that xm ∈ I. In other words, V(I) ⊂ q. �

Lemma 3.9. Write P for the augmentation ideal of O(X)GL(1) = O(O) and let
M = D(X)GL(1)Ω +D(X)GL(1)P . Then,

GKdim(D(X)GL(1)/M) ≤ GKdim(D(X)GL(1))− 3.

Proof. Recall that GKdim(D(X)GL(1)) = 4n − 3 and GKdim(D(X)) = 4n − 2, by
Lemma 3.3. We first estimate GKdim(N), where N = D(X)/ (D(X)P +D(X)Ω).
As in the proof of Lemma 3.6, N has a composition series where each subfactor is
a factor of either

M = D(X)
/(∑n

i=1D(X)ui +D(X)(Ω− µ)
)
,

or M ′ = D(X)/ (
∑n
i=1D(X)yi +D(X)(Ω− µ)), for some µ ∈ C. By Lemma 3.7,

GKdim(M) ≤ GKdim(D(X))−3, and so GKdim(N) ≤ GKdim(D(X))−3 = 4n−5.
It remains to prove that

GKdim(NGL(1)) ≤ GKdim(D(X)GL(1))− 3 = 4n− 6.

By the last paragraph this holds if GKdim(NGL(1)) ≤ GKdim(N) − 1. Let I
denote the associated graded ideal, in O(Omin), of D(X)P + D(X)(Ω − λ). If
GKdim(NGL(1)) = GKdim(N), then Lemma 3.8 implies that V(I) ⊂ q ∩ Omin.
Now, Omin consists of matrices of rank at most two and square zero. Hence, so
does Omin ∩ q. By Notation 3.4, q ∼= gl(n) ⊕ CH, where H is semisimple. Thus,
[24, Lemma II.6.7] implies that dimOmin ∩ q ≤ 4n− 8, as desired. �

As an application of Lemma 3.9 we show that Ker(ρ) = (Ω). One way of proving
this is use idealizers to pull the result down from D(Y)GL(1), where the correspond-
ing result holds by [26]. However, we will use a slightly different method, which
will also be used in Section 5. The next two lemmas provide the method of attack.
Given f ∈ O(W), for a variety W, we write D(W)f for the localization of D(W)

at the powers of f ; equivalently, it is isomorphic to D(O(W)f ).

Lemma 3.10. (i) The fixed ring F = U(so(2n+ 2))GL(1) is Auslander-Gorenstein.
(ii) F satisfies the following Cohen-Macaulay condition: If M 6= 0 is a finitely
generated F -module, set jF (M) = min{j : ExtjF (M,F ) 6= 0}. Then

GKdim(M) + jF (M) = GKdim(F ).

Proof. The ring F has associated graded ringO(so(2n+2))GL(1) which is Gorenstein
by [28, Theorem 6.7]. The result now follows from [20, Theorem 2.2]. �
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Lemma 3.11. Suppose that GL(1) acts on an irreducible affine variety W, with
differential τ . Write τ(gl(1)) = CΘ and let ρ : D(W)GL(1) → D(W//GL(1)) denote
the natural map. Assume that:

(i) The ring D = D(W)GL(1) is filtered so that the associated graded ring grD

is a finitely generated, commutative, Cohen-Macaulay domain.
(ii) There exists an ideal K =

∑
i fiO(W)GL(1) such that, for each i, the in-

duced map ρi : Dfi → D(W//GL(1))fi has kernel DfiΘ.
(iii) If K̃ = DΘ +DK, then GKdim(D/K̃) ≤ GKdim(D)− 2.

Then, Ker(ρ) = DΘ.

Proof. As GL(1) is abelian, Θ is central in D. Let φ ∈ Ker(ρ) and suppose that
φ 6∈ DΘ. For each i, φ ∈ Ker(ρi) and so, by hypothesis (ii), there exists an integer
k such fki φ ⊆ DΘ. In other words, Lφ ⊆ DΘ, where L = DΘ + DK`, for some
integer `. An easy induction using (iii) shows that GKdim(D/L) ≤ GKdim(D)−2.

For any left ideal M of D, give M and D/M the induced filtrations from that
of D. Then, grD/ grL ∼= gr(D/L) and so GKdim(grD/ grL) ≤ GKdim(grD)− 2.
Now grD is Cohen-Macaulay with pure dimension, in the sense that

GKdim(grD/P ) + htP = GKdim(grD)

for any prime ideal P . It follows from [5, Corollary 2.1.4] that jgrD(gr(D/L)) ≥ 2.
Hence, by [2, Proposition 3.1], jD(D/L) ≥ 2; thus Ext1D(D/L,D) = 0. Since
(DΘ + Dφ)/DΘ is a homomorphic image of D/L and D is a domain, the usual
long exact sequence in cohomology implies that

0 = Ext1D(DΘ +Dφ/DΘ, D) = Ext1D(DΘ +Dφ/DΘ, DΘ).

But, DΘ+Dφ is an essential extension ofDΘ and so Ext1D(DΘ+Dφ/DΘ, DΘ) 6= 0,
giving the required contradiction. �

We now apply these results to the variety X.

Proposition 3.12. Ker(ρ) = τ(gl(1))D(X)GL(1) = ΩD(X)GL(1).

Proof. We wish to apply Lemma 3.11. We give D(X)GL(1) the filtration induced
from that of D(X), so hypothesis (i) follows from Lemma 3.10 and [11] while hy-
pothesis (iii) follows from Lemma 3.9, for K = P . Thus, only (ii) needs to be
checked.

Let$ : X→ X//GL(1) denote the quotient map and pick f = uiyj ∈ O(X)GL(1).
Then, Xf is an affine, open subvariety of X on which GL(1) clearly acts freely.
Also, since f is GL(1)-invariant, Xf//GL(1) ∼= (X//GL(1))f . Thus, by [27, Corol-
lary 4.5], ρ induces an isomorphism

D(Xf )GL(1)/(Ω) ∼= D(Xf//GL(1)) = D(X//GL(1))f .

Since P is generated by such elements f , hypothesis (ii) of Lemma 3.11 follows, as
required. �
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Putting the last few results together, we obtain the main technical result of this
section:

Proposition 3.13. Let A = Im(ρ) ∼= D(X)GL(1)/(Ω) and write P for the augmen-
tation ideal of O(X)GL(1). Then, GKdim(A/AP ) ≤ GKdim(A)− 2.

Proof. LetN = D(X)/(D(X)P+D(X)Ω), as in Lemma 3.9. Then, Proposition 3.12
implies that A/AP ∼= NGL(1). Thus, by Lemmas 3.3 and 3.9,

GKdim(A/AP ) ≤ GKdim(D(X)GL(1))− 3 = GKdim(A)− 2,

as required. �

Standard results now lead to the main theorem. Combined with the fact that
D(X) ∼= U(so(2n+ 2))/J0 this proves Theorem 1.1 from the introduction.

Theorem 3.14. Assume that n ≥ 3. Then, D(O) ∼= D(X)GL(1)/(Ω).

Proof. To begin with, regard A and D = D(O) as modules over F . We assume
that A ( D. By Corollary 3.2(i), D is an essential extension of A as an F -module,
while Proposition 3.13 implies that GKdim(D(O)/A) ≤ GKdim(A) − 2. Thus,
Lemma 3.10 and [2, Theorem 1.14] imply that D is finitely generated as a left or
right F -module and hence as a left or right A-module (by Lemma 3.10(ii) the tame-
ness hypothesis for D/A in [2] is equivalent to the assertion that GKdim(D/A) ≤
GKdim(A) − 2). If D =

∑t
i=1 diA, then Corollary 3.2(ii) implies that P kdi ⊆ A

for some k. Hence, KD ⊂ A, for K = AP kA. By Proposition 3.13, again,
GKdim(A/K) ≤ GKdim(A)− 2.

By [14], Omin has rational singularities. Thus, by [4], Omin//GL(1) has rational
singularities and so, in particular, it is Cohen-Macaulay. Of course, D(X)GL(1) has
associated graded ring O(Omin//GL(1)). Thus, grA ∼= gr

(
D(X)GL(1)

)
/(gr Ω) is

also Cohen-Macaulay, with pure dimension.
Now give K and A/K the induced filtrations from that of A. Then, grA/ grK ∼=

gr(A/K) and so GKdim(grA/ grK) ≤ GKdim(grA)−2, by the first paragraph. As
grA is Cohen-Macaulay with pure dimension, jA(A/K) ≥ 2, by [5, Corollary 2.1.4]
and [2, Proposition 3.1]; thus Ext1A(A/K,A) = 0. However, as D and A are do-
mains with the same quotient division ring, Ext1A(D/A,A) 6= 0. Since D/A is a
homomorphic image of (A/K)m, for some m, the usual long exact sequence in co-
homology implies that Ext1A(A/K,A) 6= 0. This contradiction implies that D = A

and completes the proof. �

Remark. Using the ideas in [22] one can show that ρ is graded surjective, when
one filters both D(X) and D(O) by order of differential operator. Equivalently,
given any θ ∈ D(O), then θ = ρ(θ′) for some θ′ ∈ D(X) of the same order.
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4. The case of sl(2)

We assume that n = 2 throughout this section, but otherwise keep the notation
of the last two sections. In particular, O = Omin(sl(2)) and X = {(a, b) ∈ C2×C2 :

a · b = 0}. In this case, the proofs of the last section do not work. Nevertheless,
the objects in Theorem 3.14 still make sense and so one can ask whether that
isomorphism still holds. As we show in this section, the answer is “No.”

The real reason for this is that sl(2) = sp(2) and, as such, D(O) ∼= A2(C)Z2

contains operators of order 2 and Euler degree −1. Let us make this more explicit.
We may identify O(O) ∼= C[w2

1, w1w2, w
2
2] = C[w1, w2]Z2 , where Z2 = 〈σ〉 acts by

σ(wj) = −wj . It follows easily that

D(O) ∼= D(C2)Z2 = C
〈
wiwj , wi∂wj

, ∂wi
∂wj

: 1 ≤ i, j ≤ 2
〉
.

We leave it to the reader to check that, if one rewrites the ∂wi
∂wj

in terms of the
zij and their derivations one finds that they have Euler degree −1 but, of course,
order 2. It is clear that none of the generators of D(X)C

∗
given in (2.6) have these

properties, and so one should expect that the ∂wi
∂wj
6∈ Im(ρ). Unfortunately, it

is hard to make this intuitive proof rigorous, even in such a low dimensional case.
So, we will give a more theoretical proof that reduces the question to one of torus
actions on affine space.

More formally, rewrite

X =
{

(a1, a2, b1, b2) ∈ C2 × C2 : a1b1 + a2b2 = 0
} ∼=

X′ =
{
M =

( a1 a2
b2 −b1

)
: det(M) = 0

}
By classical invariant theory, X′ is isomorphic to the variety of closed orbits Y′//C∗,
where Y′ = C2 × C2 with the natural C∗-action λ · (α, β) = (λ−1α, λβ). Thus,
pulling the original action of C∗ on X to one on Y′, we find that O ∼= Y′//(C∗×C∗),
where the action is defined by

(λ, µ) · (α1, α2, β1, β2) = (λ−1µ−1α1, λ
−1µα2, λβ1, λβ2).

Thus, restriction of differential operators provides a homomorphism

ρ1 : D(Y′)C
∗×C∗

−→ D(Y′//(C∗ × C∗)) = D(O).

Now, ρ2 : D(Y′)C
∗×{1} → D(Y′//(C∗ × {1})) = D(X) is surjective by [24, The-

orem 0.3 and (0.7)]. Thus, passing to invariants under {1} × C∗, the map ρ′2 :

D(Y′)C
∗×C∗ → D(X)C

∗
is also surjective. Therefore, ρ1 = ρ ◦ ρ′2 is surjective if and

only if ρ is surjective. But, by [26, Theorem B] or [27, Proposition 10.5], ρ1 is not
surjective.

Hence, we have proved:

Proposition 4.1. When n = 2, the homomorphism D(X)GL(1) → D(O) is not
surjective. �
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5. Lagrangian submanifolds of the minimal orbit

The work of Astashkevich and Brylinski in [1] is a continuation of that of Brylin-
ski and Kostant in [9] where the authors proved analogous results for appropriate
Lagrangian submanifolds L contained in the minimal orbit of a simple Lie algebra,
in the sense that [9] proves the existence of an element D ∈ D(L) of negative Euler
degree. See, also, [6, 7]. There are just two families of these manifolds for classical
Lie algebras, one of which is rather trivial. In this section, we show how to modify
the results from Section 3 to completely describe D(L) in these cases.

We begin by describing the varieties. Let gR be a simple, real Lie algebra with a
Cartan decomposition gR = kR + pR and complexification g = k + p. Following [9],
we are interested in the variety L = Omin(g) ∩ p in the case when the symmetric
space corresponding to gR is non-Hermitian and L 6= {0}. By the Kostant-Sekiguchi
correspondence, this final condition is equivalent to the assumption that Omin(g) is
the complexification of a nilpotent orbit in gR (see [10, (2.1)]).

By comparing [12, Table V and §X.6.3, p. 518] with [10, Remark 2.2], we find
that there are only two cases for g classical:

AI : g = sl(n) ⊃ k = so(n), n ≥ 3

and

BDI : g = so(p+ q) ⊃ k = so(p)× so(q), p ≥ q ≥ 3

The latter is the interesting case; it corresponds to the decomposition

g =
{[

A B
−Bt C

]
: A = −At ∈ Mp(C) and C = −Ct ∈ Mq(C)

}
,

with subspaces k = {(A 0
0 C )} and p =

{(
0 B
−Bt 0

)}
. Since the minimal orbit Omin(g)

consists of matrices of square zero and rank two, we may identify L = Omin(g) ∩ p

with p× q matrices of the following form:

L =
{
B ∈ Mp,q(C) : BBt = BtB = 0 and rk(B) ≤ 1

}
.

Define W1 = {a ∈ Cp : a · a = 0} and W2 = {b ∈ Cq : b · b = 0}, with the GL(1)

action on W = W1 ×W2 defined by λ · (a, b) = (aλ−1, λb). Just as in Section 2,
the multiplication map W → L given by (a, b) 7→ abt induces an isomorphism
L ∼= W//GL(1).

Once again, [23] implies that

D(W) ∼= U(so(p+ 2))/J0 ⊗ U(so(q + 2))/J0.

We now follow the style of argument from Section 3 to determine D(L). Fix coordi-
nate functions {xi} for W1 and {yi} for W2 so that

∑
i x

2
i =

∑
i y

2
i = 0. As before,

let P denote the augmentation ideal of O(L)GL(1), and set Ω =
∑
i(xi∂xi

− yi∂yi).
Thus, Ω ∈ Ker(ρ), for the natural map

ρ : D(W)GL(1) −→ D(W//GL(1)) = D(L).
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Lemma 5.1. Let I =
∑p
i=1D(W)xi + D(W)(Ω − λ), for some λ ∈ C. Then,

GKdim(D(W)/I) ≤ GKdim(D(W))− 3.

Proof. Let I ′ =
∑p
i=1D(W1)xi and give each D(Wi) the filtration induced from

that of U(so(r + 2)), for r = p or r = q. Thus

gr(D(W)/I) ∼= (grD(W1)/ gr I ′ ⊗ grD(W2)) /(gr Ω).

Now, [23, Theorem 4.7] implies that GKdim(D(W1/I
′)) ≤ GKdim(D(W1)) − 2.

and so A = grD(W1)/ gr I ′⊗grD(W2) satisfies GKdim(A) ≤ GKdim(D(W))−2.
On the other hand, by [23], again, grD(W2) ∼= O(Omin(so(q + 2))) and this ring
is a domain, by [11]. However, gr Ω = Ω1 + Ω2, where Ω1 ∈ grD(W1)/ gr I ′ and
0 6= Ω2 ∈ grD(W2). It follows immediately that GKdim(A/(gr Ω)) < GKdim(A),
as required. �

Lemma 5.2. Let M = D(W)GL(1)Ω +D(W)GL(1)P . Then,

GKdim(D(W)GL(1)/M) ≤ GKdim(D(W)GL(1))− 3.

Proof. We use the proof of Lemma 3.9. Set N = D(W)/(D(W)Ω +D(W)P ). As
in Lemma 3.9, using Lemma 5.1, one sees that GKdim(N) ≤ GKdim(D(W))−3. If
GKdim(NGL(1)) = GKdim(N)− 1, the result follows from GKdim(D(W)GL(1)) =

GKdim(D(W)) − 1. Suppose that GKdim(NGL(1)) = GKdim(N) and set I =

gr(D(W)Ω +D(W)P ). Then, as in Lemma 3.8, one finds that

V(I) ⊂ [Omin(so(p+ 2))×Omin(so(q + 2))]GL(1).

The definition of the GL(1)-action and the identification of so(p+ 2) inside D(W1)

given in [21, 1.2.1] imply that

[so(p+ 2)× so(q + 2)]GL(1) ≡ (so(p) ⊕ CIp)× (so(q) ⊕ CIq)

where Ip, Iq are semisimple elements of so(p+ 2), respectively so(q + 2). It follows
that if (a, b) ∈ V(I), then a identifies with a nilpotent element of square zero and
rank at most two in so(p) (similarly with b in so(q)). Recall that, for r ≥ 5, the
dimension of Omin(so(r)) is 2r − 6. Hence, if p ≥ q ≥ 5 we have

dimV(I) ≤ (2p− 6) + (2q − 6) ≤ 2(p+ q)− 8 = GKdim(D(W)GL(1))− 3.

We leave to the reader the easy verification that dimV(I) ≤ GKdim(D(W)GL(1))−3

also holds when when q ≤ 4. (Use the identities so(3) ∼= sl(2) and so(4) ∼= sl(2) ×
sl(2) combined with the fact that dimOmin(sl(2)) = 2.) �

Proposition 5.3. Ker(ρ) = τ(gl(1))D(W)GL(1) = ΩD(W)GL(1).

Proof. As in the proof of Proposition 3.12, we use Lemma 3.11 and we only need
to check that hypothesis (ii) of that result (clearly the statement and proof of
Lemma 3.10 also hold for D(W)GL(1)).
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Let $ : W → W//GL(1) denote the quotient map and pick f = xiyj ∈
O(W)GL(1). Just as in the proof of Proposition 3.12, Wf is an affine $-saturated
open subset of W on which GL(1) acts freely. Hypothesis (ii) then follows from
[27, Corollary 4.5] and the fact that P is generated by such elements f . �

Theorem 5.4. Assume that (g, k) = (so(p + q), so(p) × so(q)), for p ≥ q ≥ 3.
Then, in the notation defined above, D(L) ∼= D(W)GL(1)/(Ω).

Proof. First note that, using the proof of Proposition 3.13, GKdim(A/AP ) ≤
GKdim(A) − 2, for A = Im(ρ). The proof of Theorem 3.14 now goes through
mutatis mutandis. �

For the record we note the differential operators of negative Euler degree in D(L)

that this theorem produces. Since we have used a different quadratic form than
that used in Section 3, we first need to write down some operators from D(W).
Let ∆′ = 1

2

∑p
i=1 ∂

2
xi

and E′ =
∑p
i=1 xi∂xi ∈ D(W1) and define

Θx
j = xj∆

′ − ∂xj
(E′ + (p− 4)/2).

Then, [21, Lemme 1.1.4] implies that Θx
j ∈ D(W1). Let Θy

j denote the analogous
element from D(W2), obtained by replacing x by y and p by q. Clearly,

Θx
i Θy

j ∈ D(W)GL(1) for 1 ≤ i ≤ p and 1 ≤ j ≤ q.

The analysis from the end of Section 2 extends to show that the ρ(Θx
i Θy

j ) are
elements of D(L) of Euler degree −1 and order 4, that they commute and that they
span a subspace of D(L) isomorphic to p as k-module. This proves the heart of
[9, Theorem 3.10] for this case. We leave it to the reader to extend the arguments
from Section 2 to find a complete set of generators of D(L).

We end the section by considering the Lagrangian variety L = Omin(g) ∩ p for
the case AI : g = sl(n) ⊃ k = so(n). Here, p is the set of symmetric n× n matrices
and so L becomes the set of n × n symmetric matrices of rank at most one and
square zero. As such, we may identify L = X//O(1), for X = {a ∈ Cn : a · a = 0},
via the map a 7→ aat from X to L.

Proposition 5.5. Assume that (g, k) = (sl(n), so(n)), for n ≥ 3. Then, in the
above notation, restriction of functions yields an isomorphism

D(X)O(1) ∼−−→D(L).

Proof. Since O(1) = 〈σ〉 acts on X by σ(x) = −x, the fixed point set in X is
{0}, which has codimension at least two in X. The result now follows from [13,
Corollary 1.3]. �
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6. A non-minimal nilpotent orbit

For the final result of this paper, we show how the earlier results can also be
used to describe the ring of differential operators over a non-minimal nilpotent
orbit in sp(2n). In fact, this is closely related to the earlier work, since the orbit
we consider is a “shared orbit” with the minimal orbit of sl(2n), in the sense of [8].
See, in particular, [8, Theorem 5.9(iii)].

Set Jn =
(

0 In
−In 0

)
∈ M2n(C) and let ϑ be the involutive automorphism of sl(2n)

defined by ϑ(X) = JnX
tJn. Recall that sp(2n) = {X ∈ sl(2n) : ϑ(X) = X}, thus

η = I + ϑ gives a surjective linear map from sl(2n) onto sp(2n). Set

O2 =
{
X ∈ sp(2n) : X2 = 0 and rkX = 2

}
.

Hence, O2 r O2 = Omin(sp(2n)) and, in fact, O2 is the next to minimal orbit in
the sense that it is contained in all other nilpotent orbits closures. Write O =

Omin(sl(2n)) for the minimal nilpotent orbit in sl(2n), and note that O is ϑ-stable.
The following lemma is not difficult to prove.

Lemma 6.1. The map η induces an isomorphism: O//〈ϑ〉 ∼−−→O2.

Recall that D(O) has been described in Theorem 1.1. From this result one can
deduce a complete description of D(O2):

Proposition 6.2. Restriction of functions yields an isomorphism

D(O)〈ϑ〉 ∼−−→D(O2).

Proof. Observe that O1 = {X ∈ O : ϑ(X) = X} is the closure of the minimal
nilpotent orbit in sp(2n), which has dimension 2n. Thus the codimension of O1 in
O is 2n−2 ≥ 2. The result then follows from Lemma 6.1 and [13, Corollary 1.3]. �

7. Questions

The most obvious questions are:

Question 7.1. Does there exist an analogue to Theorem 1.1 for the ring of differ-
ential operators D(Omin(so(n)))?

Question 7.2. In the notation of Section 5, does there exist an analogue to Theo-
rem 5.4 for the ring of differential operators D(L) over the exceptional Lie algebras?
Ideally, there should exist a uniform approach for describing these rings.

The natural approach to Question 7.1 is to again regard Omin(so(n)) as a cate-
gorical quotient. By [17, Theorem 3.3] and [18, Theorem 5.3], any nilpotent orbit
in a classical simple Lie algebra has such a description and in this case it is easy to
describe: Set

V = {A = [ ab ] ∈ M2,n(C) : a · a = b · b = a · b = 0} ,



18 T. LEVASSEUR AND J. T. STAFFORD

and let Sp(2) act on V by left multiplication. Then the map A 7→ AtJ1A yields an
isomorphism V//Sp(2) ∼−−→Omin(so(n)). Thus a more precise formulation of 7.1 is:

Question 7.3. (i) Is D(Omin(so(n))) ∼=
(
D(V)

/
D(V)τ(sp(2)

)Sp(2)?
(ii) Describe D(V).

Unfortunately we are unable to solve either part of 7.3. Thus, even though V

has a simple description, we can say very little about D(V). In contrast to the
situation for D(X) in §2, we know of no way to (for example) identify D(V) with
U(g)/J for some Lie algebra g, and ideal J .

As mentioned in the introduction, Astashkevich and Brylinski [1] also find a
differential operator D0 of order 4 and Euler degree −1 inside D(Omin(so(n))).
If 7.3(i) is true, one can hope that the preimage of D0 inside D(V) has a pleasant
form. Here, again, the situation is more complicated than that for sl(n). Indeed,
recall from Proposition 2.2 that, for sl(n), D0 = ρ(− 1

4ΦnΘ1) where the Φi and Θj

had order 2 and degree −1. In contrast, a straightforward but tedious computation,
which we omit, proves:

Lemma 7.4. There is no element in D(V) of order 2 and Euler degree −1. �

One can also ask whether other nilpotent orbits have pleasant rings of differential
operators. Specifically we ask:

Question 7.5. Let g be a semisimple Lie algebra.

(i) For which nilpotent orbits O is D(O) Noetherian or simple?
(ii) Describe D(N) for the nilcone N.

Notice that if D(O) is simple, then O has to be Cohen-Macaulay [29, Theo-
rem 6.2.5] and therefore normal [18, 10.1], so we are mostly concerned with normal
orbits in 7.5. We remark that it follows trivially from Theorem 1.1 that D(O) is
Noetherian, and it is easy to show that O(Omin(sl(n))) is a simple D(Omin(sl(n)))-
module, but we cannot answer:

Question 7.6. Is the ring D(Omin(sl(n))) of Theorem 1.1 simple?

Acknowledgment

This research was conducted while the first author was visiting the University
of Michigan and partially supported by the NSF, and also while the second author
was visiting and partially supported by the University of Brest. They would like
to thank all three institutions.

References

[1] A. Astashkevich and R. Brylinski, Exotic Differential Operators on Complex Minimal Nilpo-
tent Orbits, in “Advances in Geometry”, (Progress in Math., Vol. 172), Birkhäuser, Boston,
1998.



DIFFERENTIAL OPERATORS ON NILPOTENT ORBITS 19

[2] J.-E. Björk, The Auslander condition on Noetherian rings, in “Séminaire d’Algèbre P. Dubreil
et M.-P. Malliavin” (Lecture Notes in Math. No. 1404), Springer-Verlag, Berlin/New York,
1989.

[3] W. Borho and H. Kraft, Über die Gelfand-Kirillov Dimension, Math. Annalen, 220 (1976),
1-24.

[4] J.-F. Boutot, Singularités rationnelles et quotients par les groupes réductifs, Inventiones
Math., 88 (1987), 65-68.

[5] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Univ. Press, Cambridge, 1996.
[6] R. Brylinski and B. Kostant, Minimal representations of E6, E7 and E8 and the generalized

Capelli identity, Proc. Nat. Acad. Sci. USA, 91 (1994), 2469-2472.
[7] , Minimal representations, geometric quantization and unitarity, Proc. Nat. Acad.

Sci. USA, 91 (1994), 6026-6029.
[8] , Nilpotent orbits, normality and Hamiltonian group actions, J. Amer. Math. Soc.,

7 (1994), 269-298.
[9] , Differential Operators on conical Lagrangian manifolds, in “Lie Theory and Geom-

etry: in Honor of B. Kostant”, (Progress in Math., Vol. 123), Birkhäuser, Boston, 1994.
[10] , Lagrangian models of minimal representations of E6, E7 and E8, in “Functional

Analysis on the Eve of the 21st Century: in Honor of I. M. Gelfand”, (Progress in Math.,
Vol. 131), Birkhäuser, Boston, 1995.

[11] D. Garfinkle, A new construction of the Joseph ideal, Ph. D. Thesis, M.I.T., 1982.
[12] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press,

New York, 1978.
[13] Y. Ishibashi, Nakai’s conjecture for invariant subrings, Hiroshima Math. J., 15 (1985), 429-

436.
[14] G. Kempf, On the collapsing of homogeneous bundles, Inventiones Math., 37 (1976), 229-

239.
[15] G. R. Krause and T. H. Lenagan, Growth of Algebras and Gelfand-Kirillov Dimension,

Pitman, Boston 1985.
[16] H. Kraft, Geometrische Methoden in der Invarianttentheorie, Vieweg, 1984.
[17] H. Kraft and C. Procesi, Closures of conjugacy classes of matrices are normal, Inventiones

Math., 53 (1979), 227-247.
[18] , On the geometry of conjugacy classes in classical groups, Comment. Math. Helv.,

57 (1982), 539-602.
[19] T. Levasseur, Anneaux d’opérateurs differentiels in “Séminaire d’Algèbre P. Dubreil et M.-

P. Malliavin” (Lecture Notes in Math. No. 867), Springer-Verlag, Berlin/New York, 1981.
[20] , Grade des modules sur certains anneaux filtrés, Comm. in Algebra, 9 (15) (1981),

1519-1532.
[21] , La dimension de Krull de U(sl(3)), J. Algebra, 102 (1986), 39-59.
[22] , Relèvements d’opérateurs différentiels sur les anneaux d’invariants in “Colloque en

l’honneur de J. Dixmier” (Progress in Math., Vol. 92), Birkhäuser, Boston, 1990.
[23] T. Levasseur, S. P. Smith and J. T. Stafford, The minimal nilpotent orbit, the Joseph ideal

and differential operators, J. Algebra, 116 (1988), 480-501.
[24] T. Levasseur and J. T. Stafford, Rings of Differential Operators on Classical Rings of In-

variants, Mem. Amer. Math. Soc., No. 412, 1989.
[25] M. Lorenz, Gelfand-Kirillov Dimension, Cuadernos de Algebra, No. 7 (Grenada, Spain),

1988.
[26] I. M. Musson, Rings of differential operators on invariants of tori, Trans. Amer. Math. Soc.,

303 (1987), 805-827.



20 T. LEVASSEUR AND J. T. STAFFORD

[27] G. W. Schwarz, Lifting differential operators from orbit spaces, Ann. Sci. École Norm. Sup.,
28 (1995), 253-306.

[28] R. P. Stanley, Hilbert functions of graded algebras, Adv. in Math., 28 (1978), 57-83.
[29] M. Van den Bergh, Differential operators on semi-invariants for tori and weighted projective

spaces, in “Séminaire d’Algèbre P. Dubreil et M.-P. Malliavin” (Lecture Notes in Math.
No. 1478), Springer-Verlag, Berlin/New York, 1991.

Département de Mathématiques, Université de Brest, 29285 Brest, France
E-mail address: Thierry.Levasseur@univ-brest.fr

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
E-mail address: jts@math.lsa.umich.edu


