
THE KERNEL OF AN HOMOMORPHISM OF HARISH-CHANDRA

T. LEVASSEUR AND J. T. STAFFORD

Abstract. Let g be a reductive, complex Lie algebra, with adjoint group G,
let G act on the ring of differential operators D(g) via the adjoint action and

write τ : g → D(g) for the differential of this action. A classic result of Harish-

Chandra shows that any invariant differential operator that kills O(g)G, the

algebra of invariant functions on g, also kills all invariant distributions on a
real form of g. In this paper we generalize this result by showing that

D(g)τ(g) =
{
θ ∈ D(g) : θ

(
O(g)G

)
= 0

}
.

This answers a question raised by Dixmier, by Wallach and by Schwarz.

1. Introduction

Let G be a connected complex reductive algebraic group with Lie algebra g. Fix
a Cartan subalgebra h and let W be the Weyl group associated to (g, h). Denote by
O(g) and D(g) the algebras of polynomial functions and differential operators on g.
The group G acts on g by the adjoint action, and therefore has an induced action on
O(g) and D(g). In [6], Harish-Chandra defines a homomorphism δ : D(g)G → D(h)W

and, by [14], δ is surjective. The significance of this result is illustrated by the fact that
it allows one to give relatively easy proofs of important theorems of Harish-Chandra
(see [21]).

One would also like to understand the kernel of δ and one aim of this paper is to
study this ideal. Set

J = {d ∈ D(g) | ∀f ∈ O(g)
G
, d(f) = 0}, and I = J ∩ D(g)

G
.

The differential of the adjoint action of G on g will be denoted by τg (or simply τ);
thus, τ : g → D(g) is a Lie algebra map. It is immediate that τ(g) ⊂ J and the
construction of δ ensures that I = Ker δ. This leads to the natural question, raised
in [4, 1.2], [21, Section 4] and [19, Section 3]:

(†) Does J = D(g)τ(g)?

In [4, Theorem 2.1], Dixmier shows that this is true at the level of vector fields
while, in [21, Lemma 4.1], Wallach proves that I/(D(g)G ∩D(g)τ(g)) is torsion with
respect to the discriminant of g.

The first main result of this paper answers question (†) in the affirmative:

Theorem 1.1. J = D(g)τ(g). Hence I = D(g)
G ∩ D(g)τ(g).
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The analogue of this theorem for analytic differential operators also holds and
follows routinely from the stated, algebraic result (see Corollary 5.6). One reason why
Dixmier and Wallach raised Question (†) is that it has as an immediate corollary the
following fundamental result of Harish-Chandra [8, Theorem 5]: Fix a real form g0

of g and assume that Ω is an open, completely invariant subset of g0. Write D′(Ω)G0

for the set of distributions on Ω that are invariant under the action of the adjoint
group G0 of g0. Then I = {d ∈ D(g)G : dD′(Ω)G0 = 0}. The proof of Theorem 1.1,
while very different from Harish-Chandra’s proof of [8, Theorem 5], is no easier.

In proving Theorem 1.1 we also provide some detailed information about the struc-
ture of Ng = D(g)/D(g)τ(g). In order to state the result, we need some notation.
Identify S(g) with the constant coefficient differential operators on g. Recall that a
finitely generated D(g)-moduleM is called Cohen-Macaulay if there exists p ∈ N such
that ExtiD(g)(M,D(g)) = (0) for i 6= p. In this case, p is the projective homological
dimension of M, and M is homogeneous of Gelfand-Kirillov dimension 2 dim g − p
[1, Theorem II.7.1, Theorem II.7.8]. Observe that Ng is a right module over D(g)G

and, hence, over S(g)G. Thus, the next result, which provides the Lie algebra version
of [12, Theorem 3], makes sense.

Theorem 1.2. (i) The D(g)-module Ng = D(g)/D(g)τ(g) is Cohen-Macaulay of
projective dimension dim g− rk g.

(ii) Ng is a flat right S(g)G-module.

In outline, the proofs of the above theorems are as follows. In Section 2 we study
certain (D(g), D(h)W )-bimodules. In Section 3 the results of Section 2 are combined
with some easy, known facts about Ng to show that Theorem 1.2 holds for the module
N = D(g)/J and that L = Ker(Ng → N) is generated by its G-invariants. In
Section 4 we provide an inductive argument that reduces the problem to the case
where L is supported on N(g), the nilpotent cone of g. As is shown in Section 5,
it follows easily that L is of finite length. Moreover, if L 6= 0, then some non-zero
element of L is killed by a co-finite dimensional ideal of S(g)G and by a power of the
augmentation ideal of S(g∗)G as well as by τ(g). At this stage one appeals to a result
of Harish-Chandra (see Theorem 5.2 and the comments thereafter) to show that such
an element must be zero.

2. (D(g), D(h)W )-bimodules.

The aim of this section is to study (D(g), D(h)W )-bimodules satisfying the prop-
erty of the following definition. The importance of this condition is that, as will be
shown in the next section, it is satisfied by N . This will form the starting point of
our proof of Theorems 1.1 and 1.2. The Gelfand-Kirillov dimension of a module M
will be denoted by GKdimM .

Definition 2.1. Define a non-zero (D(g), D(h)W )-bimodule M to satisfy property (*)
if M is a finitely generated left D(g)-module with GKdimD(g)M ≤ rk g + dim g.

Before stating the main results of this section, we need some definitions. The Krull
dimension, in the sense of Rentschler and Gabriel, of a module M over a ring R will
be denoted by KdimM . The module M will be called GK-homogeneous (respectively
Krull-homogeneous) if GKdimM ′ = GKdimM (respectively KdimM ′ = KdimM)
for all non-zero submodules M ′ of M . A module M with Gelfand-Kirillov dimension



THE KERNEL OF AN HOMOMORPHISM OF HARISH-CHANDRA 3

is called critical if GKdimM ′ < GKdimM , for all proper factor modules M ′ of M .
More details about these concepts can be found in [15, Chapters 6 & 8].

Proposition 2.2. Let M be a (D(g), D(h)W )-bimodule that satisfies property (*).
Then, GKdimD(g)M = rk g + dim g and KdimM = rk g.

Proof. Let CdimS denote the maximal Krull dimension of a commutative, finitely
generated subring of a ring S. Clearly, CdimD(h)W ≥ CdimS(h)W = rk g. As
D(h)W is simple [16, Theorem 2.15], the map D(h)W → EndD(g)(M) induced by

the right action of D(h)W on M is an injection. Thus, by [11, Proposition 1.1], one
obtains

rk g ≤ CdimD(h)W ≤ Cdim EndD(g)(M) ≤ KdimM.

However, by [15, Corollary 8.5.6] and (*),

KdimM ≤ GKdimM − dim g ≤ rk g,

as required. �

Corollary 2.3. Let M satisfy property (*). Then:
(i) As a left D(g)-module, M is Krull and GK-homogeneous. Moreover, M has

finite length as a (D(g), D(h)W )-bimodule.
(ii) As a left D(g)-module, M is Cohen-Macaulay, with homological projective di-

mension pdD(g)M = dim g− rk g.

Proof. (i) If M is not GK-homogeneous, write T for the unique largest D(g)-sub-
module of M with GKdimT < GKdimM . Since T is mapped to itself by any D(g)-
endomorphism of M , T is a (D(g), D(h)W )-bisubmodule of M . Thus, T satisfies (*).
Thus, by Proposition 2.2, GKdimT = rk g + dim g = GKdimM , a contradiction.
Hence, M is GK-homogeneous and, similarly, M is Krull-homogeneous.

Next, let M = M0 ⊃ M1 ⊃ · · · be any proper, descending chain of bisubmodules
of M . Then each Mi/Mi+1 satisfies (*) and so Proposition 2.2 implies that

KdimMi/Mi+1 = rk g = KdimM for each i.

By the definition of Krull dimension, this forces the chain to have finite length.
(ii) Let j(M) = min{j : ExtjD(g)(M, D(g)) 6= 0}. By [1, Theorem II.5.15]

j(M) = GKdimD(g)−GKdimD(g)M = dim g− rk g.

Also ExtpdM
D(g) (M, D(g)) 6= 0. Thus, if either assertion of part (ii) of the corollary is

false, there exists an integer s > dim g − rk g such that E = ExtsD(g)(M, D(g)) 6= 0.

However, E is naturally a (D(h)W , D(g))-bimodule, finitely generated as a right D(g)-
module and, by [1, Proposition II.5.16],

GKdimD(g)E ≤ GKdimD(g)− s < dim g + rk g.

This contradicts the left-hand analogue of Proposition 2.2. �

Theorem 2.4. Let M be a (D(g),D(h)W )-bimodule, finitely generated as a left D(g)-
module. Then, M is a flat right S(h)W -module.

Before proving this result we need some notation and a subsidiary lemma. Let
Ck = C[x1, . . . , xk] denote a polynomial ring in k variables and, for any non-zero
linear polynomial f ∈ Ck, identify Ck/(f) = Ck−1. Define, inductively, Fk to be
the family of torsion-free right Ck-modules L such that L/Lf ∈ Fk−1, for all linear
polynomials 0 6= f ∈ Ck.
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Lemma 2.5. If L ∈ Fk, then L is a flat right Ck-module.

Proof. Suppose that L has weak homological dimension r. By [15, Proposition 7.1.13],

there exists a simple Ck-module S such that TorCk
r (L, S) 6= 0. Let f ∈ AnnCk

(S) be
a non-zero linear form. By [3, page 347], there is a spectral sequence associated to
the change of rings Λ = Ck → Γ = Ck/fCk:

E2
p,q = TorΓ

q (TorΛ
p (L,Γ), S) =⇒ TorΛ

m(L, S).

Since f is a non zero divisor in both L and Λ it is easy to see that TorΛ
p (L,Γ) = 0

for p ≥ 1. Since TorΛ
0 (L,Γ) = L/fL, the spectral sequence therefore collapses to

isomorphisms

TorΓ
m(L/fL, S) ∼= TorΛ

m(L, S).

By induction TorΓ
m(L/fL, S) = (0) for m 6= 0, hence the result. �

Proof of Theorem 2.4. Set R = D(h)W ⊂ A = D(h) and identify A with D(C`) in
such a way that S(h) is identified with C`. Let L = M ⊗R A, which we regard as a
(D(g), A)-bimodule. Since RA is finitely generated, D(g)L is finitely generated. Since
A is simple, this implies that LA and LC`

are torsion-free (use [5, Lemma 7.1]). If f ∈
C` is a non-zero linear polynomial, we may choose the generators of C` such that f =
x`. Hence, f centralizes the natural copy of D(C`−1) in D(C`). Consequently, L/Lf is
a finitely generated left D(g)-module that is also a (D(g), D(C`−1))-bimodule. Thus,
L/Lf is also torsion-free as a right module over D(C`−1) and C`−1. By induction,
therefore, L ∈ F`.

By Lemma 2.5, L is a flat right S(h)-module. Since S(h) is a free S(h)W -module,
by [15, Proposition 7.2.2], L is a flat right S(h)W -module.

As a C[W ]-module, D(h) decomposes as D(h) = D(h)W ⊕D, where D is the direct
sum of the non-trivial W -modules. This is clearly a D(h)W -bimodule decomposition
and so, under the natural embedding, R = D(h)W is an R-bimodule summand of
A = D(h). Thus, as a right R-module, and therefore as a right S(h)W -module, M
is a summand of L = M ⊗R A. Hence, by the last paragraph, M is a flat right
S(h)W -module; as required. �

3. Preliminary results on Ng

Let G, g, h and W be as in Section 1 and write n = dim g and ` = dim h. In
this section we make some preliminary observations, mostly well-known, about the
D(g)-module Ng = D(g)/D(g)τ(g). Combined with the results of the last section,
these show that N = D(g)/J satisfies condition (*) of Definition 2.1 and hence that
Theorem 1.2 holds for N .

Let κ be a nondegenerate invariant symmetric bilinear form on g. As usual, we

identify g with g∗ through κ. If T ∗g
πg−→ g denotes the cotangent bundle, then

T ∗g = g × g∗ ≡ g × g is a G-variety under the adjoint action. Throughout, D(g)
and its subspaces will be filtered by degree of differential operators. The principal
symbol gr(τ(v)) ∈ gr(D(g)) = O(T ∗g) of the vector field τ(v), for v ∈ g, will be
denoted by σ(v); hence σ(v)(x, ξ) = κ(v, [ξ, x]) for (x, ξ) ∈ g × g. Given a finitely
generated D(g)-module M , we denote its characteristic variety by ChM ⊂ T ∗g, its
characteristic cycle by ChM and its support by SuppM = πg(ChM) ⊆ g, as defined
in [2]. Recall from [2, VI.1.17] that SuppM is Zariski closed.
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We denote the discriminant of g by d`, and write g′ = {x ∈ g | d`(x) 6= 0} for the
set of generic elements. Let gx denote the centralizer of x ∈ g and write N(g) for the
nilpotent cone of g. Recall that the commuting variety of g is

C(g) = {(x, ξ) ∈ T ∗g | adx.ξ ≡ [x, ξ] = 0}.

It follows from [17] that C(g) is irreducible of dimension n+`. Note that C(g) is the set
of zeroes of the ideal a = (σ(x);x ∈ g) ⊂ O(T ∗g) = gr(D(g)). Set b = gr(D(g)τ(g))
and denote by p the prime ideal defining C(g); hence a ⊆ b and

√
a = p. Therefore

(3.1) ChNg ⊆ C(g).

In fact, it is known that one has equality in (3.1). Since we have been unable to
find an appropriate reference for this assertion, we will give a proof using the results
of the last section:

Lemma 3.1. (i) Both N and N ′ = D(g)/ (D(g)τ(g) +D(g)I) satisfy condition (*)
of Definition 2.1. In particular, GKdimN = GKdimN ′ = rk g + dim g.

(ii) GKdimNg = dim C(g) and hence ChNg = C(g).

Proof. (i) By construction N and hence N ′ are non-zero. Recall [14, Theorem 1]
that there exists an isomorphism δ : D(g)G/I → D(h)W . Under the embedding
D(g)G ↪→ D(g), the left ideal J of D(g) becomes a right D(g)G-module. Hence, both
N and N ′ are right modules over D(g)G/I ∼= D(h)W . Since both modules are factors
of D(g)/D(g)τ(g), it follows from ( 3.1) that

GKdimN ≤ GKdimN ′ ≤ dim C(g) = rk g + dim g.

Thus, both modules satisfy (*) and so part (i) follows from Proposition 2.2.
(ii) This follows from part (i) and (3.1). �

Lemma 3.2. (i) Let (x, ξ) ∈ C(g). Set k = dim gx ∩ gξ and denote by p(x,ξ)

the localization of p at (x, ξ). Then p(x,ξ) contains a regular sequence of the form
{σ(v1), . . . , σ(vn−k)}, for some vj ∈ g.

(ii) ad` = bd` = pd` .

Proof. (i) Let (A,m) be the local ring of T ∗g at (x, ξ). If v ∈ g it is easily seen that
the differential, dσ(v)(x, ξ), of σ(v) at (x, ξ) is given by dσ(v)(x, ξ)(a, b) = κ(v, [b, x]+
[ξ, a]). It follows that the subvector space of m/m2 = T ∗(x,ξ)(T

∗g) generated by the

dσ(v)(x, ξ), v ∈ g, is of dimension n− k. Hence (i) follows from the fact that A is a
regular local ring.

(ii) By Lemma 3.1(ii), a ⊆ b ⊆ p. Assume that (x, ξ) ∈ C(g) with x ∈ g′. Since
gx is a Cartan subalgebra of g we obtain that gx = gx ∩ gξ is of dimension `. By the
proof of (i), the ideal generated by the σ(vi), i = 1, . . . , n− `, is prime in A. Since p
is prime of height n− `, we can deduce a(x,ξ) = b(x,ξ) = p(x,ξ). Hence the result. �

Corollary 3.3. ChNg = [C(g)]. Moreover, Ng has a unique submodule T with
GKdimT < rank g+dim g such that Ng/T is a GK-critical module of Gelfand-Kirillov
dimension rank g + dim g.

Proof. Set R = O(T ∗g). From Lemma 3.2 we know that pd` = bd` = ad` . Since d` /∈
p it follows that pRp = bRp. Recall that the multiplicity of Ng along C(g) = V(p)
is defined to be

multV(p)Ng = lengthRp
(gr(Ng))p.
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Since (gr(Ng))p = Rp/pRp we have multV(p)Ng = 1. Therefore, by definition of the
characteristic cycle,

ChNg = multV(p)Ng.[C(g)] = [C(g)].

In order to prove the second claim, note that Ng does have a unique submodule T ,
maximal with respect to GKdimT < n+`. Moreover, M = Ng/T is GK-homogeneous
with GKdimM = n+`. For any D(g)-module M we set Chn+`M =

∑
V multVM.[V],

the sum being taken over the irreducible components of ChM of dimension n + `.
Consequently if M ′ is a nonzero submodule of M then, by additivity of Chn+`( ),
one obtains Chn+`M/M ′ = 0. Hence M is critical. �

Summarizing the results of this and the last section for the module N = D(g)/J ,
we obtain the following result. As in Corollary 3.3, we write T for the largest sub-
module T of Ng with GKdimT < GKdimNg and we write L = Ker(Ng → N).

Corollary 3.4. (i) If N ′ = D(g)/ (D(g)τ(g) +D(g)I), then N ′ = N = Ng/T . Thus,
L = T .

(ii) Ng = N ⇐⇒ Ng is GK-critical ⇐⇒ Ng is GK-homogeneous.
(iii) As a left D(g)-module, N is Cohen-Macaulay with pdD(g)N = dim g− rk g.

(iv) As a right S(g)G-module, N is flat.
(v) N is a simple (D(g), D(h)W )-bimodule.

Proof. Lemma 3.1 and Corollary 2.3 imply that N and N ′ are homogeneous left
D(g)-modules of Gelfand-Kirillov dimension rk g + dim g. Hence, by Corollary 3.3,
N = N ′ = Ng/T is GK-critical. Now apply Corollary 2.3 and Theorem 2.4. �

4. Restriction to a reductive subalgebra

Recall that Theorem 1.1 asserts that L = Ker(Ng → N) is zero. The aim of this
section is to give an inductive result that shows that, in order to prove this, one may
assume that L has finite length. Specifically, we prove that, if Theorem 1.1 holds for
every proper, reductive subalgebra of a semisimple Lie algebra g, then L is supported
on the nilpotent cone N(g). It follows easily that L has finite length.

Our first proof of this result used analytic D-modules. We would like to thank
G. Schwarz and M. Van den Bergh for pointing out that one could obtain a direct,
algebraic proof using Luna’s slice theorem. It is the latter proof that we present here.
We should emphasize that the key result, Proposition 4.4, is implicit in [18] and its
proof is merely part of the proof of [18, Theorem 4.9]. Unexplained terminology can
be found in [18].

Assume that G is an arbitrary reductive algebraic group and that X is an affine
G-variety. Set g = Lie(G) and let τX : g→ D(X) be the Lie algebra homomorphism
induced by the G-action. Set

K(X) = {d ∈ D(X) : ∀f ∈ O(X)G, d(f) = 0}.

Then D(X)τX(g) ⊆ K(X). Note that K(g) = J . Given a reductive subgroup M ⊆ G
and an affine M -variety Y , define G ×M Y = (G × Y )/M , under the M -action
m.(g, y) = (gm−1,my). Recall Luna’s slice theorem, as stated in [18, Theorem 1.14].

Theorem 4.1. Let X be a smooth affine algebraic G-variety. Let G.b ⊂ X be a
closed orbit, and denote by M = Gb the centralizer of b. Then M is reductive and
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TbX = N ⊕ Tb(G.b) for an M -module N . Thus (N,M) is the slice representation at
the point b.

There is a locally closed smooth affine M -stable subvariety S ⊂ X containing b
such that U = G.S is an affine open subset of X which satisfies:

(i) There exists an excellent surjective G-morphism ϕ : G×M S � U .
(ii) There exists f ∈ O(N)M with f(0) 6= 0, and an excellent surjective morphism

ψ : S � Nf , such that ψ(b) = 0 and the induced G-morphism φ : G×M S � G×MNf
is excellent.

Lemma 4.2. Let ϕ : Z → U be an excellent surjective G-morphism of smooth affine
G-varieties. Then, K(Z) = D(Z)τZ(g) if and only if K(U) = D(U)τU (g).

Proof. Set A = O(U) and B = O(Z). Then BG is faithfully flat over AG. It
follows from the proof of [18, Corollary 4.4] that there is a natural identification
BG ⊗AG D(U) = D(Z), which induces identities 1 ⊗AG τU (g) = τZ(g) and K(Z) =
BG ⊗AG K(U).

If K(Z) = D(Z)τZ(g), then combining these observations gives:

BG ⊗AG D(U)τU (g) = D(Z)τZ(g) = K(Z) = BG ⊗AG K(U).

Therefore D(U)τU (g) = K(U) by faithful flatness. The other implication is simi-
lar. �

Lemma 4.3. Let M be a reductive subgroup of G and Y a smooth affine M -variety
and set Z = G×M Y . Assume that K(Y ) = D(Y )τY (m). Then K(Z) = D(Z)τZ(g).

Proof. Set L = G × M and V = G × Y . Let L act on V by (g1, h).(g2, y) =
(g1g2h

−1, hy) for g1, g2 ∈ G, h ∈ M and y ∈ Y . This induces actions of G and M
such that Z = V/M , and O(V )L = O(G ×M Y )G = O(Y )M . Set m = Lie(M) and
g = Lie(G). Under the natural identification D(V ) = D(G)⊗CD(Y ), note that τY (m)
and τV (m) differ only by elements of DerO(G) = O(G)τG(g). We may write

D(V ) = D(V )τV (g)⊕ O(G)⊗C D(Y ).

Therefore K(V ) =
{
d ∈ D(V ) : d

(
O(V )L

)
= 0
}

= D(V )τG(g) +K′, where

K′ =
{
θ ∈ O(G)⊗C D(Y ) : θ

(
O(Y )M

)
= 0
}
.

Clearly K′ = O(G)⊗C K(Y ) =
(
O(G)⊗C D(Y )

)
τY (m). Hence,

K(V ) = D(V )(τG(g) + τY (m)) = D(V )(τG(g) + τV (m)).

Now let Q ∈ K(Z). As M acts freely on V , [18, Corollary 4.5(i)] provides a short
exact sequence:

0 −→ (D(V )τV (m))M −→ D(V )M
γ−→ D(Z) −→ 0

Set Q = γ(Q1) for some Q1 ∈ D(V )M . Since τV (m) kills O(Z), the action of Q1 on
O(Z) is the same as that of γ(Q1) = Q. Thus Q1 kills O(Z)G = O(V )L. By the first
paragraph, and since M is reductive, this implies that

Q1 ∈ K(V )M =
(
D(V )τG(g) +D(V )τV (m)

)M
=
(
D(V )τG(g)

)M
+
(
D(V )τV (m)

)M
.

Since the actions of G and M commute,
(
D(V )τG(g)

)M
= D(V )MτG(g). Hence

Q = γ(Q1) ∈ γ(D(V )MτG(g)) = D(Z)γ(τG(g)) = D(Z)τZ(g), as required. �
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Proposition 4.4. (Schwarz) Let X be a smooth affine G-variety and G.b be a closed
orbit in X. Set M = Gb and let (N,M) be the slice representation at the point b. If
K(N) = D(N)τN (m) on an M -neighbourhood of 0 in N , then K(X) = D(X)τX(g)
on a G-neighbourhood of b.

Proof. The result follows from Lemma 4.3, Lemma 4.2 and Theorem 4.1. �

We now return to the situation where the semisimple group G acts on g by the
adjoint representation. Recall the well known result (see, for example, [13, Section 3,
Theorem 3]):

Lemma 4.5. Let S be a G-stable Zariski closed subset of g. Assume that 0 is the
unique semisimple element of g contained in S. Then, S ⊆ N(g).

Theorem 4.6. Let g be a semisimple Lie algebra. Assume that K(m) = D(m)τm(m)
for all proper reductive Lie subalgebras m of g. Then SuppL ⊆ N(g) and so Ng = N
outside N(g).

Proof. Let 0 6= b ∈ g be a semisimple element, and set q = [b, g], M = Gb and
m = Lie(M) = gb. Thus M is reductive and q identifies with the tangent space
Tb(G.b) ⊂ Tbg ≡ g. Furthermore, g = q⊕m and (m,M) is the slice representation at
the point b.

Therefore it follows from Proposition 4.4 that L = 0 on a neighbourhood of each
non-zero semisimple element of g. Since L is a rational G-module, SuppL is a Zariski
closed G-stable subset of g. Thus, the result follows from Lemma 4.5. �

5. Proof of Theorem 1.1

In this section we combine the earlier results of this paper to prove Theorem 1.1
for a reductive Lie algebra g. Together with Corollary 3.4, this also completes the
proof of Theorem 1.2. We begin with some preliminary results.

Lemma 5.1. Assume that g is semisimple. Let M be a finitely generated D(g)-
module such that

ChM⊂ (N(g)× g∗) ∩ C(g).

ThenM is holonomic, and so, in particular, has finite length. Moreover, each element
of M is killed by a power of S+(g∗)G.

Proof. A proof is given in [12, Lemma 3.1] although, for sake of completeness, we
sketch it here. Denote by π : g× g � g the projection onto the first factor. Let Z be
an irreducible component of (N(g) × g) ∩ C(g). Since G is connected, Z is G-stable

and therefore Y = π(Z) is a closed irreducible G-subvariety of N(g). Thus Y is the
closure of a single nilpotent orbit, say G.u. Then dim(π−1(u) ∩ Z) ≤ dim gu, which
yields dimZ ≤ dimG.u + dim gu = dim g. Since dim(N(g) × g) ∩ C(g) ≥ dim g is
obvious, we obtain that dim(N(g) × g) ∩ C(g) = dim g. Hence M is holonomic, and
therefore has finite length.

By [13, Proposition 16], N(g) is the set of zeros of S+(g∗)G while, by hypothesis,
SuppM is a closed subset of N(g). Thus, each element ofM is killed by some power
of S+(g∗)G. �
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The proof of the next result uses analytic D-modules about which we need to
make some remarks. Let X be a smooth algebraic complex variety or a complex
analytic manifold and write OX for its structure sheaf. We denote by DX the
sheaf of differential operators on X. The basic definitions and facts concerning DX -
modules can be found in [1, 2]. When X is affine algebraic, the global section functor
provides an equivalence of categories between DX -modules and D(X)-modules [2,
Proposition VII.9.1]. One can associate to X a complex analytic manifold Xan, and
if F is a quasi-coherent OX -module one defines a quasi-coherent OXan-module by
Fan = OXan ⊗OX

F . The functor F → Fan is exact and faithful. If F is a coherent
DX -module, the sheaf Fan is naturally endowed with the structure of a coherent
DXan-module.

Theorem 5.2. Let g be a semi-simple Lie algebra. Let F be a left ideal of D(g) such
that F ⊇ D(g)K + D(g)τ(g) + D(g)K ′, where K is an ideal of S(g∗)G containing a
power of S+(g∗)G and K ′ is an ideal of finite codimension in S(g)G. Then, D(g) = F.

Proof. If D(g)/F 6= 0, pick s ∈ S(g)G such that [s + F ] 6= 0, but Ps = 0, for
some maximal ideal P of S(g)G. By its definition, τ(g) commutes with D(g)G, while
S(g∗)G acts ad-nilpotently on D(g). Thus, [s + F ] is still killed by τ(g) and by a
power of S+(g∗)G. In other words, replacing D(g)/F by D(g)s, we may assume that
K ′ = P is a maximal ideal of S(g)G. As such, D(g)/F is a homomorphic image of
D(g)/ (D(g)τ(g) +D(g)P ) supported on N(g).

By the remarks before the statement of the theorem, in order to prove that
D(g)/F = 0, we may work with sheaves of analytic D-modules. The theorem is
now a special case of [10, Theorem 6.7.2]. �

As is observed in [10], [10, Theorem 6.7.2] is an interpretation in terms of D-
modules of Harish-Chandra’s famous result on the regularity of invariant eigendis-
tributions [8, Theorem 1]. Similarly, Theorem 5.2 is the interpretation of Harish-
Chandra’s theorem on eigendistributions with nilpotent support [6, Theorem 5]. It is
not difficult to prove Theorem 5.2 by modifying the proof of [6, Theorem 5] as given,
for example, in [20, Chapter 5, Section 6].

Lemma 5.3. Set g = g1 ⊕ z where z is the centre of g and g1 is semisimple. Then,
Ng is GK-homogeneous if and only if Ng1

is GK-homogeneous.

Proof. We identify D(g) = D(g1) ⊗C D(z). Thus, given any D(g1)-module M , then
GKdimD(g)D(z) ⊗C M = GKdimD(g1)M + GKdimD(z). Since tensoring over C is
exact, one concludes that the D(g1)-module M is GK-homogeneous if and only if the
same is true for the D(g)-module D(z)⊗C M = D(g)⊗D(g1) M .

Since τ(z) = 0, clearly τ(g) = τ(g1) and so Ng = D(g)⊗D(g1) Ng1
. Now apply the

observations of the last paragraph. �

Lemma 5.4. Let x ∈ D(g) and p ∈ S(g)G be such that xp ∈ D(g)τ(g). Then
pmx ∈ D(g)τ(g), for some m ≥ 1.

Proof. If v ∈ D(g), write ad p(v) = pv−vp and set xm = (ad p)m(x) for m ≥ 0. Since
τ(g) commutes elementwise with D(g)G, certainly D(g)τ(g)p ⊆ D(g)τ(g). Hence, for
any m ≥ 0,

xmp ∈
m∑
i=0

D(g)xpi+1 ⊆
m∑
i=0

D(g)τ(g)pi = D(g)τ(g).
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In particular, for any i, j ≥ 1,

pixj−1 = pi−1xj + pi−1xj−1p ∈ pi−1xj +D(g)τ(g).

Finally, as S(g) acts locally ad-nilpotently on D(g), certainly xm = 0 ∈ D(g)τ(g),
for some m ≥ 1. By the last displayed equation, and induction, this implies that
pmx ∈ D(g)τ(g). �

We can now prove Theorem 1.1. By Corollary 3.4, this also completes the proof
of Theorem 1.2.

Theorem 5.5. Let g be a reductive Lie algebra and set N = D(g)/J , as in the
introduction. Then Ng = N .

Proof. By Corollary 3.4 it suffices to prove that Ng is GK-critical. We prove this
result by induction on dim g, with the case g = 0 being trivial. If g is not semisimple,
and in particular if dim g ≤ 2, the result follows immediately from Lemma 5.3. Thus,
we may assume that g is semisimple and that the result holds for every proper,
reductive subalgebra m of g.

Set L = Ker(Ng → N). Then ChL ⊆ (N(g)×g∗)∩C(g), by Lemma 3.1(ii) and The-
orem 4.6. Hence, by Lemma 5.1, L has finite length and so, by [15, Corollary 9.1.8],
EndD(g)(L) is a finite dimensional C-vector space. Now, L is a right D(g)G-module

and hence is a right S(g)G-module. Since the image of S(g)G in EndD(g)(L) is neces-
sarily finite dimensional, L is killed on the right by an ideal K1 of finite codimension
of S(g)G.

Recall from Corollary 3.4(i) that J = D(g)τ(g) +D(g)I. Thus, if L 6= 0, we may
pick x ∈ I such that x /∈ D(g)τ(g). Thus, for any p ∈ K1, one has xp ∈ D(g)τ(g).
By Lemma 5.4, pnx ∈ D(g)τ(g), for some n, and hence K ′x ∈ D(g)τ(g) for some
ideal K ′ of finite codimension in S(g)G. Lemma 5.1, applied to the D(g)-submodule
(D(g)x+D(g)τ(g)) /D(g)τ(g) of L, shows that Kx ⊂ D(g)τ(g), where K is a power
of S+(g∗)G. Finally, as x ∈ I and I commutes with τ(g), certainly τ(g)x ∈ D(g)τ(g).

Thus, we have shown that F = {r ∈ D(g) : rx ∈ D(g)τ(g)} satisfies the hypotheses
of Theorem 5.2. Thus, F = D(g) and x ∈ D(g)τ(g). Hence, N = Ng, as required. �

We end the paper with several comments on extensions and applications of Theo-
rem 5.5.

An interesting question is whether Theorem 5.5 holds at the graded level: Does
J ∩D(g)m = D(g)m−1τ(g) for all m, where D(g)m denotes the differential operators of
order ≤ m? Both Dixmier [4] and Schwarz [19] raise their questions in this generality.
This is slightly weaker than another well-known problem: is the ideal of zeros of the
commuting variety generated by the obvious functions {σ(x) : x ∈ g}? Equivalently,
does a = p in the notation of Section 3?

If V is a finite dimensional linear representation of G, one can ask again whether
Ker(D(V )G → D(V/G)) equals D(V )G ∩ D(V )τV (g) (see [19, Section 0]). For some
positive results, complementary to Theorem 5.5, the reader is referred to [18, Theo-
rem 8.9].

Finally we make some comments on D(gan), the ring of differential operators on g
with analytic coefficients. Recall from the introduction that we claimed that Theo-
rem 5.5 had, as an immediate consequence, Harish-Chandra’s theorem [8, Theorem 5]
that asserts that any invariant differential operator that kills all invariant functions
on g also kills all invariant distributions on g0. Since Harish-Chandra’s result is
concerned with analytic differential operators, this is only immediate if one has an
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analogue of Theorem 5.5 for D(gan). As the next corollary shows, this follows easily
from Theorem 5.5. We remark, however, that the stated algebraic version of Theo-
rem 5.5 is useful for applications to the analytic theory since it allows one to regard
invariant distributions as modules over D(g)G/I ∼= D(h)W and hence to relate them
to Weyl group representations. For example, by copying the proof that [21, Theo-
rem 5.4] implies [21, Theorem 5.3], one obtains another proof of [7, Theorem 3]. We
would like to thank Nolan Wallach for this observation.

In the next result we show how to extend Theorem 5.5 to the analytic case. We
would like to thank the referee for a significant simplification in the proof.

Corollary 5.6. Let g be a reductive Lie algebra and define a sheaf F of left ideals of
Dgan by F(U) =

{
θ ∈ Dgan(U) | θ

(
O(gan)G

)
= 0
}

for any open set U ⊆ gan. Then:
(i) F = Dganτ(g);
(ii) In particular, if U is a Stein open connected subset of gan, then F(U) =

Dgan(U)τ(g).

Proof. (i) Let F̃ be the sheaf defined by F̃(U) =
{
θ ∈ Dgan(U) | θ

(
O(g)G

)
= 0

}
.

Since Dganτ(g) ⊆ F ⊆ F̃ , it suffices to prove that F̃ = Dganτ(g) and, in turn, it
is enough to prove this locally. Fix p ∈ g and write R = Dg,p ⊂ S = Dgan,p and

F = F̃p. Pick coordinates x1, . . . , xn on g and set ∂i = ∂
∂xi

as usual.
Fix m ∈ N. Let d ∈ S be a differential operator of order ≤ m and write d =∑
|α|≤m aα∂

α, where aα ∈ B = Ogan,p and ∂α =
∏n
i=1 ∂

αi
i . Let f1, . . . , f` be algebra

generators of O(g)G. Then d ∈ F if and only if d(f) = 0 for all monomials f =
fi1 · · · fit with t ≤ m. For any such f , ∂α(f) ∈ A = Og,p. Thus we obtain a system
of linear equations

{∑
α yαλα,i = 0

}
with λα,i ∈ A such that d ∈ F if and only if∑

α aαλα,i = 0 for all i.
Now, B is a flat A-module and so this system of equations has a solution in B if

and only if it is soluble in A. In other words, if d ∈ F , then there exist βα,j ∈ A
and vj ∈ B such that

∑
α βα,jλα,i = 0, for all j, i, and aα =

∑
j vjβα,j , for all α. By

Theorem 5.5, this implies that

βj =
∑
|α|≤m

βα,j∂
α ∈

{
θ ∈ R | θ

(
O(g)G

)
= 0
}

= Rτ(g).

Moreover, d =
∑
j vjβj and so d ∈ Sτ(g), as required.

(ii) By part (i), F is a coherent Dgan -module. Since U is connected and Stein, Car-

tan’s Theorem B implies that F(U) = H0(U, F) = H0(U, Dganτ(g)) = Dgan(U)τ(g)
(see [9, Theorem 7.4.3] and [1, Section V.2.9]). �

Acknowledgement. This research was conducted while the first author was
visiting the University of Michigan and supported by the NSF. He would like to
thank both institutions.

References

[1] J.-E Björk, Rings of Differential Operators, North Holland, Amsterdam, 1979.
[2] A. Borel et al., Algebraic D-modules, Academic Press, Boston, 1987.

[3] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton,
1956.

[4] J. Dixmier, Champs de vecteurs adjoints sur les groupes et algèbres de Lie semi-simples,
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