ALGEBRAIC STRUCTURE OF MULTI-PARAMETER QUANTUM GROUPS
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Introduction

Let G be a connected semi-simple complex Lie group. We define and study the multi-parameter
quantum group C, ,[G] in the case where ¢ is a complex parameter that is not a root of unity. Using
a method of twisting bigraded Hopf algebras by a cocycle, [2], we develop a unified approach to the
construction of C,,[G] and of the multi-parameter Drinfeld double D, ,. Using a general method of
deforming bigraded pairs of Hopf algebras, we construct a Hopf pairing between these algebras from which
we deduce a Peter-Weyl-type theorem for C, ,[G]. We then describe the prime and primitive spectra of
Cy,p|G], generalizing a result of Joseph. In the one-parameter case this description was conjectured, and
established in the SL(n)-case, by the first and second authors in [15, 16]. It was proved in the general case
by Joseph in [18, 19]. In particular the orbits in Prim C, ,[G] under the natural action of the maximal
torus H are indexed, as in the one-parameter case by the elements of the double Weyl group W x W.
Unlike the one-parameter case there is not in general a bijection between Symp G and Prim C, ,[G].
However in the case when the symplectic leaves are algebraic such a bijection does exist since the orbits
corresponding to a given w € W x W have the same dimension.

In the first section we discuss the Poisson structures on G defined by classical r-matrices of the form
r = a —u where a = ZaeR+ ea Ne_q € N%g and u € A%h. Given such an r one constructs a Manin
triple of Lie groups (G x G,G,G,.). Unlike the one-parameter case (where u = 0), the dual group G,
will generally not be an algebraic subgroup of G x G. In fact this happens if and only if u € A%hq.
Since the quantized universal enveloping algebra U,(g) is a deformation of the algebra of functions on
the algebraic group G, [11], this explains the difficulty in constructing multi-parameter versions of U, (g).
From [22, 30], one has that the symplectic leaves are the connected components of G N G,xG, where
x € G. Since r is H-invariant, the symplectic leaves are permuted by H with the orbits being contained
in Bruhat cells in G x G indexed by W x W. In the case where G, is algebraic, the symplectic leaves are
also algebraic and an explicit formula is given for their dimension.

The philosophy of [15, 16] was that, as in the case of enveloping algebras of algebraic solvable Lie
algebras, the primitive ideals of C,[G] should be in bijection with the symplectic leaves of G (in the case
u = 0). Indeed, since the Lie bracket on g, = Lie(G,) is the linearization of the Poisson structure on G,
Prim C, ,[G] should resemble Prim U(g,). The study of the multi-parameter versions C, ,[G] is similar
to the case of enveloping algebras of general solvable Lie algebras. In the general case Prim U(g,) is in
bijection with the co-adjoint orbits in g* under the action of the ‘adjoint algebraic group’ of g,, [12]. Tt
is therefore natural that, only in the case where the symplectic leaves are algebraic, does one expect and
obtain a bijection between the symplectic leaves and the primitive ideals.

In section 2 we define the notion of an L-bigraded Hopf K-algebra, where L is an abelian group. When
A is finitely generated such bigradings correspond bijectively to morphisms from the algebraic group LY to
the (algebraic) group R(A) of one- dimensional representations of A. For any antisymmetric bicharacter
p on L, the multiplication in A may be twisted to give a new Hopf algebra A,. Moreover, given a pair
of L-bigraded Hopf algebras A and U equipped with an L-compatible Hopf pairing A x U — K, one
can deform the pairing to get a new Hopf pairing between A,-1 and U,. This deformation commutes
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with the formation of the Drinfeld double in the following sense. Suppose that A and U are bigraded
Hopf algebras equipped with a compatible Hopf pairing A°? x U — K. Then the Drinfeld double A x U
inherits a bigrading such that (A x U), = A, x U,.

Let C4[G] denote the usual one-parameter quantum group (or quantum function algebra) and let
U,(g) be the quantized enveloping algebra associated to the lattice L of weights of G. Let U,(b™)
and U,(b™) be the usual sub-Hopf algebras of U,(g) corresponding to the Borel subalgebras b* and b~
respectively. Let D,(g) = Uy(b™) x Uy(b™) be the Drinfeld double. Since the groups of one-dimensional
representations of U, (b™), U,(b7), D,(g) and C,[G] are all isomorphic to H = LV, these algebras are all
equipped with L-bigradings. Moreover the Rosso-Tanisaki pairing is compatible with the bigradings on
U,(b%) and U, (b™). For any anti-symmetric bicharacter p on L one may therefore twist simultaneously
the Hopf algebras U, (b™), U,(b~) and D,(g) in such a way that D, ,(g) = U, ,(b%) x Uy ,(67). The
algebra D, ,(g) is the ‘multi-parameter quantized universal enveloping algebra’ constructed by Okado and
Yamane [25] and previously in special cases in [9, 32]. The canonical pairing between C,[G] and U,(g)
induces a L-compatible pairing between C,[G] and D,(g). Thus there is an induced pairing between the
multi-parameter quantum group C, ,[G] and the multi-parameter double D, ,-1(g). Recall that the Hopf
algebra C,[G] is defined as the restricted dual of U,(g) with respect to a certain category C of modules
over Uy(g). There is a natural deformation functor from this category to a category C, of modules over
D, ,-1(g) and C,,[G] turns out to be the restricted dual of D, ,-1(g) with respect to this category. This
Peter-Weyl theorem for C, ,[G] was also found by Andruskiewitsch and Enriquez in [1] using a different
construction of the quantized universal enveloping algebra and in special cases in [5, 14].

The main theorem describing the primitive spectrum of C,,[G] is proved in the final section. Since
C4,p|G] inherits an L-bigrading, there is a natural action of H as automorphisms of C, ,[G]. For each
w € W x W, we construct an algebra A,, = (Cy ,[G]/Is)e, which is a localization of a quotient of C, ,[G].
For each prime P € SpecC, ,[G] there is a unique w € W x W such that P D I,, and PA,, is proper.
Thus Spec Cy ,[G] = ||, xw Spec,, Cqp[G] where Spec,, C, ,[G] = Spec A,, is the set of primes of type
w. The key results are then Theorems 4.14 and 4.15 which state that an ideal of A,, is generated by its
intersection with the center and that H acts transitively on the maximal ideals of the center. From this
it follows that the primitive ideals of C, ,[G] of type w form an orbit under the action of H.

An earlier version of our approach to the proof of Joseph’s theorem is contained in the unpublished
article [17]. The approach presented here is a generalization of this proof to the multi-parameter case.

These results are algebraic analogs of results of Levendorskii [20, 21] on the irreducible representations
of multi-parameter function algebras and compact quantum groups. The bijection between symplectic
leaves of the compact Poisson group and irreducible x-representations of the compact quantum group
found by Soibelman in the one-parameter case, breaks down in the multi-parameter case.

After this work was completed, the authors became aware of the work of Constantini and Varagnolo
[7, 8] which has some overlap with the results in this paper.

1. PoissoN LIE GROUPS

1.1. Notation. Let g be a complex semi-simple Lie algebra associated to a Cartan matrix [a;;]1<i, j<n-
Let {d; }1<i<n be relatively prime positive integers such that [d;a;;]1<;,j<n 1S sSymmetric positive definite.

Let b be a Cartan subalgebra of g, R the associated root system, B = {aq,...,a,} a basis of R, Ry
the set of positive roots and W the Weyl group. We denote by P and Q the lattices of weights and

roots respectively. The fundamental weights are denoted by @y, ..., w, and the set of dominant integral
weights by Pt = 3"  Nw,. Let (—,—) be a non-degenerate g-invariant symmetric bilinear form on g;
it will identify g, resp. b, with its dual g*, resp. h*. The form (—, —) can be chosen in order to induce a

perfect pairing P x Q — Z such that

(@i, a5) = 0i5ds, (0, 5) = diay;.
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Hence d; = (o, a;)/2 and (o, ) € 2Z for all @ € R. For each a; we denote by h; € b the corresponding
coroot: @w;(h;) = d;;. We also set

ni:@aeR+9ia7 bi:b@ni7 D:gxg7 t:beL ui:nixni'

Let G be a connected complex semi-simple algebraic group such that Lie(G) = g and set D = G x G.
We identify G (and its subgroups) with the diagonal copy inside D. We denote by exp the exponential map
from 0 to D. We shall in general denote a Lie subalgebra of d by a gothic symbol and the corresponding
connected analytic subgroup of D by a capital letter.

1.2. Poisson Lie group structure on G. Let a = ZaeR+ eaNe_q € N2g where the e, are root vectors

such that (eq,e3) = 0a,—p5. Let u € A%h and set 7 = a — u. Then it is well known that r satisfies the
modified Yang-Baxter equation [3, 20] and that therefore the tensor m(g) = (lg).r — (rq)«r furnishes G
with the structure of a Poisson Lie group, see [13, 22, 30] ((I4)« and (rgy). are the differentials of the left
and right translation by g € G).

We may write u = 32, ; i, uijhi ® h; for a skew-symmetric n x n matrix [u;;]. The element u can
be considered either as an alternating form on h* or a linear map u € End § by the formula

Veebh, wuz)= Zum(x,hi)hj.
i,J

The Manin triple associated to the Poisson Lie structure on G given by r is described as follows. Set
ur =u =+ I € Endbh and define

V:h—=t, d(z)=—(u_(x),us(z)),
a= 19((])7 gr = adut.

Following [30] one sees easily that the associated Manin triple is (9, g, g,) where g is identified with the
diagonal copy inside 9. Then the corresponding triple of Lie groups is (D, G, G,.), where A = exp(a) is an
analytic torus and G, = AU™. Notice that g, is a solvable, but not in general algebraic, Lie subalgebra,
of 0.

The following is an easy consequence of the definition of a and the identities uy+u_ = 2u, uy —u_ = 2I:
(1.1) a={(zy) et | z+y=uly—2)}={(z,9) €t | up(r) =u_(y)}.

Recall that exp : h — H is surjective; let Ly be its kernel. We shall denote by X(K) the group
of characters of an algebraic torus K. Any x € X(H) is given by x(expx) = expdx(z), € b, where
dx € b* is the differential of y. Then

X(H)=L=1Lg®:={£€b* | &(Ly) C 2inZ}.

One can show that L has a basis consisting of dominant weights.
_ Recall that if G is a connected simply connected algebraic group with Lie algebra g and maximal torus
H, we have

Ly =P° =" 2irZh;, X(H)=P,
QCLCP, m(G)=Ly/P°=P/L.

Notice that Ly /P° is a finite group and expu(Ly) is a subgroup of H. We set
To={(a,a) €T | a> =1}, A={(a,a) €T | a®> €expu(Lg)},
'=AnH={(a,a) €T | a=expz=expy, x+y=uly—1x)}.

It is easily seen that I' = G N G,..

Proposition 1.1. We have A =T'.T.
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Proof. We obviously have I’y C A. Let (exph,exph) € I, h € h. By definition there exist (z,y) € a,
l1,05 € Ly such that

r=h+b,y=h+l, y+z=uly—2).
Hence y+x = 2h+/0; +0ls = u(ly—F1) and (exp h)? = exp 2h = exp u(fs —F1). This shows (exp h,exp h) €
A. Thus I'Ty C A.

Let (a,a) € A, a = exph, h € h. From a? € expu(Ly) we get £,/ € Ly such that 2h = u(¢') + ¢.
Set e =h—4£/2—-0)2, y=h+{/2—1¢/2. Then y+ 2 = u(y — =) and we have exp(—¢/2 — ¢'/2) =
exp(l'/2 — £/2), since ¢/ € Ly. If b = exp(—¢'/2 + ¢/2) we obtain expz = expy = ab~!, hence
(a,a) = (expz,expy).(b,b) € I'.I'y. Therefore I'T'y = A. O

Remark . When wu is “generic” T'g is not contained in I'. For example, take G to be SL(3,C) and
u:a(h1®h27h2®h1) Wltha¢@

Considered as a Poisson variety, G decomposes as a disjoint union of symplectic leaves. Denote by
Symp G the set of these symplectic leaves. Since r is H-invariant, translation by an element of H is a
Poisson morphism and hence there is an induced action of H on SympG. The key to classifying the
symplectic leaves is the following result, cf. [22, 30].

Theorem 1.2. The symplectic leaves of G are exactly the connected components of GNG,zG, forx € G.

Remark that A, I' and G, are in general not closed subgroups of D. This has for consequence that
the analysis of Symp G made in [15, Appendix A] in the case v = 0 does not apply in the general case.

Set Q = HG, = TU™. Then (@ is a Borel subgroup of D and, recalling that the Weyl group associated
to the pair (G,T) is W x W, the corresponding Bruhat decomposition yields D = UyewxwQuwQ =
Uwew xw QWG,.. Therefore any symplectic leaf is contained in a Bruhat cell Qw@ for some w € W x W.

Definition . A leaf A is said to be of type w if A C Qw@Q. The set of leaves of type w is denoted by
Symp,, G.

For each w € W x W set w = (w4, w_),wt € W, and fix a representative w in the normaliser of T'.
One shows as in [15, Appendix A] that G N QuWwG, # 0, for all w € W x W; hence Symp,, G # 0 and
G NG, wG, # 0, since QwWQ = UpeghGwG,.

The adjoint action of D on itself is denoted by Ad. Set

U, =AdwU)nU", A, ={acA | aiG, =G},
T ={teT | tGiG, = GoiG,}, H,=HNT,.
Recall that U, is isomorphic to CH*) where I(w) = I(wy) + I[(w_) is the length of w. We set s(w) =
dim H/,.
Lemma 1.3. (i) A, = Adw(4A)NA and T, = A.Adw(A) = AH],.

(ii) We have Lie(A4,,) = al, = {J(z) | = € Ker(u—w™ uy —upw;'u_)} and dima), = n — s(w).
Proof. (i) The first equality is obvious and the second is an easy consequence of the bijection, induced
by multiplication, between U, x T x Ut and QuwQ = QuwG,..

(ii) By definition we have a!, = {J(z) | z € h, w=(9(z)) € a}. From (1.1) we deduce that 9¥(x) € al,
if and only if uywi'(—u_(z)) = u_w='(—uy(z)).

It follows from (i) that dim 7T, = n + dim H,, = 2n — dim A/, hence dima}, = n — s(w). O

Recall that v € Endb is an alternating bilinear form on h*. It is easily seen that VA, u € b*,
u(\, 1) = —(*u(X), p), where *u € End h* is the transpose of u.

Notation . Set 'u=—®, &, =P+ 1, o(w) =P_w_P; — P w, P_, where wy € W is considered as an
element of End h*.
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Observe that ‘uy = —® and that
(1.2) u(A, w) = (DA, p), for all A\, pu € b*.

Furthermore, since the transpose of w1 € End h* is w;l € End b, we have ‘o(w) = u_w- uy —u+w;1u,.
Hence by Lemma 1.3

1.3 s(w) = codim Kery- o(w), dim A/, = dim Kery- o(w).
b w b

1.3. The algebraic case. As explained in 1.1 the Lie algebra g, is in general not algebraic. We now
describe its algebraic closure. Recall that a Lie subalgebra m of ? is said to be algebraic if m is the Lie
algebra of a closed (connected) algebraic subgroup of D.

Definition . Let m be a Lie subalgebra of 9. The smallest algebraic Lie subalgebra of 9 containing m is
called the algebraic closure of m and will be denoted by m.

Recall that g, = a @ u™. Notice that u™ is an algebraic Lie subalgebra of 9; hence it follows from [4,
Corollary 11.7.7] that g, = a ® u™. Thus we only need to describe a. Since t is algebraic we have a C t
and we are reduced to characterize the algebraic closure of a Lie subalgebra of t = Lie(T).

The group T' = H x H is an algebraic torus (of rank 2n). The map x — dx identifies X(T') with L x L.

Let € C t be a subalgebra. We set

th ={0 e X(T) | €C Ker6}.

The following proposition is well known. It can for instance be deduced from the results in [4, II. §].

Proposition 1.4. Let ¢ be a subalgebra of t. Then € = Ngecpr Ker¢ 0 and  is the Lie algebra of the closed
connected algebraic subgroup K = Ngecer Kerr 0.

Corollary 1.5. We have
at = {(\p) €X(T) | PLA+P_p =0},
a = Nxuyeat Kere(A, p), A= Napeat Kerp (A, ).
Proof. From the definition of a = 9(h) we obtain
(\p) € 0t = Va € b, A—u_(2)) + p(—us () = 0.

The first equality then follows from ‘uy = —®+. The remaining assertions are consequences of Proposition
1.4. O

Set
bo=Q®zP° =@_,Qhi;, bhy=Q®zP =0;_,Qw;
ag =Q®zat ={(\p) €y x by | PLA+D_pu=0}
Observe that dimg af@ =rkz a’ and that, by Corollary 1.5,

(1.4) dima = 2n — dimg ag.

Lemma 1.6. a3 = {v e by | v e by}
Proof. Define a Q-linear map
{vepy | venyt —ay, ve (—0_v,v).

It is easily seen that this provides the desired isomorphism. O
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Theorem 1.7. The following assertions are equivalent:
(i) g» is an algebraic Lie subalgebra of 0;
(i) w(P x P) C Q;
(i) 3m € N*, &(mP) C P;
(iv) T is a finite subgroup of T.

Proof. Recall that g, is algebraic if and only if a = a, i.e. n = dima = dima. By (1.4) and Lemma 1.6
this is equivalent to ®(P) C b = Q®z P. The equivalence of (i) to (iii) then follows from the definitions,
(1.2) and the fact that ‘u = —®.

To prove the equivalence with (iv) we first observe that, by Proposition 1.1, T is finite if and only if
expu(Ly) is finite. Since Ly /P° is finite this is also equivalent to exp u(P°) being finite. This holds if
and only if u(mP°) C P° for some m € N*. Hence the result. 0

When the equivalent assertions of Theorem 1.7 hold, we shall say that we are in the algebraic case or
that u us algebraic. In this case all the subgroups previously introduced are closed algebraic subgroups
of D and we may define the algebraic quotient varieties D/G, and G = G/T. Let p be the projection
G — G. Observe that G is open in in D/G,. and that the Poisson bracket of G passes to G. We set

Cu') = erGr/Gra w = QwGr/G'r = UhGHhCu')
Bu’) = Cu'; N Ga Bw = C’w N G; -Aw = pil(Bw)'

The next theorem summarizes the description of the symplectic leaves in the algebraic case.

Theorem 1.8. 1. Symp,, G # () for allw € W x W, Symp G = Uyew xw Symp,, G.

2. Each symplectic leaf of G, resp. G, is of the form hB,, resp. hAy,, for some h € H andw € W xW,
where Ay, denotes a fized connected component of p~*(By).

3. Cyp 2 Ay x U, where Ay, = A/AL, is a torus of rank s(w). Hence dimCy = dimB,, = dim A,, =
l(w) + s(w) and H/ Staby Ay is a torus of rank n — s(w).

Proof. The proofs are similar to those given in [15, Appendix A] for the case u = 0. (]

2. DEFORMATIONS OF BIGRADED HOPF ALGEBRAS

2.1. Bigraded Hopf Algebras and their deformations. Let L be an (additive) abelian group. We
will say that a Hopf algebra (4,4, m,e, A, S) over a field K is an L-bigraded Hopf algebra if it is equipped

with an L x L grading
A= D A

(A p)ELXL
such that
(1) KC Ao, AxpAx pw C Axgr pypw (ie. Alis a graded algebra)
(2) AlAxu) C2per Ary @ Ay
(3) A# —p implies €(Ax ) =0
( ) (AA,;L) - Au,/\
For sake of simplicity we shall often make the following abuse of notation: If a € A , we will write
A(a) = ZV ax,v & G_p,puy A\ v S A)\,V7 [y S A—y,u-
Let p: L x L — K* be an antisymmetric bicharacter on L in the sense that p is multiplicative in both
entries and that, for all A\, u € L,

(1) plps ) =15 (2) p(A, ) = p(p, =A).
)

Then the map p: (L x L) x (L — K* given by

« L
PN ), ( 1)) = p N )p(p, ')~
p(0

is a 2-cocycle on L x L such that ,0) =
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One may then define a new multiplication, m,, on A by

(2.1) Vae Ay b€ Ay, a-b=pN)p(u, ') ab.

Theorem 2.1. A, := (A,i,mp,€e, A, S) is an L-bigraded Hopf algebra.

Proof. The proof is a slight generalization of that given in [2]. It is well known that A, = (4,7,m,) is an
associative algebra. Since A and e are unchanged, (A4, A, €) is still a coalgebra. Thus it remains to check
that e, A are algebra morphisms and that S is an antipode.

Let z € Ay, and y € Ay . Then

(AN )p(p, ') e(zy)
()‘7 )‘/)p(:u7 /1’/)_15)\,7;16/\’,7/,1/E(x)e(y)
(AN )p(=X, =X) " e(x)e(y)

e(r-y)=p

So € is a homomorphism. Now suppose that A(z) =Y xx, ®z_,, and A(y) = > yx 1 @Y—_pr . Then

A)-Aly) = 2aw @z_up) - (O yrw @ Yosr )
= Zﬂi,\,u YN QT Y—rr
= p\ N)p(u 1) ™Y p(w ) T p(— 1 =) wyn @ T Y
= p(A\ N )p(p, 1) A(y)
=Az-y)

So A is also a homomorphism. Finally notice that

Z S(xaq)) - x(2) = Z S(@xy) T—vp
= 3 0, )P 1) S @A)
=pA )Y S(@ae) T
=p(\, 1) le(x)
= ¢(z)

A similar calculation shows that )z (1) - S(2(2)) = €(z). Hence S is indeed an antipode. O

Remark . The isomorphism class of the algebra A, depends only on the cohomology class [p] € H?(L x
L,K*), 2, §3].

Remark . Theorem 2.1 is a particular case of the following more general construction. Let (A,i,m) be a
K-algebra. Assume that F' € GLg(A ® A) is given such that (with the usual notation)

(1) Fim®1) = (m®1)Fo3Fi3; F(1@m) = (1®@m)Fi2Fi3

2 Fiel)=i®l; F(li) =111

(3) FiaF13Fs3 = Fa3F13Fo, i.e. F satisfies the Quantum Yang-Baxter Equation.
Set mp =mo F. Then (A,i,mp) is a K-algebra.
Assume furthermore that (4,7, m, e, A,S) is a Hopf algebra and that

(4) F: A® A— A® A is morphism of coalgebras

(B) mF(S@ DA =m(S@1A; mF(1® S)A=m(1® S)A.
Then Ap := (A, i,mp, e, A, S) is a Hopf algebra. The proofs are straightforward verifications and are left
to the interested reader.
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When A is an L-bigraded Hopf algebra and p is an antisymmetric bicharacter as above, we may define
FeGLg(A® A) by

Ya € AA,,uy Vb € A)\/yﬂ/, F(CL ® b) = p(A,A/)p(u,/Ll)ila ® b.

It is easily checked that F' satisfies the conditions (1) to (5) and that the Hopf algebras Ap and A,
coincide.
A related construction of the quantization of a monoidal category is given in [24].

2.2. Diagonalizable subgroups of R(A). In the case where L is a finitely generated group and A is a
finitely generated algebra (which is the case for the multi-parameter quantum groups considered here),
there is a simple geometric interpretation of L-bigradings. They correspond to algebraic group maps
from the diagonalizable group LV to the group of one dimensional representations of A.

Assume that K is algebraically closed. Let (A4,i,m,¢,A,S) be a Hopf K-algebra. Denote by R(A)
the multiplicative group of one dimensional representations of A, i.e. the character group of the algebra
A. Notice that when A is a finitely generated K-algebra, R(A) has the structure of an affine algebraic
group over K, with algebra of regular functions given by K[R(A)] = A/J where J is the semi-prime ideal
Nher(a) Ker h. Recall that there are two natural group homomorphisms I, 7 : R(A) — Autg(A) given by

lh Z h 1‘(1 x(g) = Z h™ x(l)
33 = Za:(l)

Theorem 2.2. Let A be a finitely generated Hopf algebra and let L be a finitely generated abelian group.
Then there is a natural bijection between:

(1) L-bigradings on A;

(2) Hopf algebra maps A — KL (where KL denotes the group algebra);

(3) morphisms of algebraic groups LY — R(A).

Proof. The bijection of the last two sets of maps is well-known. Given an L-bigrading on A, we may
define a map ¢ : A — KL by ¢(ax,,) = €(a)ux. It is easily verified that this is a Hopf algebra map.
Conversely, given a map LYV — R(A) we may construct an L bigrading using the following result.

Theorem 2.3. Let (A,i,m,e,A,S) be a finitely generated Hopf algebra over K. Let H be a closed
diagonalizable algebraic subgroup of R(A). Denote by L the (additive) group of characters of H and by
(—,—) : L x H—= K* the natural pairing. For (\,u) € L x L set

Ay, ={zr €A | Yhe H l(z) =\ h)z, rp(z) = (p, h)z}.
Then (A,i,m,e, A, S) is an L-bigraded Hopf algebra.
Proof. Recall that any element of A is contained in a finite dimensional subcoalgebra of A. Therefore
the actions of H via r and [ are locally finite. Since they commute and H is diagonalizable, A is L x L
diagonalizable. Thus the decomposition A = @(A,M)GLXL Ay, is a grading.

Now let C be a finite dimensional subcoalgebra of A and let {cy,...,c,} be a basis of H x H weight
vectors. Suppose that A(c;) = > t;; ® ¢j. Then since ¢; = ) t;j€(c;), the t;; span C and it is easily
checked that A(t;;) = Y tix ®ty;. Since lp(c;) = > h™(t;;)c; for all h € H and the ¢; are weight vectors,
we must have that h(t;;) = 0 for ¢ # j. This implies that

In(tiz) = b~ (ta)tiy,  r(tyy) = hit)t
and that the map A;(h) = h(t;;) is a character of H. Thus ¢;; € A_y, », and hence

Alti;) = Ztik ®ty; € ZAf,\i,,\k ®@ A X
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This gives the required condition on A. If A+ # 0 then there exists an h € H such that (—\, h) # (u, h).
Let x € Ay . Then
{1, he(x) = e(ra(z)) = h(z) = e(lp-1(2)) = (=A, h)e(x).

Hence e(z) = 0. The assertion on S follows similarly. O

Remark . In particular, if G is any algebraic group and H is a diagonalizable subgroup with character
group L, then we may deform the Hopf algebra K[G| using an antisymmetric bicharacter on L. Such
deformations are algebraic analogs of the deformations studied by Rieffel in [27].

2.3. Deformations of dual pairs. Let A and U be a dual pair of Hopf algebras. That is, there exists
a bilinear pairing (| ) : A x U — K such that:

(1) (a|1) =e(a); (1]u)=e(u)

(2) (a]urug) =3 (aq)y | u1){ac) | uz)
(3) (arag [u) =3 (a1 | u(n)){az | u(z)
(4) (S(a) [u) = (a|S(u)).

Assume that A is bigraded by L, U is bigraded by an abelian group Q and that there is a homomorphism
“: Q — L such that

(2.2) (A, | Uys) #0 only if A+ pu=%+0.
In this case we will call the pair {A,U} an L-bigraded dual pair. We shall be interested in §3 and §4 in
the case where Q = L and ~ = Id.

Remark . Suppose that the bigradings above are induced from subgroups H and H of R(A) and R(U)
respectively and that the map Q — L is induced from a map h — h from H to H. Then the condition
on the pairing may be restated as the fact that the form is ad-invariant in the sense that for all a € A,
ueUand he H,

(adpa | u) = (a | ady u)

where ady, a = rilp(a).

Theorem 2.4. Let {A,U} be the bigraded dual pair as described above. Let p be an antisymmetric
bicharacter on L and let p be the induced bicharacter on Q. Define a bilinear form (| ), : Ap-1 x Uy = K
by:
<a)\,u | u'y,6>p = p(/\f?)ilp(,uv 5)71<0’)\,;L | u’y,6>'
Then (| )p is a Hopf pairing and {A,-1,Ug} is an L-bigraded dual pair.
Proof. Let a € Ay, and let u; € Uy, 5,, 4 =1,2. Then
(a | urua)y = p(1,52)p(01,02) " p(A, H1 + F2) " p(1, 01 + 02) " a | urua).
Suppose that A(a) = Y, ax, ® a_, . Then by the assumption on the pairing, the only possible value
of v for which (ax, | u1){a—_., | u2) is non-zero is v = 41 + O — A= w— o — 5. Therefore
(aq) [un)plag) | u2)p = pO\51) ™ p(v, 61) " p(=v, ¥2) " o, 02) aqy | ) (aga) | u2)
= p(A\F1) " p(p — Fa — 02,01) T Tp(A — 1 — 81, 92) T o1, 02) " Haqy | ur){agy | ua)
= p(31,72)p (01, 02) "' (A, F1 4 ¥2) " (1, 01 + 02) " Ma [ uaua) = (a | urug)p.

This proves the first axiom. The others are verified similarly. O
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Corollary 2.5. Let {A,U,p} be as in Theorem 2.4. Let M be a right A-comodule with structure map
p: M —= M®A. Then M is naturally endowed with U and Uy left module structures, denoted by
(u,2) = uz and (u,x) — u - x respectively. Assume that M = @ e, My for some K-subspaces such that
p(My) C >, M_, ® A, x. Then we have Uy sMy C M, . s and the two structures are related by

53
Yu e Uy, Vo € My, w-z=p(A75— S)p('vy, g)um
Proof. Notice that the coalgebras A and A,-: are the same. Set p(x) = > x() ® x(y) for all z € M.
Then it is easily checked that the following formulas define the desired U and Uz module structures:

YueU, wzx= Zm(o) (way lu), w-z= Zx(o) (@) | u)p.
When z € M) and u € U, s the additional condition yields

w-z =Yz, —H)p\ —0)(zq) | u).

v

But (z(yy | u) # 0 forces —v = X — 5 — 5, hence u - 2 = p(A\,5 — )p(¥,0) Yoroyfry | u) = p\,y -
Sp(¥,d)uz. O

Denote by A°P the opposite algebra of the K-algebra A. Let {A°P,U,( | )} be a dual pair of Hopf
algebras. The double A x U is defined as follows, [10, 3.3]. Let I be the ideal of the tensor algebra
T(A ® U) generated by elements of type

(a) 1—14, 1-1py
(b) ' —x @, v’ € A, yy —yoy, yy €U
(c) 1) @Yya){ze | Ye) — () [y0))ye) @ze), t€ A, yelU

Then the algebra A x U :=T(A®U)/I is called the Drinfeld double of {A,U}. It is a Hopf algebra in a
natural way:
Ala®u) = (ag) ®uq) @ (a@) ® u),
ela@u) = e(a)e(u), Sla@u)=(5(a) @11 S(u)).

Notice for further use that A x U can equally be defined by relations of type (a), (b), (cz,y) or (a),
(b), (cy,z), where we set
(Cay) r@y = (xa lyn) (@@ | SWE))Ye @), t€ A, yel
(¢y.2) yex=(zq) | Sy {ze) | ve)re) @ye), 1€ A,y el

Theorem 2.6. Let {A°P, U} be an L-bigraded dual pair, p be an antisymmetric bicharacter on L and p
be the induced bicharacter on Q. Then A x U inherits an L-bigrading and there is a natural isomorphism
of L-bigraded Hopf algebras:

(AxU), = A, x U
Proof. Recall that as a K-vector space A x U identifies with A ® U. Define an L-bigrading on A x U by
Vo,BeL, (AwUap= >  Avu®@Uys.
A—y=a,u—8=8

To verify that this yields a structure of graded algebra on A x U it suffices to check that the defining
relations of A x U are homogeneous. This is clear for relations of type (a) or (b). Let z) , € Ay, and
Y~.5 € Uy 5. Then the corresponding relation of type (c) becomes

(%) > iyl | Y-es) = (@an | Yy Yo v
Ve
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When a term of this sum is non-zero we obtain —v+pu = f§u+5, Mr = f7+f. Hence A\—y = 7V+§u = 7u+5,
which shows that the relation (x) is homogeneous. It is easy to see that the conditions (2), (3), (4) of 2.1
hold. Hence A x U is an L-bigraded Hopf algebra.

Notice that (A,)°P = (A°P),-1, so that Theorem 2.4 defines a suitable pairing between (A,)°? and Uj.
Thus A, X Uy is defined. Let ¢ be the natural surjective homomorphism from T'(A ® U) onto A4, x Up.
To check that ¢ induces an isomorphism it again suffices to check that ¢ vanishes on the defining relations
of (A M U),. Again, this is easy for relations of type (a) and (b). The relation (%) says that

PP, E) (@i | Y—e.8)Tr Yyt — PE V)P0, =) (@ ps | Yryse)Ymbrs T = O

in (A x U),. Multiply the left hand side of this equation by p(A, —¥)p(u, —5) and apply ¢. We obtain
the following expression in A, X Uy:

(=1, (1, =0) (v | Y=£.8)TA0 Yy — PN, =T)P(Vs =) (@r 0 | Y. )Y—€.6T v
which is equal to
(@v | Y=e.6)pTanlye = (@ru | Yr,8)pY—e.6T—v,pi-
But this is a defining relation of type (c) in A, x Uy, hence zero.
It remains to see that ¢ induces an isomorphism of Hopf algebras, which is a straightforward conse-
quence of the definitions. O

2.4. Cocycles. Let L be, in this section, an arbitrary free abelian group with basis {w1,...,w,} and
set h* = C ®z L. We freely use the terminology of [2]. Recall that H?(L,C*) is in bijection with the set
M of multiplicatively antisymmetric n x n-matrices v = [v;;]. This bijection maps the class [¢] onto the
matrix defined by v;; = ¢(w;,w;)/c(w;,w;). Furthermore it is an isomorphism of groups with respect to
component-wise multiplication of matrices.

Remark . The notation is as in 2.1. We recalled that the isomorphism class of the algebra A, depends
only on the cohomology class [p] € H2(L x L, K*). Let v € H be the matrix associated to p and v~}

its inverse in H. Notice that the multiplicative matrix associated to [p] is then ¥ = [Z 731] in the basis

given by the (w;,0), (0,w;) € L x L. Therefore the isomorphism class of the algebra A, depends only on
the cohomology class [p] € H?(L,K*).

Let h € C*. If x € C we set ¢* = exp(—zh/2). In particular ¢ = exp(—#/2). Let u: L x L = C be a
complex alternating Z-bilinear form. Define

h
(2.3) p:LxL—C* p(\p) =exp ( _ ZU(A’M)) _ q%u()\,u).

Then it is clear that p is an antisymmetric bicharacter on L.

Observe that, since h* = C ®z L, there is a natural isomorphism of additive groups between A%h and
the group of complex alternating Z-bilinear forms on L, where § is the C-dual of h*. Set Z, = {u €
A% | w(L x L) C 227}

Theorem 2.7. There are isomorphisms of abelian groups:
H*(L,C*) = H = A%h/Zp,.

Proof. The first isomorphism has been described above. Let v = [7;;] € H and choose u;;, 1 <i<j<n
such that v;; = exp(—Zu;;). We can define u € A?h by setting u(w;,w;) = u;j, 1 <i < j <n. It is then
easily seen that one can define an injective morphism of abelian groups

¢ HYL,C) =H — A0/ 2, o(y) = [4]
where [u] is the class of u. If u € A%h, define a 2-cocycle p by the formula (2.3). Then the multiplicative
matrix associated to [p] € H%(L,C*) is given by

h
Yij = plwi,w;) /p(ws,wi) = plws, wy)* = exp(*gu(wuwj))
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This shows that [u] = ¢([vi;]); thus ¢ is an isomorphism. O

We list some consequences of Theorem 2.7. We denote by [u] an element of A%hH/Z and we set
[p] = ¢~ ([u]). We have seen that we can define a representative p by the formula (2.3).

1. [p] of finite order in H*(L,C*) < u(L x L) C “£Q, and g root of unity < h € inQ.

2. Notice that u = 0 is algebraic, whether ¢ is a root of unity or not. Assume that ¢ is a root of unity;
then we get from 1 that

[p] of finite order < u is algebraic.

3. Assume that ¢ is not a root of unity and that u # 0. Then [p] of finite order implies (0) # u(L xL) C
“FQ. This shows that
0 # u algebraic = [p] is not of finite order.

Definition . The bicharacter p : (A, u) — q%“(’\’”) is called g-rational if © € A%h is algebraic.

The following technical result will be used in the next section. Recall the definition of ®_ = & — [
given in the Section 1.

Proposition 2.8. Let K = {)\ eL: (P_\L)C ‘“%Z}. If q is not a root of unity, then K = 0.
Proof. Let A € K. We can define 2 : hg — Q, by

. dim
V[L € b@a ((P—)\7/J’) = ?Z(‘LL)

The map z is clearly Q-linear. It follows, since ( , ) is non-degenerate on b, that there exists v € by
such that z(u) = (v, p) for all p1 € by Therefore ®_\ = 47y, and so PA = A + 1Ty,
Now, (®PA, A) = u(\, A) = 0 implies that
4
W A) = =)
h

If (A, \) # 0 then A € inQ, contradicting the assumption that ¢ is not a root of unity. Hence (A, A) = 0,
which forces A = 0 since A € L C bg. O

3. MULTIPARAMETER QUANTUM GROUPS

3.1. One-parameter quantized enveloping algebras. The notation is as in sections 1 and 2. In
particular we fix a lattice L such that Q € L C P and we denote by G the connected semi-simple
algebraic group with maximal torus H such that Lie(G) = g and X(H) = L.

Let ¢ € C* and assume that g is not a root of unity. Let h € C\ iwQ such that ¢ = exp(—£h/2) as in
2.4. We set

g =q%, ljii(qz‘*qi_l)*l, 1<i<n.

Denote by U° the group algebra of X(H), hence
U'=Clkx; NeL], ko=1, kak, =k,

Set k; = ko, 1 <7 < n. The one parameter quantized enveloping algebra associated to this data, cf.
[33], is the Hopf algebra

Uy(g) = U%e;, fi; 1 <i <n
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with defining relations:
kaejkyt = qMe;, kafikyt =q M f;
eifj — fiei = 0ijGi(ki — k1)

lfaij
—aqj l—a;;—k _ P .
Z(—l)k[lk ]qiei ejef—O, ifi#£j
k=0
lfaij
—a;j l—a;;—k _ ap o .
Yo DR fifE=0,iti#]
k=0
where [m]; = (t —t71) ... (t"™ —t~™) and [}}], = % The Hopf algebra structure is given by

Aky) =ky@ky, e(ky) =1, S(ky)=k"
Ale)=e;®@1+k®e;, A(f)=fiok ' +1®f;
ele;) = e(fi)) =0, S(ei) = —k; 'ei, S(fi) = —fika.
We define subalgebras of U,(g) as follows
Um")=Cles,;1<i<n], Uy(n)=Clfi,;1<i<n]
Ug(6T) =Ues, ;1 <i<n], Uy(b™)=U°fi,;1<i<n].

For simplicity we shall set U = U,(n*). Notice that U® and U,(b¥) are Hopf subalgebras of U,(g).
Recall [23] that the multiplication in U,(g) induces isomorphisms of vector spaces

Uo)2U oU’eUt=2UteU U .
Set Q1 = @ ;Ney; and
VBEQy, Uj={ucU* |VAeL, hwuky'=q¢>*u}.

Then one gets: UE = @geq, Ui[ﬁ.
3.2. The Rosso-Tanisaki-Killing form. Recall the following result, [28, 33].

Theorem 3.1. 1. There exists a unique non degenerate Hopf pairing
(1) :U(6T)P@U(67) — C

satisfying the following conditions:

(1) (kx| k) = g~

(11) VieL,1<1i<n, </€,\ |f2>:<62 | k)\> = 0;

(iii) V1 < 4,5 < n, (e | f5) = —0i;Gi-

2. If y,n € Qy, (US| UZ,) # 0 implies v = .

The results of §2.3 then apply and we may define the associated double:

Dy(g) = Uy (6T) m Uy(b7).
It is well known, e.g. [10], that
Dy(g) = Clsx, tr, e fis A€ L, 1 <i <nf

where s) = k\x® 1, ty =1®ky, e, =€, ®1, f; =1® f;. The defining relations of the double given in
§2.3 imply that

saty =tusx,  eifj — fiei = 0ijGi(sa, — t3)")

sAejs;\l = q()‘ro‘j)ej7 t)\ejt;\l = q()”o‘j)ej, S)\ij;1 = q_(>‘7aj)fj’ t)\fjt;\l = q_o‘vo‘j)fj.
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It follows that
Dq(g)/(S)\ —1tx; A e L) :> Uq(g), €; — €4, fl — fi» S\ > k)\, ty — k)\.

Observe that this yields an isomorphism of Hopf algebras. The next proposition collects some well known
elementary facts.

Proposition 3.2. 1. Any finite dimensional simple U,(b¥)-module is one dimensional and R(U,(b%))
identifies with H via
Vh e H, h(kx)=(\h), h(e)=0, h(f;)=0.
2. R(Dy(g)) identifies with H via

Vhe H, h(sx)=(\h), h(ty)=\h"" he)=h(f;)=0.

Corollary 3.3. 1. {U,(b")°P,U,(b7)} is an L-bigraded dual pair. We have
kx € Ug(6F) s, € €Uy (67) a0, fi €U (07 )0 o,
2. Dy(g) is an L-bigraded Hopf algebra where
sx € Dg(g)-ans  tx € Dg(@)r—xs € € Dg(8)—as0,  [fi € Dg(8)0,0-
Proof. 1. Observe that for all h € H,
In(kx) = h7H(ka) = (=X hkx,  ra(ka) = h(kx) = (A h)ky,
In(es) = h Y (k)e; = (—ag, hyes, Th(ei) = e,
W(fi) = fis n(fi) = h(ki 1) fi = (—au, h) fie

It is then clear that Uf%() = U;“ and Uy _, = UZ, for all v € Q4. The claims then follow from these
formulas, Theorem 2.3, Theorem 3.1, and the definitions.

2. The fact that D,(g) is an L-bigraded Hopf algebra follows from Theorem 2.3. The assertions about
the L x L degree of the generators is proved by direct computation using Proposition 3.2. O

Remark . We have shown in Theorem 2.6 that, as a double, D,(g) inherits an L-bigrading given by:

Dy(9)a,p = Z Uq(b+)k7u ®Uqg(b7 )6
A—vy=a,u—38=0
It is easily checked that this bigrading coincides with the bigrading obtained in the above corollary by
means of Theorem 2.3.

3.3. One-parameter quantized function algebras. Let M be a left D,(g)-module. The dual M* will
be considered in the usual way as a left Dy(g)-module by the rule: (uf)(z) = f(S(u)x), x € M, f € M*,
u € Dy(g). Assume that M is an U,(g)-module. An element x € M is said to have weight p € L if
kxz = Mg for all X € L; we denote by M,, the subspace of elements of weight u.

It is known, [13], that the category of finite dimensional (left) U,(g)-modules is a completely reducible
braided rigid monoidal category. Set LT = L NPT and recall that for each A € L% there exists a
finite dimensional simple module of highest weight A, denoted by L(A), cf. [29] for instance. One has
L(A)* = L(woA) where wyg is the longest element of W. (Notice that the results quoted usually cover
the case where L = Q. One defines the modules L()) in the general case in the following way. Let us
denote temporarily the algebra U,(g) for a given choice of L by U, r(g). Given a module L(\) defined
on U, q(g) we may define an action of U, 1,(g) by setting ky.z = ¢**z for all elements = of weight ,
where ¢(**) is as defined in section 2.4.)

Let C4 be the subcategory of finite dimensional U, (g)-modules consisting of finite direct sums of L(A),
A € L. The category C, is closed under tensor products and the formation of duals. Notice that C, can



ALGEBRAIC STRUCTURE OF MULTI-PARAMETER QUANTUM GROUPS 15

be considered as a braided rigid monoidal category of D,(g)-modules where sy, act as ky on an object
of C,.
Lqet M € obj(Cy), then M = @ eLM,. For f € M* v € M we define the coordinate function
cfo € Ug(g)™ by
Vu e Uq(g)’ Cf,v(u) = <f7 UU>
where (, ) is the duality pairing. Using the standard isomorphism (M ® N)* = N* @ M* one has the
following formula for multiplication,

CrwCf v = Cf'@fu@v’-
Definition . The quantized function algebra C,[G] is the restricted dual of Cy: that is to say
CylG) =Clefp;ve M, f e M*, M € obj(Cy)].

The algebra C,[G] is a Hopf algebra; we denote by A, ¢, S the comultiplication, counit and antipode
on C4[G]. If {v1,...,vs; f1,..., fs} is a dual basis for M € obj(C,) one has

(3.1) Alesw) = Zcfﬂ)i ®cfv,  €lcrn) = (fiv), Slefw) =coy.

Notice that we may assume that v; € M,,, f; € M*,, . We set

C(M)=Clcsp; feM,veM), CM),=Clctv; feMs,veM,).

Then C(M) is a subcoalgebra of Cy[G] such that C(M) = @B, ,)erxr, C(M)x,u. When M = L(A) we
abbreviate the notation to C(M) = C(A). It is then classical that

cla = @ cm).
AeL+
Since C4[G] C Uy(g)* we have a duality pairing
(. ):C,[G] x Dy(g) — C.
Observe that there is a natural injective morphism of algebraic groups
H — R(C,[G]), h(csy) = (p, h)e(csy) for all v € M, M € obj(Cy).
The associated automorphisms rp, [, € Aut(Cy[G]) are then described by
vCf,v € C(M)A,;u rh(cf,v) = <Uah>cf,v7 lh(cf,v) = </\ah>cf,v-

Define
Vi) €L XL, CylGla, = {a € CylG) | rala) = (uha, lu(a) = (A hal.

Theorem 3.4. The pair of Hopf algebras {Cy[G], Dy(g)} is an L-bigraded dual pair.

Proof. 1t follows from (3.1) that C,[G] is an L-bigraded Hopf algebra. The axioms (1) to (4) of 2.3 are
satisfied by definition of the Hopf algebra C,[G]. We take ~ to be the identity map of L. The condition
(2.2) is consequence of Dy(g)~,sM, C M,_~_s for all M € C,. To verify this inclusion, notice that

€; S Dq(g)faj,()a fj S Dq(g)O,aj7 elet C M#+aj, ijI—L C M#,aj.
The result then follows easily O

Consider the algebras D,-1(g) and C,-1[G] and use ~ to distinguish elements, subalgebras, etc. of

D,-1(g) and C,-1[G]. It is easily verified that the map o : Dy(g) — D,-1(g) given by

R . 127 1/24 ~ 1
sy = B, b, e @) filan, fier q) €i8,,

is an isomorphism of Hopf algebras.
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For each A € LT, o gives a bijection o : L(—woA) — L(A) which sends v € L(—wgA), onto © €
L(A)_,,. Therefore we obtain an isomorphism o : Cy-1[G] = C4[G] such that

(3.2) Vf e L(—woA)Zy, v € L(—wol)yu, 0(Ep;) =cro-
Notice that
(3-3) 0(Dq(8)v.5) = Dg=1(8)—y,—s and o(Cy=1[Glx ) = Co[Gl-x -

3.4. Deformation of one-parameter quantum groups. We continue with the same notation. Let
[p] € H*(L,C*). As seen in §2.4 we can, and we do, choose p to be an antisymmetric bicharacter such
that

VApeL, pAp) =gz
for some u € A%h. Recall that p € Z2(L x L,C*), cf. 2.1.

We now apply the results of §2.1 to D,(g) and C4[G]. Using Theorem 2.1 we can twist D,(g) by p—*
and C4[G] by p. The resulting L-bigraded Hopf algebras will be denoted by D, ,-1(g) and C,,[G]. The
algebra C, ,[G] will be referred to as the multi-parameter quantized function algebra. Versions of D, ,-1(g)
are referred to by some authors as the multi-parameter quantized enveloping algebra. Alternatively, this
name can be applied to the quotient of D, ,-1(g) by the radical of the pairing with C, ,[G].

Theorem 3.5. Let U, ,-1(b") and U, ,-1(b™) be the deformations by p=* of Uy(b™) and Uy(b™) respec-
tively. Then the deformed pairing
(] dp—r: Uq,p*1(5+)op ®Ugp-1(67) = C
is a non-degenerate Hopf pairing satisfying:
(3.4) VeeU , ye U, \NpeL, (z-ky|y ku)pr =g (z|y).
Moreover,
Ugp—1(67) ) Uy 1 (67) = (Ug(bT) 4 Uy(b7))-1 = Dy p-1(9)-

Proof. By Theorem 2.4 the deformed pairing is given by

(axp | ty,s)p-1 = (A, V)P(1, 6)(arp | ty,)-

To prove (3.4) we can assume that z € Uf%o,

(kx| y-ku)p-r =N +v, w)pA p—v)(x-ky|y-ky)
= p(\, 20)p(\ — v — v)g~ M (x| y)

by the definition of the product - and [33, 2.1.3]. But {z | y) = 0 unless v = v, hence the result. Observe
in particular that (x | y),-» = (z | y). Therefore [33, 2.1.4] shows that ( | ),-: is non-degenerate on
U} x UZ,. It then follows from (3.4) and Proposition 2.8 that ( | ),-1 is non-degenerate. The remaining
isomorphism follows from Theorem 2.6. (]

y € Uy _,,- Then we obtain

Many authors have defined multi-parameter quantized enveloping algebras. In [14, 25] a definition
is given using explicit generators and relations, and in [1] the construction is made by twisting the
comultiplication, following [26]. It can be easily verified that these algebras and the algebras D, ,-1(g)
coincide. The construction of a multi-parameter quantized function algebra by twisting the multiplication
was first performed in the GL(n)-case in [2].

The fact that D, ,-1(g) and C,,[G] form a Hopf dual pair has already been observed in particular
cases, see e.g. [14]. We will now deduce from the previous results that this phenomenon holds for an
arbitrary semi-simple group.

Theorem 3.6. {C,,[G],D, ,-1(9)} is an L-bigraded dual pair. The associated pairing is given by
Va € CqplGlau, Yu € Dy p-1(8)y,s,  (a,u)p =p(A,7)p(n,6){a, u).
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Proof. This follows from Theorem 2.4 applied to the pair {A, U} = {C,[G], Dy(g)} and the bicharacter
p~1 (recall that the map ~ is the identity). O

Let M € obj(C,). The left D,(g)-module structure on M yields a right C,[G]-comodule structure in
the usual way. Let {v1,...,vs; f1,..., fs} be a dual basis for M. The structure map p : M — M @ C,[G],
is given by p(x) = Zj vj ® ¢y, » for x € M. Using this comodule structure on M, one can check that

M,={zxeM | VheH, ry(z) = {(u h)z}

Proposition 3.7. Let M € obj(C;). Then M has a natural structure of left D, ,-1(g) module. Denote
by M~ this module and by (u,x) — u - x the action of D, ,-1(g). Then

Vu € Dg(g)~,5, Vo € My, u-xz=p(Xd—7)p(d,v)ux.

Proof. The proposition is a translation in this particular setting of Corollary 2.5. O

Denote by C,,, the subcategory of finite dimensional left D, ,-1(g)-modules whose objects are the M-,
M € obj(C,). It follows from Proposition 3.7 that if M € obj(C,), then M~ = ©,e1.M,,, where
t

— . f— (7) . fr p— (7)
M, ={z €M | VaeL, so -z=p(u2a)q" "z, t, v =p(u—20)g" "z}

Notice that p(p, +2a)q®) = g (P£me),

Theorem 3.8. 1. The functor M — M~ from C, to Cqp s an equivalence of rigid monoidal categories.
2. The Hopf pairing (, ), identifies the Hopf algebra C, |G| with the restricted dual of Cq,, i.e. the
Hopf algebra of coordinate functions on the objects of Cq .

Proof. 1. One needs in particular to prove that, for M, N € obj(C,), there are natural isomorphisms of
D, ,-1(g)-modules: pprn : (M®N) — M~ ®N~. These isomorphisms are given by 2@y — p(\, p)r®y
for all x € My, y € N,. The other verifications are elementary.
2. We have to show that if M € obj(Cy), f € M*,v € M and u € D, ,,-1(g), then (cy.,u)p = (f,u-v).
It suffices to prove the result in the case where f € My, v € M, and u € D, ,-1(g)~,5- Then
(fsu-v) =p(p, 0 —¥)p(d,7)(f, uv)

= 0_xpryto,u P(=A+ 7+ 6,0 —7)p(6,7)(f, w)

= (A, 7)p(k, 6)(f, uv)

= <Cf,v7 u>P

by Theorem 3.6. O

Recall that we introduced in §3.3 isomorphisms o : D,(g) — Dy-1(g) and o : C;[G] — C,-1[G]. From
(3.3) it follows that, after twisting by p~! or p, o induces isomorphisms
Dyp-1(8) = Dg-1,-1(8), Cy1,[G] = CyplG]
which satisfy (3.2).

3.5. Braiding isomorphisms. We remarked above that the categories C,, are braided. In the one
parameter case this braiding is well-known. Let M and N be objects of C;. Let E: M QN - M @ N
be the operator given by
Emon)=¢*"men
form e My andn € N,. Let 7: M ® N — N ® M be the usual twist operator. Finally let C' be the
operator given by left multiplication by
C= > Cp

BEQ+
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where Cp is the canonical element of Dy(g) associated to the non-degenerate pairing Ug‘ ® U—_,B —- C
described above. Then one deduces from [33, 4.3] that the operators

Oyn=T0oCoE ' :M@N—-N®M

define the braiding on C,.
As mentioned above, the category C, , inherits a braiding given by

—1
YN = oN,M 0 0mN 0Py N

where @y is the isomorphism (M ® N)° = M" ® N” introduced in the proof of Theorem 3.8 (the
same formula can be found in [1, §10] and in a more general situation in [24]). We now note that these
general operators are of the same form as those in the one parameter case. Let M and N be objects of
Cqpandlet E: M ®@N — M ® N be the operator given by

Em®n)=q¢®* " men

for m € M) and n € N,. Denote by Cg the canonical element of D ,-1(g) associated to the nondegenerate
pairing U, ,—1(67)_5,0® Uy -1 (b7 )o,—3 — C and let C: M @ N — M ® N be the operator given by left
multiplication by

C= > Cs

BEQ+
Theorem 3.9. The braiding operators Yy n are given by
VMmN = ToCoFE L
Moreover (Ya,n)* = Y+ N+

Proof. The assertions follow easily from the analogous assertions for 0,/ . O

The following commutation relations are well known [31], [21, 4.2.2]. We include a proof for complete-
ness.

Corollary 3.10. Let A, A" € L*, let g € L(A)*, and f € L(A)*, and let vo € L(A)x. Then for any
v e L),

DLAY)—(Pyp, DLAY)— (P4,
Cow Cuop = q( +A7)—( +u,77)cf’vA Cgu + q( + A7) = (@ pm) Z Ctyon * Canw
veQy

where f, € (Uy p-1(67)f)—ptv and g, € (Uy p-1(67)g)—y— are such that Y f, g, = > peqr\joy Cs(f®
9)-

Proof. Let ¢ = 1), (ar)- Notice that

Creg,v(va®v) = Cy*(f®g),vaQv"

Using the theorem above we obtain

V(feg) =g TR f+) 9.9 f)

and
(3.5) PY(vp ®@v) = ¢~ E+HA (v @ wy).

Combining these formulae yields the required relations. O
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4. PRIME AND PRIMITIVE SPECTRUM OF C, ,[G]

In this section we prove our main result on the primitive spectrum of C, ,[G]; namely that the H
orbits inside Prim,, C, ,[G] are parameterized by the double Weyl group. For completeness we have
attempted to make the proof more or less self-contained. The overall structure of the proof is similar
to that used in [16] except that the proof of the key 4.12 (and the lemmas leading up to it) form a
modified and abbreviated version of Joseph’s proof of this result in the one-parameter case [18]. One of
the main differences with the approach of [18] is the use of the Rosso-Tanisaki form introduced in 3.2
which simplifies the analysis of the adjoint action of C, ,[G]. The ideas behind the first few results of this
section go back to Soibelman’s work in the one-parameter ‘compact’ case [31]. These ideas were adapted
to the multi-parameter case by Levendorskii [20].

4.1. Parameterization of the prime spectrum. Let g,p be as in §3.4. For simplicity we set
A =Cq,[G]
and the product a - b as defined in (2.1) will be denoted by ab.
For each A € L™ choose weight vectors
VA € L(A)A; vwon € L(A)wen, f-n € LIA)Zy, fower € L(A)Z 0
such that (f_x,va) = (fowoA, Vwer) = 1. Set
AY=2 > Cepu AT= ) Z Cefoug
pELt feL(p)* neELt feL(p

Recall the following result.

Theorem 4.1. The multiplication map AT ® A~ — A is surjective.

Proof. Clearly it is enough to prove the theorem in the one-parameter case. When L = P the result is
proved in [31, 3.1] and [18, Theorem 3.7].

The general case can be deduced from the simply-connected case as follows. One first observes
that C,[G] C C,[G] = Prcp+ C(A). Therefore any a € C,4[G] can be written in the form a =
ZA,’A,,GPJr Cfwy Cgv_ e Where A" — A" € L. Let A € P and {v;; f;}; be a dual basis of L(A). Then
we have

]‘_ecﬂAfA Zcfz'UAC'szA

Let A’ be as above and choose A such that A + A’ € L+. Then, for all i, cfo,, cf0, € C(A+AN)NAT
and ¢y, 5 ¢ € C(—wo(A 4+ A”)) N A™. The result then follows by inserting 1 between the terms
Cfuop and Cgo - d

Remark . The algebra A is a Noetherian domain (this result will not be used in the sequel). The fact
that A is a domain follows from the same result in [18, Lemma 3.1]. The fact that A is Noetherian is
consequence of [18, Proposition 4.1] and [6, Theorem 3.7].

For each y € W define the following ideals of A
LY =(cfun | £ € Ugp1(6T)L(A)ya)*", A € LT,
I; = (cfuugn | f € (Ugp-1(67)L(A)yuwoa)™, A € LT)

where ()* denotes the orthogonal in L(A)*. Notice that I, = U(f;_), o as in §3.4, and that I;t is an
L x L homogeneous ideal of A.

Notation . For w = (wy,w-) € W x W set I, = I,;, + 1, . For A € L set cun = ¢
C(A)—wyan and Eyn = cp, 4,7 5 € C(—woA)w_a,—a-

w+A7'UA €
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Lemma 4.2. Let A€ Lt anda € A_,, . Then
Cond = q@*w*A’")*(@*A’V)anA mod [;r+
(®_ A7) —(®_w_Am)

CwAl = ¢ aCypr mod I, .

Proof. The first identity follows from Corollary 3.10 and the definition of I$+. The second identity can
be deduced from the first one by applying o. O

We continue to denote by c,a and ¢é,4 the images of these elements in A/I,,. It follows from Lemma
4.2 that the sets

Ew, ={acyn | a€C AL}, &, ={atur | a€CAELTY}, £y =Euw, Euw_
are multiplicatively closed sets of normal elements in A/I,,. Thus &, is an Ore set in A/L,,. Define
Aw = (A/ILy)g

Notice that o extends to an isomorphism o : Ay — A, where @ = (w—,wy).

w

Proposition 4.3. For allw e W x W, A, # (0).

Proof. Notice first that since the generators of A,, and the elements of &, are L x L homogeneous, it
suffices to work in the one-parameter case. The proof is then similar to that of [15, Theorem 2.2.3]
(written in the SL(n)-case). For completeness we recall the steps of this proof. The technical details are
straightforward generalizations to the general case of [15, loc. cit.].

For 1 < i < n denote by U, (sl;(2)) the Hopf subalgebra of U, (g) generated by e;, fi, k*'. The associated
quantized function algebra A, = C,[SL(2)] is naturally a quotient of A. Let o; be the reflection associated
to the root ay. It is easily seen that there exist M;" and M, , non-zero (A;)(s;.¢) and (4;)(e,»,) modules
respectively. These modules can then be viewed as non-zero A-modules.

Let wy =0y, ...04, and w_ =0}, ...0;,, be reduced expressions for wy. Then

+ + - -
Mi1®”.®Mik®Mj1®.”®Mjm

(o,

is a non-zero A,-module. O

In the one-parameter case the proof of the following result was found independently by the authors in
[16, 1.2] and Joseph in [18, 6.2].

Theorem 4.4. Let P € SpecC,,[G]. There exists a unique w € W x W such that P D I, and
(P/I,)NEy =

Proof. Fix a dominant weight A. Define an ordering on the weight vectors of L(A)* by f < f’if
[ € Uy p-1(bT)f. This is a preordering which induces a partial ordering on the set of one dimensional
weight spaces. Consider the set:

FA) ={f € LA, | ¢ ¢ P}

Let f be an element of F(A) which is maximal for the above ordering. Suppose that f’ has the same
property and that f and f’ have weights p and g’ respectively. By Corollary 3.10 the two elements ¢y,
and ¢y ,, are normal modulo P. Therefore we have, modulo P,

(24 AN)— (@4 o) 2(P 4 A A) = (P, ) = (P’ 1)

CfuaCf’oa = 4 CfoaCfua = 4 CfonCf un-

But, since w is alternating, 2(® 4 A, A) — (P p, p') — (P, 1) = 2(A, A) —2(p, p'). Since P is prime and ¢
is not a root of unity we can deduce that (A, A) = (u, p). This forces p = ' € W(—A). In conclusion, we
have shown that for all dominant A there exists a unique (up to scalar multiplication) maximal element
ga € F(A) with weight —wa A, wa € W. Applying the argument above to a pair of such elements, cg, .,



ALGEBRAIC STRUCTURE OF MULTI-PARAMETER QUANTUM GROUPS 21

and cg, ,,, yields that (waA,waA') = (A, A') for all A, A’ € L*. Then it is not difficult to show that
this furnishes a unique w, € W such that wy A = wpA for all A € L*. Thus for each A € LT,

Cgua € P g f f—w+A~

Hence P D I$+ and PN&,, = 0. It is easily checked that such a w, must be unique. Using ¢ one
deduces the existence and uniqueness of w_. O

Definition . A prime ideal P such that P D I, and PN &, = 0 will be called a prime ideal of type w.
We denote by Spec,, C,,[G], resp. Prim,, C, ,[G], the subset of SpecC, ,[G] consisting of prime, resp.
primitive, ideals of type w.

Clearly Spec,, C,,,[G] = Spec Ay, and o(Spec,, C,-1 ,[G]) = Spec,, C; ,[G]. The following corollary is
therefore clear.

Corollary 4.5. One has
Spec Cy »[G] = Uwew xw Spec,, Cy ,[G], PrimC, ,[G] = Uyew xw Prim,, C, ,[G].

We end this section by a result which is the key idea in [18] for analyzing the adjoint action of A
on A,. It says that in the one parameter case the quantized function algebra C,[B~] identifies with
U,(b") through the Rosso-Tanisaki-Killing form, [10, 17, 18]. Evidently this continues to hold in the
multi-parameter case. For completeness we include a proof of that result.

Set Cqp[B~] = A/I(wy,e)- The embedding U, ,,-1(b7) = Dy ,-1(g) induces a Hopf algebra map ¢ :
A = U, p-1(b7)°, where U, ,-1(b7)° denotes the cofinite dual. On the other hand the non-degenerate
Hopf algebra pairing ( | ),-: furnishes an injective morphism 6 : U, ,—1(b7)P — U, ,—1(b7)*.

Proposition 4.6. 1. C, ,[B~] is an L-bigraded Hopf algebra.
2. The map v =0"'¢: Cy,[B~] = U, ,-1(67)°P is an isomorphism of Hopf algebras.

Proof. 1. It is easy to check that I(,, ) is an L x L graded bi-ideal of the bialgebra A. Let p € LT and
fix a dual basis {v,; f—, }, of L() (with the usual abuse of notation). Then

chuvffncfflnv'y = Z S(Cf7n7yu)cf7V,U,Y = €(Cf7n,vw).
v v

Taking v = n = p yields ¢,c, = 1 modulo I(y, ). If v = wop and 1 # wopu, the above relation shows
that S(cr_, vuyn)Cowop € L(wy,e)- Thus () is a Hopf ideal.
2. We first show that

(4.1) VA€L+,Cf’vA EC(A),)\,A, dlay EUXZ)\, (b(cf}vA):H(x)\'k—A)-

Set ¢ = ¢fp,y. Then ¢(UZ,) = 0 unless n = A — A; denote by ¢ the restriction of ¢ to U~. By the
non-degeneracy of the pairing on UX7 y» X Uy_, we know that there exists a unique x € UXZ 5 such that
¢ =6(xx). Then, for all y € U;_,, we have

c(y k) = (f,y k- va) = q -2 e(y) = ¢~ -z, | y)
=(xx-koaly-Eu)p

by (3.4). This proves (4.1).
We now show that ¢ is injective on A*. Suppose that ¢ = ¢f,, € C(A)_xa NKer@, hence ¢ = 0 on

Ugp-1(b7). Since L(A) = Uy ,-1(b7)va = Dy p-1(g)va it follows that ¢ = 0. An easy weight argument

using (4.1) shows then that ¢ is injective on A™T.

It is clear that Ker¢ D I(y,.), and that AYA~ = A implies ¢(A) = ¢(AT[¢,; p € LT]). Since
¢u = ¢, " modulo I, ¢y by part 1, if a € A there exists v € LT such that ¢(c,)¢(a) € ¢(AT). The
inclusion Ker ¢ C I(,, ) follows easily. Therefore v is a well defined Hopf algebra morphism.
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If oj € B, there exists A € LT such that L(A)r_q, # (0). Pick 0 # f € L(A)* Ata,- Then (4.1)
shows that, up to some scalar, ¢(csq,) = 0(e; - k_p). If X € L, there exists A € WANLT; in particular
L(A)x # (0). Let v € L(A)x and f € L(A)*, such that (f,v) = 1. Then it is easily verified that
®(cs.v) = 0(k_»). This proves that v is surjective, and the proposition. O

4.2. The adjoint action. Recall that if M is an arbitrary A-bimodule one defines the adjoint action of
A on M by

Vae A,z e M, ad(a x—Za(le
Then it is well known that the subspace of ad-invariant elements M?d = {:1: €M | Vace A, ad(a).x =
e(a)z} is equal to {x € M | Ya € A, ax = za}.
Henceforth we fix w € W x W and work inside A,,. For A € L™, f € L(A)* and v € L(A) we set
Z;_ = C;jl\cfﬂ)m z, = 617;11\01)71‘—/\'
Let {w1,...,wy} be a basis of L such that w; € LT for all i. Observe that cyacwar and cyarcpa differ by
a non-zero scalar (similarly for ¢, a¢y,a/). For each A = )", f;w; € L we define normal elements of A,, by

n n
con = [ [ civis Guor =[] dr = (Gurcun)
i=1 i=1

Notice then that, for A € LT, the “new” c,,5 belongs to (C*cf_mrmvA (similarly for ¢, ). Define subalge-
bras of A,, by
Cyp = C[z;ﬁ',z;,ch; feLN)*ve L(A),Ae Lt Nel
Ch=Clzf;fe LN, Ae L], O, =Clz, ;ve L(A), A e LY.
Recall that the torus H acts on Ay , by rn(a) = p(h)a, where p(h) = (i, h). Since the generators of I,

and the elements of &, are eigenvectors for H, the action of H extends to an action on A,,. The algebras
C, and C are obviously H-stable.

Theorem 4.7. 1. Cff = C[z},z, ; f € L(A)*,v € L(A), A € L.
2. The set D= {dx; A € L} is an Ore subset of CH. Purthermore A, = (Cy)p and AL = (CH)p.
3. For each X € L, let (Ay)x = {a € Ay | rn(a) = A(h)a}. Then Ay = @ e (Aw)r and (Ay)r

Afe \ . Moreover each (Ay)x is an ad-invariant subspace.

Proof. Assertion 1 follows from
Vhe H, ra(zf) =27, rhlcwr) =Ah)cwr, Th(Ewr) = A(h) ™ Eun.
Let {v;; fi}; be a dual basis for L(A). Then

1=e€(cr_nom) ZS Cfonwi)Chion = chivf—Acfiﬂ)A'
i
Multiplying both sides of the equation by dn and using the normality of c,x and ¢, yields dy =
> aizy, Z}F for some a; € C. Thus D C CZ. Now by Theorem 4.1 any element of A,, can be written in
the form cy, o, Cf,.0,dx " Where vy = vy, v2 = v_p, and Ay, Ay, A € L*. This element lies in (A,,)y if and
only if Ay — Ay = A. In this case cy, v, Cf, 0, dxl is equal, up to a scalar, to the element z?{l 2]72 dXiAQ Cox €
(CH)peyy. Since the adjoint action commutes with the right action of H, (A, ), is an ad-invariant
subspace. The remaining assertions then follow. [l

We now study the adjoint action of C,,[G] on A,. The key result is Theorem 4.12.

Lemma 4.8. Let Ty = {zf+ | f e L(A)*}. Then Cf = Uper, Ta-
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Pmof It suffices to prove that if A, A’ € L™ and f € L(A)*, then there exists a g € L(A+ A’)* such that

f = z;. Clearly we may assume that f is a weight vector. Let ¢ : L(A + A’) — L(A) ® L(A’) be the
canomcal map. Then

CEONCT oy arionr = Cf o,

where g = t*(f_w, o ® f). Multiplying the images of these elements in A, by the inverse of c,a4a/) €

C*cypcwar yields the desired result. O

A ®Fva®uar T Cgvp g ar

Proposition 4.9. Let E be an object of Cyp and let A € Lt. Let o : L(A) - E® L(A) @ E* be the map
12y 1) (t®1) where . : C — E® E* is the canonical embedding and ¢~ : E* @ L(A) — L(A) @ E* is
the inverse of the braiding map described in §3.5. Then for any ¢ = ¢4, € C(E)_y and f € L(A)*

ad(c) — q(@+w+A,U) Zo’*(v®f®g)

In particular C} is a locally finite C, ,[G]-module for the adjoint action.

Proof. Let {v;;g:}: be a dual basis of E where v; € E,,, g; € E* .. Then (1) = ) v; ® g;. By (3.5) we
have
Y gi @ va) = a;(va ® g;)
where a; = ¢~ (2+A7) = ¢(®-vi:A) - On the other hand the commutation relations given in Corollary 3.10
imply that cg ., c;}\ = baicu_”l\cgﬂ,i, where b = q(q>+“’+A*’7). Therefore
ad(c).z;_ = Z baic;/l\cg,vicf,v/\cugi = bc;}\cv®f®g,z AV QUARGE — bc;/l\cv@)f@g,cf(v/\)'

Since the map ¢ is a morphism of D, ,-1 (g)-modules it is easy to see that c,g tgg,0(vn) = Co* (v@f@g)0n-
Let v : Cyp[G] — U, ,-1(bT) be the algebra anti-isomorphism given in Proposition 4.6.

Lemma 4.10. Let ¢ = ¢g,, € Cyp[G]—y, f € L(A)* be as in the previous theorem and x € U, ,-1(b™)
be such that v(c) = x. Then

CS—1(x).fron = Co*(v®f®g),va
Proof. Notice that it suffices to show that
CS—l(z).f,vA (y) = Ca*(v@f@g),v/\ (y)

for all y € U, ,-1(b™). Denote by ( | ) the Hopf pairing ( | ),-1 between U, ,~1(b7)°P and U, ,-1(b7) as
in §3.4. Let x be the one dimensional representation of U, ,-1(b™) associated to vy and let ¥ = x - 7.
Notice that x(x) = (z | t_a); so x(¢) = c(t_p). Recalling that + is a morphism of coalgebras and using
the relation (cgy) of §2.3 in the double U, ,-1(b™) x U, ,—1(b™), we obtain

Cs—1(z).fon () = f(xyva)
= ) o lva) e | SWe)) fu@zeva)
= ) o v e | SWUe) x(@@) Fyeva)
= ) eax@e) lya)(@e) | SWe) fyeva)
= D (ecayX(e@)) W) e (S W) fy@va)
= D rxle@) W) o W) Slee) (ye)-

Mg o, one shows as in the proof of Proposition 4.9 that

Since r(cg,v,) = q(®-vi
cs-1(x).fon(Y) = Z ri(cy)(Way) crwa (W2y) S(e@2)) (Yes))
= Z q(é_ui,A) (cg7vin,UACU,gi)(y)

= Cor(vefog)wa(Y);
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as required. O

Theorem 4.11. Consider C}f; as a C,p|G]-module via the adjoint action. Then
(1) SocC} =C.
(2) AnnC’j}' D I(wg,e)-
(3) The elements c5_, o, , pp € LT, act diagonalizably on Cf.
(4) SocCf ={z€ Cf | Annz D I (. )}

Proof. For A € LT, define a U, ,-:(b™)-module by

Sa = (Ugp1 (67 )vw,a)* = LA/ (Ug 1 (07 )0y, a) "
It is easily checked that Soc Sy = Cf_,, o (see [18, 7.3]). Let 0 : Sy — Ta be the linear map given

by f ZJT Denote by ¢ the one-dimensional representation of C,,[G] given by ((c) = c(t—w, a). Let

c=cyy € C(E)_p~. Then l¢(c) = ¢?-1+Ne = ¢~ (®+w+Am)e Then, using Proposition 4.9 and
Lemma 4.10 we obtain,

ad(1¢(0)-0(F) = ¢~ @A ad(0).2F = 2 =6 A,
Hence, ad(l¢(c)).0(f) = (S~ (y(c))f) for all ¢ € A. This immediately implies part (2) since Kery D
Twy ey and I¢(Lwg,e)) = I(wy,e)- If Sa is given the structure of an A-module via S~lv, then § is a
homomorphism from Sj to the module T) twisted by the automorphism I¢. Since 6(f_,,a) = 1 it
follows that d is bijective and that SocTh = §(Soc Sp) = C. Part (1) then follows from Lemma 4.8. Part
(3) follows from the above formula and the fact that vy(cy_, ,) = s—,. Since A/I ) is generated by the
images of the elements c;_, ., (4) is a consequence of the definitions. O

Theorem 4.12. Consider CH as a C, ,|G]-module via the adjoint action. Then
SocCH =C.

Proof. By Theorem 4.11 we have that Soc C;) = C. Using the map o, one obtains analogous results for
C,,. The map Cf ® C;, — CH is a module map for the adjoint action which is surjective by Theorem
4.1. So it suffices to show that Soc C;f @ C, = C. The following argument is taken from [18].

By the analog of Theorem 4.11 for C';; we have that the elements cf_, ., act as commuting diagonaliz-
able operators on C,,. Therefore an element of C ® C,) may be written as Y a; ®b; where the b; are lin-
early independent weight vectors. Let ¢, be a generator of I 7. Suppose that Y a;®b; € Soc(Cf @Cy,).
Then

0= ad(cfﬂ,A).(Z a; @b;) = Z ad(cs,).a; @ ad(cy; v, )-bi
i ij

= Z ad(cru,).a; @ ad(cy , v,).bi

= Z ad(cfu,).0; ® a;b;

for some «; € C*. Thus ad(cy,y, ).a; = 0 for all 7. Thus the a; are annihilated by the left ideal generated
by the cy,,. But this left ideal is two-sided modulo I,y and Ann ChH o I(wg,e)- Thus the a; are
annihilated by I(. ) and so lie in Soc C; by Theorem 4.11. Thus }_a; ® b; € Soc(C® C;;) =C®C. O

Corollary 4.13. The algebra AX contains no nontrivial ad-invariant ideals. Furthermore, (AZ)2d = C.

Proof. Notice that Theorem 4.12 implies that CZ contains no nontrivial ad-invariant ideals. Since AZ
is a localization of C the same must be true for AZ. Let a € (AZ)2d\C. Then a is central and so for
any a € C, (a — «) is a non-zero ad-invariant ideal of AZ. This implies that a — « is invertible in AZ for

any o € C. This contradicts the fact that AZ has countable dimension over C. O
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Theorem 4.14. Let Z,, be the center of A,,. Then
(1) Zy = Ag;d;
(2) Zuw = @y, 21 where Zy = Zy, NAHc,n\;
(3) If Z) # (0), then Zy = Cuy for some unit uy;
(4) The group H acts transitively on the mazimal ideals of Z,,.

Proof. The proof of (1) is standard. Assertion (2) follows from Theorem 4.7. Let uy be a non-zero
element of Zy. Then uy = acy), for some a € AZ. This implies that @ is normal and hence a generates
an ad-invariant ideal of AZ. Thus a (and hence also uy) is a unit by Theorem 4.13. Since Z, = C,
it follows that Zy = Cu,. Since the action of H is given by r(ux) = A(h)uy, it is clear that H acts
transitively on the maximal ideals of Z,,. O

Theorem 4.15. The ideals of A, are generated by their intersection with the center, Z,,.

Proof. Any element f € A, may be written uniquely in the form f = 3" ayc,x where a) € AZ. Define
71 A, — AH to be the projection given by m(>_ axcwa) = ao and notice that 7 is a module map for the
adjoint action. Define the support of f to be Supp(f) = {A € L | ax # 0}. Let I be an ideal of A,,. For
any set Y C L such that 0 € Y define

Iy = {be AH | b =7(f) for some f € I such that Supp(f) CY}

If I is ad-invariant then Iy is an ad-invariant ideal of A and hence is either (0) or AX.

Now let I' = (I N Z,)A, and suppose that I # I’. Choose an element f = Y ajycy,y € I\I' whose
support S has the smallest cardinality. We may assume without loss of generality that 0 € S. Suppose
that there exists g € I’ with Supp(g) C S. Then there exists a ¢’ € I’ with Supp(¢’) C S and 7(¢’) = 1.
But then f — agg’ is an element of I’ with smaller support than F. Thus there can be no elements in
I' whose support is contained in S. So we may assume that 7(f) = ap = 1. For any ¢ € C, ,[G], set
fe=ad(c).f —e(c)f. Since w(f.) = 0 it follows that |Supp(f.)| < |Supp(f)| and hence that f. = 0. Thus
feInA¥ =1nZ,, a contradiction. O

Putting these results together yields the main theorem of this section, which completes Corollary 4.5
by describing the set of primitive ideals of type w.

Theorem 4.16. Forw € W xW the subsets Prim,, C, ,[G] are precisely the H-orbits inside Prim C, ,[G].

Finally we calculate the size of these orbits in the algebraic case. Set L,, = {A € L | Z) # (0)}.
Recall the definition of s(w) from (1.3) and that p is called g-rational if u is algebraic. In this case we
know by Theorem 1.7 that there exists m € N* such that ®(mL) C L.

Proposition 4.17. Suppose that p is q-rational. Let X € L and yx = cwd_mrCuwd,mr. Then

(1) yx is ad-semi-invariant. In fact, for any c € A_,, -,

ad(c).yx = q(m“(w))"")e(c)yA.
where o(w) = P_w_P — P w,; P_

(2) Ly, N2mL = 2Kero(w) NmL

(3) dimZ,, = n — s(w)
Proof. Using Lemma 4.2, we have that forc € A_, ,

cyy = q(<I>+w+<I>,m)\,—n)q(tlbr(b,m)\,'y)q((b,w,¢+m)\,n)q(<b,®+m/\,—'y)y/\c
_ gmotwrmny .

From this it follows easily that
ad(c).yx = g7 e(e)yy.
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Since (up to some scalar) y\ = dg}  d,}
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- c;fm\ it follows from Theorem 4.7 that yy € (Aw)—2mx-

However, as a C,,[G]-module via the adjoint action, Afy, = AZ ® Cy, and hence Soc Ay, = Cy,.

w

Thus Z_omx # (0) if and only if y, is ad-invariant; that is, if and only if mo(w)A = 0. Hence

dim Z,, = vk L,, = rk(L,, N 2mL) = rk Ker,,1, o(w)

= dim Kerp+ o(w) =n — s(w)

as required. O

Finally, we may deduce that in the algebraic case the size of the of the H-orbits Symp,, G and
Prim,, C, ,[G] are the same, cf. Theorem 1.8.

Theorem 4.18. Suppose that p is q-rational and let w € W x W. Then

VP € Prim,, C,; ,[G], dim(H/Staby P) =n — s(w).

Proof. This follows easily from theorems 4.15, 4.16 and Proposition 4.17. O
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