
PRIMITIVE IDEALS OF Cq[G]

TIMOTHY J. HODGES AND THIERRY LEVASSEUR

Abstract. In [4] Joseph proved the classification of the primitive ideals of the quantum
group Cq[G] conjectured in [2]. We prove this result taking account of Joseph’s analysis
in [4] and of the methods already developed in [3].

1. Introduction

Let G be a connected, simply connected semi-simple complex Lie group and let g be
its Lie algebra. Denote by h a fixed Cartan subalgebra of g. The notation used for the
weights and roots of g with respect to h is as in Bourbaki [1] (with the minor exception
that the set of dominant weights will be denoted by P+). Let q be a non-zero complex
number which is not a root of unity and let Q be the subgroup of C∗ generated by q.
Following [5, 7], we define the quantised enveloping algebra Uq(g) to be the C-algebra
generated by K±1

i , X±i , 1 ≤ i ≤ n with relations

K−1
i Ki = KiK

−1
i = 1, KiX

±
j = q±(αi,αj)X±j Ki

[X+
i , X

−
j ] = δij

K2
i −K−2

i

q2di − q−2di
, KiKj = KjKi

1−aij∑
k=0

(−1)k
[

1− aij
k

]
q2di

(X±i )kX±j (X±i )1−aij−k = 0, if i 6= j

where [m]t = (t−t−1) . . . (tm−t−m) and

[
m
k

]
t

= [m]t
[k]t[m−k]t

. Here [aij] is the Cartan matrix

and di = (αi, $i) = (αi, αi)/2. The algebra Uq(g) is a Hopf algebra. The comultiplication
∆ is defined by

∆(X±i ) = X±i ⊗K−1
i +Ki ⊗X±i , ∆(Ki) = Ki ⊗Ki

and the counit and antipode by

ε(X±i ) = 0, ε(Ki) = 1, S(Ki) = K−1
i , S(X±i ) = −q∓2diX±i .

We also set

Ei = KiX
+
i , Fi = X−i K

−1
i , V + = C[Ei, 1 ≤ i ≤ n], V − = C[Fi, 1 ≤ i ≤ n]

and V ±+ = V ± ∩ ker ε. Notice that ∆(Ei) = Ei ⊗ 1 + K2
i ⊗ Ei, S(Ei) = −K−2

i Ei, and
[Ei, Fj] = δij q̂

−1
i (K2

i −K−2
i ), where q̂i = q2di − q−2di .

An element m of a Uq(g)-module M is said to have weight µ ∈ P if Kim = q(αi,µ)m
for all i = 1, . . . , n. For each dominant weight Λ ∈ P+ there exists a finite dimensional
simple module L(Λ) of highest weight Λ. Denote by C the subcategory of Uq(g)-modules
consisting of finite direct sums of such modules. We consider the dual of a Uq(g)-module
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M as a left module by the following action: uf(x) = f(S(u)x) for all x ∈ M, f ∈
M∗, u ∈ Uq(g). The category C is closed under tensor products and the formation of duals.
Hence the corresponding restricted dual (the algebra of coordinate functions associated
to objects of C) is a Hopf algebra. This Hopf algebra is denoted by Cq[G] and is known
as the standard quantization of C[G].

In [2], the authors conjectured that the primitive ideals of Cq[G] should be in H-
equivariant 1-1 correspondence with the symplectic leaves ofG equipped with the standard
Poisson group structure; that is, the H-orbits inside Prim Cq[G] are parameterized by
the double Weyl group W ×W . This result was proved by the authors for G = SL(n)
in [3] and in the general case by Joseph in [4]. As shown in [2, 3], the key to the main
theorem is to understand the adjoint action of Cq[G] on some algebras denoted by Cw
(see section 3 for the definition). In these papers we were able to explicit the calculation
of the adjoint action in order to get a complete description of Cw when G = SL(n). In
the general case the key idea in the proof of [4, Theorem 9.2] is to use the “self-duality of
Uq(b

+)”. We shall deduce Joseph’s theorem by combining this idea and the approach of
[3]. In [4] Joseph also proves various other results that the present paper does not recover.
Although no explicit references are made to the geometry, the proof follows closely the
ideas involved in the description of the symplectic leaves given in the appendix of [2]. The
original conjectures were inspired by work of Soibelman [10] on the irreducible unitary
representations of the corresponding Hopf ?-algebra. For further details and background
to these results the reader is referred to the introductions of [2] and [6].

2. Parameterization of the Prime Spectrum

Let M ∈ C and let f ∈M∗, v ∈M . Define cf,v to be the coordinate function given by:

∀u ∈ Uq(g), cf,v(u) = f(uv).

Then Cq[G] = ⊕Λ∈P+C(Λ) where C(Λ) is the vector space spanned by the cf,v where
f ∈ L(Λ)∗ and v ∈ L(Λ). Denote by ∆, ε, S the comultiplication, counit and antipode
in Cq[G] (strictly speaking, these should be denoted ∆∗, ε∗, S∗, but no ambiguity arises).
Then if {v1, . . . , vs; f1, . . . , fs} is a dual basis for M ,

∆(cf,v) =
∑
i

cf,vi ⊗ cfi,v, ε(cf,v) = f(v), S(cf,v) = cv,f .

For each Λ ∈ P+, choose vΛ ∈ L(Λ)Λ, vw0Λ ∈ L(Λ)w0Λ and f−Λ ∈ L(Λ)∗−Λ, f−w0Λ ∈
L(Λ)∗−w0Λ such that f−Λ(vΛ) = 1 and f−w0Λ(vw0Λ) = 1. Set

A+ =
∑
µ∈P+

∑
f∈L(µ)∗

Ccf,vµ , A− =
∑
µ∈P+

∑
f∈L(µ)∗

Ccf,vw0µ
.

The multiplication map A+ ⊗ A− → Cq[G] is surjective, [10, 3.1]. A proof of this fact is
given in [4, 3.7].

Consider the algebras Uq−1(g) and Cq−1 [G] and use ˆ to distinguish elements, subalge-
bras, etc. of Uq−1(g) and Cq−1 [G]. It is easily verified that the map σ : Uq(g) → Uq−1(g)

given by σ(X±i ) = X̂∓i and σ(Ki) = K̂i is an isomorphism of Hopf algebras. For each

Λ ∈ P+, σ gives a bijection σ : L(−w0Λ) → L̂(Λ) which sends v ∈ L(−w0Λ)µ onto

v̂ ∈ L̂(Λ)−µ. Therefore σ induces an isomorphism σ : Cq−1 [G]→ Cq[G] such that

∀f ∈ L(−w0Λ)∗−λ, ∀v ∈ L(−w0Λ)µ, σ(ĉf̂ ,v̂) = cf,v.
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In particular we have σ(Â±) = A∓. This observation allows one to deduce results for A−

from analogous results for A+.
The isomorphisms L(Λ)⊗L(Λ′) ∼= L(Λ′)⊗L(Λ) given by the universal R-matrix yield

the following commutation relations.

Lemma 2.1. Let Λ,Λ′ ∈ P+ and let g ∈ L(Λ′)∗−η and f ∈ L(Λ)∗−µ. Then there exists
a finite collection of triples (aν , fν , gν)ν∈Q+ where aν ∈ C, fν ∈ (Uq(b

+)f)−µ+ν and gν ∈
(Uq(b

−)g)−η−ν such that for any v ∈ L(Λ)γ,

cg,vcf,vΛ
= q2[(Λ,γ)−(µ,η)]cf,vΛ

cg,v + q2(Λ,γ)
∑
ν∈Q+

aνcfν ,vΛ
cgν ,v

Define Aλ,µ = {cf,v | f ∈ M∗
λ , v ∈ Mµ, M ∈ C}. It is easily verified that this defines a

P×P grading on Cq[G]. Denote by R(Cq[G]) the set of one dimensional representations
of Cq[G] with the usual group structure. Let H be the maximal torus of G with Lie
algebra h. For each h ∈ H define χh ∈ R(Cq[G]) by

∀cf,v ∈ Aλ,µ, χh(cf,v) = µ(h)ε(cf,v).

The map h 7→ χh is easily seen to be an injective group homomorphism. The usual
map r : R(Cq[G]) → AutCq[G] corresponding to right translation, rχ(c) =

∑
c(1)χ(c(2)),

induces an action of H on Cq[G] given by

∀cf,v ∈ Aλ,µ, h ∈ H, h.cf,v = µ(h)cf,v.

For each y ∈ W define

I+
y = 〈cf,vΛ

| f ∈ (Uq(b
+)L(Λ)yΛ)⊥〉, I−y = 〈cf,vw0Λ

| f ∈ (Uq(b
−)L(Λ)yw0Λ)⊥〉 = σ(Î+

y ).

For w = (w+, w−) ∈ W ×W set Iw = I+
w+

+ I−w− . For a given w we denote by cwΛ and c̃wΛ

the images of cf−w+Λ,vΛ
and cvw−Λ,f−Λ

respectively in Cq[G]/Iw. It follows from Lemma

2.1 that cg,vcwΛ ∈ QcwΛcg,v and cg,v c̃wΛ ∈ Qc̃wΛcg,v modulo I+
w+

and I−w− respectively.
Therefore the sets Ew+ = {αcwΛ | α ∈ C∗}, Ew− = {αc̃wΛ | α ∈ C∗} and Ew = Ew+Ew−
are multiplicatively closed sets of normal elements. Thus Ew is an Ore set in Cq[G]/Iw.
Define

Aw = (Cq[G]/Iw)Ew .

Notice that the map σ extends to an isomorphism σ : Âŵ → Aw where ŵ = (w−, w+).

Theorem 2.2. For all w ∈ W ×W , Aw 6= 0.

Proof. The proof is as in [2, 2.4]. �

The following lemma is well known.

Lemma 2.3. Let wΛ ∈ W for all Λ ∈ P+. Then the following are equivalent:
a) ∀Λ,Λ′ ∈ P+, (wΛΛ, wΛ′Λ

′) = (Λ,Λ′);
b) There exists a unique w ∈ W such that wΛ = wΛΛ for all Λ ∈ P+.

The proof of the following result was found independently by the authors in [3, 1.2] and
Joseph in [4, 6.2].

Theorem 2.4. Let P ∈ SpecCq[G]. There exists a unique w ∈ W ×W such that P ⊃ Iw
and (P/Iw) ∩ Ew = ∅.
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Proof. Fix a dominant weight Λ. Define an ordering on the weight vectors of L(Λ)∗ by
f ≤ f ′ if f ′ ∈ Uq(b+)f . This is a preordering which induces a partial ordering on the set
of one dimensional weight spaces. Consider the set:

D(Λ) = {f ∈ L(Λ)∗µ | cf,vΛ
6∈ P}.

Let f be an element of D(Λ) which is maximal for the above ordering. Suppose that f ′

has the same property and that f and f ′ have weights µ and µ′ respectively. By Lemma
2.1 the two elements cf,vΛ

and cf ′,vΛ
are normal modulo P. Therefore we have, modulo P,

cf,vΛ
cf ′,vΛ

= (q2)(Λ,Λ)−(µ,µ′)cf ′,vΛ
cf,vΛ

= (q4)(Λ,Λ)−(µ′,µ)cf,vΛ
cf ′,vΛ

.

Since P is prime and q is not a root of unity we can deduce that (Λ,Λ) = (µ, µ′). This
forces µ = µ′ ∈ W (−Λ). In conclusion, we have shown that for all dominant Λ there
exists a unique (up to scalar multiplication) maximal element gΛ ∈ D(Λ) with weight
−wΛΛ, wΛ ∈ W . Applying the argument above to a pair of such elements, cgΛ,vΛ

and
cgΛ′ ,vΛ′

yields that (wΛΛ, wΛ′Λ
′) = (Λ,Λ′). Lemma 2.3 then furnishes a unique element

w+ ∈ W such that w+Λ = wΛΛ for all Λ ∈ P+ . Thus for each Λ ∈ P+,

cg,vΛ
∈ P ⇔ g 6≤ f−w+Λ.

Hence P ⊇ I+
w+

and P ∩ Ew+ = ∅. It is easily checked that such a w+ must be unique.
Using σ one deduces the existence and uniqueness of w−. �

A prime ideal P such that P ⊃ Iw and (P/Iw) ∩ Ew = ∅ will be called a prime ideal
of type w. Denote by SpecwCq[G] the subset of SpecCq[G] consisting of prime ideals of
type w. Clearly Specw Cq[G] ∼= SpecAw and σ(Specŵ Cq−1 [G]) = Specw Cq[G].

Corollary 2.5. SpecCq[G] =
⊔
w∈W×W SpecwCq[G].

Henceforth we fix w and work inside Aw. For each Λ ∈ P+, set dΛ = (c̃wΛcwΛ)−1 and
tΛ = c̃wΛ(cwΛ)−1. For f ∈ L(Λ)∗ and v ∈ L(Λ) set

z+
f = c−1

wΛ(cf,vΛ
) z−v = c̃−1

wΛ(cv,f−Λ
)

Since the generators of Iw and the elements of Ew are eigenvectors for H, the action of
H extends to an action on Aw. Let Γ = {h ∈ H | h2 = 1} and let Bw = AΓ

w. Let Cw be
the subalgebra generated by the elements of the form z+

f , z
−
v , t

±1
Λ . Then it is clear that

Cw ⊂ Bw. It is not difficult to show (e.g. using Lemma 3.4 below and its R−q analog)

that the subalgebra generated by the q-commuting elements t±1
Λ , Λ ∈ P+, is equal to

C[t±1
$i
| 1 ≤ i ≤ n]. If λ =

∑n
i=1 mi$i is an element of P we set tλ =

∏n
i=1 t

mi
$i

, so that

C[t±1
Λ | Λ ∈ P+] = C[tλ | λ ∈ P].

Theorem 2.6. 1. CH
w = C[z+

f , z
−
v | f ∈ L(Λ)∗, v ∈ L(Λ), Λ ∈ P+].

2. The set D = {dΛ | Λ ∈ P+} is an Ore subset of CH
w and Cw. Furthermore

Bw = (Cw)D and AHw = BH
w = (CH

w )D.
3. The set {tλ | λ ∈ P} forms a basis for Cw as a left or right CH

w -module and for Bw

as a left or right BH
w -module.

Proof. Notice that for all h ∈ H, h.tΛ = Λ(h−2)tΛ and h.z±v = z±v . This proves part 1 and
the first assertion of part 3. Let {v1, . . . , vs; f1, . . . , fs} be a dual basis for L(Λ). Then

1 = ε(cf−Λ,vΛ
) =

∑
i

S(cf−Λ,vi)cfi,vΛ
=
∑
i

cvi,f−Λ
cfi,vΛ

.
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Multiplying both sides of the equation by dΛ and using the normality of cwΛ and c̃wΛ yields
dΛ =

∑
i aiz

−
vi
z+
fi

for some ai ∈ C. Thus D ⊂ CH
w and hence Cw contains all elements

of the form c−1
wΛ1

c̃−1
wΛ2

where Λ1 − Λ2 ∈ 2P. Now it follows from [10, 3.1] that Aw is
spanned by elements of the form cf,v1cv,f2dΛ where v1 = vΛ1 , f2 = fΛ2 and Λ1,Λ2,Λ ∈ P+.
So Bw is spanned by elements of the form cf,v1cv,f2dΛ where Λ1 − Λ2 ∈ 2P. If further
Λ− Λ1 − Λ2 ∈ P+, then, up to a scalar, cf,v1cv,f2dΛ = z+

f z
−
v c
−1
wΛ2

c̃−1
wΛ1

dΛ−Λ1−Λ2 ∈ Cw. It is
then clear that Bw = (Cw)D. The remaining assertions then follow easily. �

3. The Adjoint Action

We now consider the adjoint action of Cq[G] on Aw. Notice that Bw and BH
w are

ad-submodules of Aw.

Proposition 3.1. Let g ∈ L(Λ′)∗−η, v ∈ L(Λ′)γ, f ∈ L(Λ)∗−µ. Then

ad cg,v.z
+
f = ε(cg,v)q

2(w+Λ−µ,η)z+
f +

∑
ν

q2(w+Λ,η)ε(cgν ,v)aνz
+
fν

where aν ∈ C, fν ∈ (Uq(b
+)f)−µ+ν and gν ∈ (Uq(b

−)g)−η−ν.

Proof. Let {v1, . . . , vs; f1, . . . , fs} be a dual basis for L(Λ′) and suppose that vi ∈ L(Λ)γi .
It follows from Lemma 2.1 that

ad cg,v.z
+
f =

∑
i

cg,vic
−1
wΛcf,vΛ

S(cfi,v) =
∑
i

q−2[(Λ,γi)−(w+Λ,η)]c−1
wΛcg,vicf,vΛ

S(cfi,v)

=
∑
i

q−2[(Λ,γi)−(w+Λ,η)]c−1
wΛ

(
q2[(Λ,γi)−(µ,η)]cf,vΛ

cg,vi + q2(Λ,γi)
∑
ν

aνcfν ,vΛ
cgν ,vi

)
S(cfi,v)

= q(w+Λ,η)c−1
wΛ

(
q−2(µ,η)cf,vΛ

∑
i

cg,viS(cfi,v) +
∑
ν

aνcfν ,vΛ

∑
i

cgν ,viS(cfi,v)

)
= ε(cg,v)q

2(w+Λ−µ,η)z+
f +

∑
ν

q2(w+Λ,η)ε(cgν ,v)aνz
+
fν

�

Set C+
w = C[z+

f | f ∈ L(Λ)∗, Λ ∈ P+] and C−w = C[z−v | v ∈ L(Λ), Λ ∈ P+]. Set

J+ = I(w0,e) and J− = I(e,w0). Recall that I+
w0

= (0), so that J+ is the ideal generated by
the elements of the form cf,vw0µ

where µ ∈ P+, f ∈ L(µ)∗η, η 6= −w0µ. Similarly J− is the
ideal generated by the cf,vΛ

,Λ ∈ P+, f ∈ L(Λ)∗γ, γ 6= −Λ.

Corollary 3.2. CH
w is a locally finite ad-Cq[G] module. Furthermore, AnnadC

±
w ⊃ J±.

Proof. This follows from Proposition 3.1 together with a similar result for C−w . �

Set Cq[B
±] = Cq[G]/J∓ and define C[B+/N+] to be the subalgebra of Cq[B

+] generated
by the images of the elements cΛ := cf−Λ,vΛ

, Λ ∈ P+.

Theorem 3.3. 1. Cq[G]/Ie ∼= C[H].
2. All finite dimensional Cq[G]-modules are one dimensional and are annihilated by Ie.
3. The map χ : H 7→ R(Cq[G]) is an isomorphism of groups.
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Proof. For each c ∈ Cq[G] define ϕc : H → C by ϕc(h) = χh(c). It is easily verified that ϕ
defines an algebra map from Cq[G] to C[H] and that kerϕ ⊃ Ie. From [10, 3.1] it follows
that the kernel is exactly Ie.

Let P be the annihilator of a simple finite dimensional Cq[G]-module. Suppose that
P is of type w. Then Cq[G]/P is a homomorphic image of Aw. Notice from the proof
of 2.4, that z+

g 6= 0 in Cq[G]/P if g ≤ f−w+Λ. By Proposition 3.1 the adjoint action
of C[B+/N+] on such elements is diagonalisable. Moreover, unless w+ = e, there are
infinitely many distinct weight vectors of this form, contradicting the fact that Cq[G]/P
is finite dimensional. Thus w+ = e. Using σ one deduces that w− = e also. The remaining
assertions are then clear. �

As already explained in the introduction, the key to the main theorem is to understand
the adjoint action of Cq[G] on C+

w . To do this we use the “self-duality of Uq(b
+)”. Since

Uq(b
+) is not exactly self-dual we are obliged to work with the “simply-connected” version

of Uq(g). What follows is a distillation of results in [4]. Define Ǔq(g) to be the algebra
generated by X±i , i = 1, . . . n and τ(λ), λ ∈ P subject to the relations:

∀λ, µ ∈ P, τ(λ)τ(µ) = τ(λ+ µ), τ(λ)X±i = q±(λ,αi)X±i τ(λ)

[X+
i , X

−
j ] = δij

τ(αi)
2 − τ(αi)

−2

q2di − q−2di

and the usual Serre relations for the X±i described in the introduction. Setting Ki = τ(αi)
then identifies Uq(g) with a subalgebra of Ǔq(g). The Hopf algebra structure can be
extended to Ǔq(g) by defining

∆(τ(λ)) = λ⊗ λ, ε(τ(λ)) = 1, S(τ(λ)) = τ(−λ).

Set Ǔq(b
±) = C[X±i , τ(λ) | i = 1, . . . , n, λ ∈ P]. The action of Uq(g) on the category C

described in the introduction extends to an action of Ǔq(g). Moreover Cq[G] may equally
well be considered as the restricted dual of Ǔq(g) with respect to C. See [5] for further
details.

Let R+
q =

⊕
Λ∈P+ L(Λ)∗ considered as an algebra via the multiplication maps defined

by L(Λ1)∗⊗L(Λ2)∗ → L(Λ1 +Λ2)∗. These maps are obtained as follows. Recall that there
is an embedding of Ǔq(g)-modules L(Λ1 + Λ2)→ L(Λ2)⊗ L(Λ1), mapping vy(Λ1+Λ2) onto

vyΛ2 ⊗ vyΛ1 for all y ∈ W . Recall also that we have a canonical isomorphism of left Ǔq(g)-
modules (L(Λ2)⊗ L(Λ1))∗ ∼= L(Λ1)∗⊗L(Λ2)∗, such that (f1⊗ f2)(v2⊗ v1) = f1(v1)f2(v2)
when fi ∈ L(Λi)

∗, vi ∈ L(Λi) for i = 1, 2. The multiplication in R+
q is deduced from these

two maps of left Ǔq(g)-modules. It is then easily seen that R+
q is a P-graded Ǔq(g)-module

algebra and that if x =
∑
x(2) ⊗ x(1) ∈ L(Λ1 + Λ2) ⊂ L(Λ2)⊗ L(Λ1), we have

(1) ∀u ∈ Ǔq(g), (f1f2)(ux) = f1(u(2)x(1))f2(u(1)x(2)).

The proofs of the next three results are taken from [4].

Lemma 3.4. The map ψ : R+
q → Cq[G] given by ψ(f) = cf,vΛ

for all f ∈ L(Λ)∗, is an
injective anti-algebra map with image A+.

Proof. In Cq[G] we have cf2,vΛ2
cf1,vΛ1

= cf2⊗f1,vΛ2
⊗vΛ1

= ψ(f1f2), since f1f2 is the image of
f2⊗f1 by the multiplication map previously described. The other assertions are clear. �
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For each y ∈ W , define F (yΛ) = Ǔq(b
+)vyΛ and set

Qy =
⊕

Λ∈P+

F (yΛ)⊥.

Proposition 3.5. Qy is a graded Ǔq(b
+)-invariant two-sided ideal of R+

q . Furthermore
1. Soc Ǔq(b+)R

+
q /Qy =

⊕
Λ∈P+ Cf−yΛ.

2. The set F = {af−yΛ | a ∈ C∗, Λ ∈ P+} is a multiplicatively closed Ǔq(b
+)-invariant

set of homogeneous regular normal elements of R+
q /Qy.

Proof. It is clear that Qy is Ǔq(b
+)-invariant. Let f ∈ F (yΛ)⊥, g ∈ L(Λ′)∗. Then if

u ∈ Ǔq(b
+), we have by (1): fg(uvy(Λ+Λ′)) = f(u(2)vyΛ)g(u(1)vyΛ′) = 0. Thus fg ∈

F (y(Λ + Λ′))⊥. Hence Qy is a right ideal. A similar argument shows that Qy is a left
ideal.

It is easily seen that Soc Ǔq(b+)R
+
q /Qy ⊃

⊕
Λ∈P+ Cf−yΛ. To check the converse no-

tice that the natural map: L(Λ)∗/F (yΛ)⊥ → F (yΛ)∗ is an isomorphism of Ǔq(b
+)-

modules. Furthermore, F (yΛ) = CvyΛ ⊕
∑

iX
+
i F (yΛ). Now all finite dimensional sim-

ple Ǔq(b
+)-modules are one dimensional and are annihilated by all the X+

i . Thus if
f ∈ Soc Ǔq(b+)F (yΛ)∗, then X+

i f = 0 for all i. Hence f(
∑
X+
i F (yΛ)) = 0. Therefore

Soc Ǔq(b+)F (yΛ)∗ = Cf−yΛ.

Notice that ψ(Qy) ⊂ imψ is the ideal generated by the cf,vΛ
, f ∈ F (yΛ)⊥. By Lemma

2.1, ψ(f−yΛ) ∈ imψ is normal modulo ψ(Qy). Thus f−yΛ is normal modulo Qy.
Suppose that g ∈ L(Λ′)∗ is such that gf−yΛ ∈ Qy. From the above there exists a

χ ∈ R(Ǔq(b
+)) such that uf−yΛ = χ(u)f−yΛ for all u ∈ Ǔq(b+). Then we obtain from (1)

0 = gf−yΛ(S(u)vy(Λ′+Λ)) = g(S(u(1))vyΛ′)f−yΛ(S(u(2))vyΛ)

= g(χ(u(2))S(u(1))vyΛ′)f−yΛ(vyΛ) = g(S(rχ(u))vyΛ′)

Hence g ∈ Qy. This proves the regularity of f−yΛ. �

Theorem 3.6. The localization (R+
q /Qy)F is a P-graded Ǔq(b

+)-module algebra. The
zero-th degree part Ty = ((R+

q /Qy)F)0 is a submodule algebra and Soc Ǔq(b+)Ty = C.

Proof. The first comment about localizations is a consequence of a general result con-
cerning localizations of module algebras. The action is defined in the following way. Let
f ∈ F such that uf = χf (u)f and let lf be the automorphism lf (u) = χf (u(1))u(2). Then
for any x ∈ R+

q /Qy, the action is given by u(f−1x) = f−1(l−1
f (u)x). It is then clear

that (R+
q /Qy)F is a P-graded Ǔq(b

+)-algebra and that Ty is a submodule algebra. It also

follows immediately that Soc Ǔq(b+)(R
+
q /Qy)F = F−1(Soc Ǔq(b+)R

+
q /Qy). Hence

Soc Ǔq(b+)Ty = [F−1(Soc Ǔq(b+)R
+
q /Qy)]0 = C.

�

We shall apply these results to the element y = w+.

We aim to show that Soc adC
+
w , the socle under the adjoint action, reduces to C.

Following an idea of [4], we shall deduce this result from a suitable anti-isomorphism
between a subalgebra of Ǔq(b

−), denoted by Uq(c
+), and Cq[B

−]. Our approach to this fact
differs from [4]. We shall obtain it as a consequence of the existence of a nondegenerate
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pairing between Ǔq(b
+) and Ǔq(b

−), studied in [9, 11]. The properties of this pairing
enables us to relate the adjoint actions of Uq(c

+) and Cq[B
−], see Proposition 3.11. For

convenience we follow the presentation given in [11]. The following theorem summarizes
the results from [11, section 2] that we need. Recall that if Ǔ0 = C[τ(λ) | λ ∈ P], there
are triangular decompositions

Ǔq(b
±) = Ǔ0V ±, Ǔq(g) = Ǔq(b

−)⊕ Ǔq(g)V +
+ .

Theorem 3.7. 1. There exists a unique nondegenerate bilinear form

( / ) : Ǔq(b
+)× Ǔq(b−) −→ C

satisfying the following properties:
(i) (u+/u−1 u

−
2 ) = (∆(u+)/u−1 ⊗ u−2 ), (u+

1 u
+
2 /u

−) = (u+
2 ⊗ u+

1 /∆(u−)) for all u±, u±i ∈
Ǔq(b

±), i = 1, 2 ;
(ii) ∀λ, µ ∈ P, (τ(λ)/τ(µ)) = q−(λ,µ)/2 ;
(iii) ∀λ ∈ P, ∀i ∈ {1, . . . , n}, (τ(λ)/Fi) = (Ei/τ(λ)) = 0 ;
(iv) ∀i, j ∈ {1, . . . , n}, (Ei/Fj) = −δij q̂−1

i .
2. For all u± ∈ Ǔq(b±), a± ∈ V ±, λ, µ ∈ P we have

(S(u+)/S(u−)) = (u+/u−), (a+τ(λ)/a−τ(µ)) = q−(λ,µ)/2(a+/a−).

3. (V +
γ /V

−
−η) = 0 for any γ 6= η ∈ Q+, where V ±±η denotes the space of elements of

weight ±η under the adjoint action of Ǔ0.
4. For all x ∈ Ǔq(b+), y ∈ Ǔq(b−) one has

xy =
∑

(x(1)/y(1))(x(3)/S(y(3)))y(2)x(2)

where as usual (I ⊗∆)∆(x) =
∑
x(1) ⊗ x(2) ⊗ x(3).

We denote by Uq(c
+) the following Hopf subalgebra of Ǔq(b

−) :

Uq(c
+) = C[Ei, τ(2λ) | 1 ≤ i ≤ n, λ ∈ P].

The embedding Ǔq(b
−) → Ǔq(g) yields a Hopf algebra map φ : Cq[G] → Ǔq(b

−)
◦

where

Ǔq(b
−)
◦

denotes the cofinite dual. On the other hand the bilinear form ( / ) yields an

injective map θ : Ǔq(b
+)→ Ǔq(b

−)
∗
.

Theorem 3.8. 1. kerφ = J+.
2. φ(Cq[G]) = θ(Uq(c

+)).
3. The map β = φ−1θ : Uq(c

+) → Cq[B
−] is an isomorphism of coalgebras and an

anti-isomorphism of algebras.
4. Let f ∈ L(Λ)∗−λ. There exists a unique xλ ∈ V +

Λ−λ such that β(xλτ(−2Λ)) =
φ(cf,vΛ

) ∈ Cq[B
−]. In particular β(τ(−2Λ)) = φ(cΛ).

Proof. Assertion 1 is proved in [4, 3.10]. For completeness we give a proof using our
notation. Notice that A± = {c ∈ Cq[G] | c(Ǔq(g)V ±) = 0}. and recall that Cq[G] =
A+A−. It is clear that J+ ⊂ kerφ, φ(Cq[G]) = φ(Cq[G]/J+) = φ(A+[cf−w0µ,vw0µ

, µ ∈ P+]).

Futhermore Ǔq(b
−)
∗

can be identified with {ϕ ∈ Ǔq(g)
∗ | ϕ(Ǔq(g)V +

+ ) = 0}. It follows
that φ is injective on A+. Fix a dual basis {vγ, f−γ} of L(µ). Then∑

γ

cvγ ,f−µcf−γ ,vµ =
∑
γ

S(cf−µ,vγ )cf−γ ,vµ = ε(cf−µ,vµ) = 1.
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Thus c̃µcµ = 1 modulo J+. Therefore φ(Cq[G]) = A+[φ(c−1
µ ) | µ ∈ P+] and the claim

follows easily.
We now prove part 4. The other parts will then follow from 1 and Theorem 3.7. Let

f ∈ L(Λ)∗−λ and set c = φ(cf,vΛ
). Notice first that c(V −−η) = 0 unless η = Λ − λ. Denote

still by c the induced element on V −λ−Λ. By Theorem 3.7 there exists a unique xλ ∈ V +
Λ−λ

such that c = θ(xλ). Let ν ∈ P, u ∈ V −; observe that θ(xλτ(−2Λ))(uτ(ν)) = 0 unless
u ∈ V −λ−Λ and that in this case we have

c(uτ(ν)) = f(uτ(ν)vΛ) = q(Λ,ν)c(u) = q(Λ,ν)θ(xλ)(u) = θ(xλτ(−2Λ))(uτ(ν)).

Thus c = θ(xλτ(−2Λ)). The above calculation also shows that φ(cΛ) = θ(τ(−2Λ)). Hence
the result. �

Under the hypothesis in 4 of Theorem 3.8 we shall now simply write β(xλτ(−2Λ)) =
cf,vΛ

∈ Cq[B
−]. We then have cf,vΛ

= cΛβ(xλ), xλ ∈ V +
Λ−λ.

Since Iw ⊂ I+
w+

+ J+ = I+
w+

+ I−e , we have a surjective map

(Cq[G]/Iw)Ew+
−→ (Cq[G]/(J+ + I+

w+
))Ew+

= (Cq[B
−]/(J+ ∩ I+

w+
))Ew+

.

We denote by C̄+
w the image of C+

w under this map. We continue to denote by z+
f the

image of z+
f ∈ C+

w . This will be justified by the proof of Theorem 3.12 below.

Lemma 3.9. Let f ∈ L(Λ)∗−λ. Set cf,vΛ
= β(xλτ(−2Λ)), xλ ∈ V +

Λ−λ. Then in Cq[B
−] we

have, for all i ∈ {1, . . . , n}

cEif,vΛ
= cΛβ(adEi.xλ + q−(2αi,λ)qi,ΛxλEi)

where qi,Λ = q(2αi,Λ) − q−(2αi,Λ).

Proof. An easy computation yields

(adEi.xλ + q−(2αi,λ)qi,ΛxλEi)τ(−2Λ) = Eixλτ(−2Λ) + q−(2αi,Λ)K2
i xλτ(−2Λ)S(Ei).

Therefore for all y ∈ Ǔq(b−) we have

cΛβ(adEi.xλ + q−(2αi,λ)qi,ΛxλS(Ei))(y) = (Eixλτ(−2Λ) + q−(2αi,Λ)K2
i xλτ(−2Λ)S(Ei)/y).

But by 1 of Theorem 3.7 this is also

(1/y(1))(xλτ(−2Λ)/y(2))(Ei/y(3)) + q−(2αi,Λ)(S(Ei)/y(1))(xλτ(−2Λ)/y(2))(τ(2αi)/y(3)).

By 4 of Theorem 3.7 we know that S(Ei)y is equal to

(1/y(1))(Ei/y(3))y(2)+(1/y(1))(τ(2αi)/y(3))y(2)S(Ei)+(S(Ei)/y(1))(τ(2αi)/y(3))y(2)τ(−2αi).

The result then follows from the above and the following facts: cEif,vΛ
(y) = cf,vΛ

(S(Ei)y),
f(y(2)vΛ) = cf,vΛ

(y(2)) = (xλτ(−2Λ)/y(2)), S(Ei)vΛ = 0, τ(−2αi)vΛ = q−(2αi,Λ)vΛ. �

Recall that z+
f = (cwΛ)−1cf,vΛ

. Write cwΛ = β(xw+Λτ(−2Λ))), with xw+Λ ∈ V +
Λ−w+Λ.

Then

β(xw+Λ)−1 ∈ (Cq[B
−]/J+ ∩ I+

w+
)Ew+

and we may write c−1
wΛ = β(xw+Λ)−1cΛ

−1.
From Lemma 3.9 one deduces the following result.
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Corollary 3.10. Under the notation of Lemma 3.9 we have

z+
Eif

= β(xw+Λ)−1β(adEi.xλ + q−(2αi,λ)qi,ΛxλEi).

The next result computes the adjoint action of Cq[B
−] on C̄+

w .

Proposition 3.11. 1. ∀u, x ∈ Uq(c+), ad β(S(u)).β(x) = β(ad u.x).
2. ∀i ∈ {1, . . . , n}, ad β(S(Ei)).z

+
f = z+

Eif
.

3. ∀ν ∈ P, ad β(S(τ(ν))).z+
f = q(ν,w+Λ−λ)z+

f , if f ∈ L(Λ)∗−λ.

Proof. 1. Recall that β is an anti-homomorphism of algebras and an homomorphism of
coalgebras. Futhermore by 2 of Theorem 3.7, S∗(β(a)) = β(S−1(a)) if S∗ denotes the
antipode in Cq[B

−] and a ∈ Ǔq(b+). Hence we have

ad β(S(u)).β(x) = β(S(u(2)))β(x)S∗(β(S(u(1)))) = β(u(1)xS(u(2))) = β(ad u.x).

This proves part 1.
Let f ∈ L(Λ)∗−λ and set cf,vλ = β(xλτ(−2Λ)), xλ ∈ V +

Λ−λ, cwΛ = β(τ(−2Λ))β(xw+Λ)
as above. It follows from 1 and the properties of the adjoint action that for all ν ∈ P,
ad β(S(τ(ν))).β(xλ) = q(ν,Λ−λ)β(xλ) and

(2) ad β(S(Ei)).z
+
f = ad β(S(Ei)).[β(xw+Λ)−1β(xλ)]

= β(xw+Λ)−1[ad β(S(Ei)).β(xλ)] + q(2αi,Λ−λ)[ad β(S(Ei)).β(xw+Λ)−1]β(xλ).

2. Since cEif−w+Λ,vΛ
= 0 modulo I+

w+
, we obtain from Lemma 3.9 that β(adEi.xw+Λ) =

−q−(2αi,w+Λ)qi,Λβ(xw+ΛEi). From ad β(S(Ei)).1 = 0 = ad β(S(Ei)).[β(xw+Λ)−1β(xw+Λ)]
we deduce that

ad β(S(Ei)).β(xw+Λ)−1 = q−(2αi,Λ)qi,Λβ(xw+Λ)−1β(Ei).

Therefore we obtain from (2) that

ad β(S(Ei)).z
+
f = β(xw+Λ)−1β(adEi.xλ + q−(2αi,λ)qi,ΛxλEi).

Hence the result by Corollary 3.10.
3. Using 1, we obtain

ad β(S(τ(ν)).z+
f = [ad β(S(τ(ν)).c−1

wΛ][ad β(S(τ(ν)).cf,vΛ
] = q(ν,Λ−λ+w+Λ−Λ)z+

f ,

hence the result. �

We can now prove the main theorem of this section (cf. [4, Proposition 7.5]).

Theorem 3.12. The anti-algebra map ψ : R+
q → Cq[G] extends to an anti-isomorphism

of algebras ψ : Tw+ → C+
w such that

∀t ∈ Tw+ , ∀u ∈ Uq(c+), ψ(ut) = ad β(S(u)).ψ(t).

Hence in particular, Soc adC
+
w = C.

Proof. We already noticed that ψ(Qw+) ⊂ I+
w+
, ψ(f−w+Λ) = cwΛ. Therefore we can extend

ψ to a surjective anti-algebra map

ψ : Tw+ −→ C+
w , ψ(f(f−w+Λ)−1) = z+

f = c−1
wΛcf,vΛ

.

As seen in Theorem 3.6, Tw+ is a Ǔq(b
+)-module algebra and we have Soc Uq(c+)Tw+ =

Soc Ǔq(b+)Tw+ = C. We can compose the map ψ with the projection C+
w → C̄+

w to obtain
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a surjective anti-algebra map, ψ̄ : Tw+ → C̄+
w , mapping f(f−w+Λ)−1 onto z+

f ∈ C̄+
w . Now

observe that for all f ∈ L(Λ)∗−λ we have in Tw+ ,

Ei(f(f−w+Λ)−1) = (Eif)(f−w+Λ)−1 + (K2
i f)(Ei(f−w+Λ)−1) = (Eif)(f−w+Λ)−1

and

τ(ν)(f(f−w+Λ)−1) = (τ(ν)f)(τ(ν)(f−w+Λ)−1) = q(ν,w+Λ−λ)(f(f−w+Λ)−1) for all ν ∈ P.

Notice that C̄+
w is a Uq(c

+)-module algebra by a.z = ad β(S(a)).z for all a ∈ Uq(c+) and
z ∈ C̄+

w . From Proposition 3.11 it follows that ψ̄ is a Uq(c
+)-module map. Hence ker ψ̄ is

a Uq(c
+)-submodule. Since ψ̄(1) = 1 and Soc Uq(c+)Tw+ = C, we have ker ψ̄ = 0. Therefore

both ψ and ψ̄ are isomorphisms of Uq(c
+)-modules. This proves the theorem. �

4. The main theorem

In this section we shall prove that SpecwCq[G] is an H-orbit. We first begin with a
consequence of Theorem 3.12.

Theorem 4.1. The socle of CH
w considered as a Cq[G]-module via the adjoint action is

C.

Proof. By Theorem 3.12 we have that Soc adC
+
w = C. Now the map σ : Cq−1 [G]→ Cq[G]

induces a map σ : Ĉ+
ŵ → C−w such that σ(ad ĉ.d) = ad σ(ĉ).σ(d). Hence it follows

immediately that Soc adC
−
w = C also. Since the map C+

w⊗C−w → C+
wC

−
w = CH

w is a module
map, it suffices to show that Soc ad (C+

w ⊗ C−w ) = C. Recall that C−w is a module over
Cq[B

+] and is diagonalisable as a module over the subalgebra C[B+/N+]. An element
of C+

w ⊗ C−w can therefore be written in the form
∑
ai ⊗ bi where the bi are linearly

independent Cq[B
+/N+]-weight vectors. Suppose that

∑
ai ⊗ bi ∈ Soc ad (C+

w ⊗C−w ) and
let cf,vΛ

be a generator of J− = I+
e . Then

cf,vΛ
(
∑
i

ai ⊗ bi) =
∑
i,j

cf,vj(ai)⊗ cfj ,vΛ
(bi) =

∑
i

cf,vΛ
(ai)⊗ cf−Λ,vΛ

(bi)

=
∑
i

cf,vΛ
(ai)⊗ αibi

for some αi ∈ C∗. Thus cf,vΛ
(ai) = 0 for all i. Now modulo J+ = I−e it is easily seen that

the left ideal generated by the elements cf,vΛ
is two-sided. Since AnnadC

+
w ⊃ J+, each ai is

annihilated by Ie. It follows that ai ∈ Soc adC+
w = C. Thus

∑
ai⊗ bi ∈ Soc ad (C⊗C−w ) =

C⊗ C. �

Proposition 4.2. Let c ∈ Aγ,µ. Then, if λ ∈ P, we have ad c.tλ = ε(c)q2((w+−w−)λ,µ)tλ.

Proof. This follows easily from Lemma 2.1. �

Denote by Ψ : P→ P the map given by Ψ(λ) = (w+ − w−)λ.

Corollary 4.3. The algebra of ad-invariant elements of Cw is given by

Cad
w = C[tλ | λ ∈ ker Ψ].

Proof. This is consequence of Theorems 2.6, 4.1 and the proposition above. �
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Recall the following notation from [2, Appendix A]: for each w = (w+, w−) ∈ W ×W
we set s(w) = codimh∗ ker(w+w

−1
− − I). Denote by Prim Cq[G] the primitive spectrum of

Cq[G] and set Primw Cq[G] = Prim Cq[G] ∩ Specw Cq[G]. We are now able to deduce
Joseph’s theorem [4, Theorem 9.2].

Theorem 4.4. 1. Prim Cq[G] ∼=
⊔
w∈W×W PrimwCq[G].

2. For each w ∈ W ×W , PrimwCq[G] is a non-empty H-orbit. If P ∈ PrimwCq[G],
then H/StabHP is a torus of rank equal to rank G− s(w).

Proof. Part 1 is an immediate consequence of Corollary 2.5. Fiw w ∈ W ×W and let
P be a primitive ideal of type w. Then PAw is a primitive ideal of Aw. Let K be a
subgroup of P such that P = ker Ψ ⊕ K. Set Cẇ = CH

w [tλ | λ ∈ K]. Then clearly
Cw ∼= Cẇ ⊗ Cad

w as Cq[G]-module algebras. Notice that the socle of Cẇ is
⊕

λ∈K Ctλ.
Therefore any ad-invariant subspace of Cẇ contains some tλ and hence Cẇ contains no
nontrivial ad-invariant ideals. If I is a maximal ideal of Cad

w , then Cw/ICw ∼= Cẇ as
Cq[G]-module algebras. Thus ICw is a maximal ad-invariant ideal of Cw. Similarly IBw

is a maximal ad-invariant ideal of Bw.
Since Cad

w is contained in the center of Aw, it follows from the nullstellensatz [8, 9.1.7]
that I = PAw∩Cad

w is a maximal ideal of Cad
w . Thus PAw∩Bw = IBw. Let Q be another

such primitive ideal of type w. Then QAw ∩Bw = JBw for some maximal ideal J of Cad
w .

It is clear from the action of H on the tλ that there exists an h ∈ H such that I = Jh.
This implies that QhAw ∩ Bw = PAw ∩ Bw. Since Bw = AΓ

w, there must exist a g ∈ Γ
such that PAw = (QhAw)g = QhgAw. Hence Qhg = P . Thus the primitive ideals of type
w form an H-orbit.

Since the action of H is algebraic and Γ is finite, H/StabHP must be a torus of the
same dimension as H/StabHI = dimCad

w = dimH − s(w). �
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quantiques, Ann. Sci. Ec. Norm. Sup., 23 (1990), 445-467.
[10] Ya. S. Soibelman, The algebra of functions on a compact quantum group, and its representations,

Leningrad Math. J. 2 (1991), 161-178.
[11] T. Tanisaki, Killing forms, Harish-Chandra isomorphisms, and universal R-Matrices for Quantum

Algebras, preprint (1990).

University of Cincinnati, Cincinnati, OH 45221-0025, U.S.A.
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