ALGEBRAIC STRUCTURE OF MULTI-PARAMETER QUANTUM GROUPS

TIMOTHY J. HODGES, THIERRY LEVASSEUR, AND MARGARITA TORO

Introduction

Let G be a connected semi-simple complex Lie group. We define and study the multi-parameter quantum group $\mathbb{C}_{q, p}[G]$ in the case where q is a complex parameter that is not a root of unity. Using a method of twisting bigraded Hopf algebras by a cocycle, [2], we develop a unified approach to the construction of $\mathbb{C}_{q, p}[G]$ and of the multi-parameter Drinfeld double $D_{q, p}$. Using a general method of deforming bigraded pairs of Hopf algebras, we construct a Hopf pairing between these algebras from which we deduce a Peter-Weyl-type theorem for $\mathbb{C}_{q, p}[G]$. We then describe the prime and primitive spectra of $\mathbb{C}_{q, p}[G]$, generalizing a result of Joseph. In the one-parameter case this description was conjectured, and established in the $S L(n)$-case, by the first and second authors in [15, 16]. It was proved in the general case by Joseph in $[18,19]$. In particular the orbits in $\operatorname{Prim} \mathbb{C}_{q, p}[G]$ under the natural action of the maximal torus H are indexed, as in the one-parameter case by the elements of the double Weyl group $W \times W$. Unlike the one-parameter case there is not in general a bijection between $\operatorname{Symp} G$ and $\operatorname{Prim} \mathbb{C}_{q, p}[G]$. However in the case when the symplectic leaves are algebraic such a bijection does exist since the orbits corresponding to a given $w \in W \times W$ have the same dimension.

In the first section we discuss the Poisson structures on G defined by classical r-matrices of the form $r=a-u$ where $a=\sum_{\alpha \in \mathbf{R}_{+}} e_{\alpha} \wedge e_{-\alpha} \in \wedge^{2} \mathfrak{g}$ and $u \in \wedge^{2} \mathfrak{h}$. Given such an r one constructs a Manin triple of Lie groups ($G \times G, G, G_{r}$). Unlike the one-parameter case (where $u=0$), the dual group G_{r} will generally not be an algebraic subgroup of $G \times G$. In fact this happens if and only if $u \in \wedge^{2} \mathfrak{h}_{\mathbb{Q}}$. Since the quantized universal enveloping algebra $U_{q}(\mathfrak{g})$ is a deformation of the algebra of functions on the algebraic group G_{r} [11], this explains the difficulty in constructing multi-parameter versions of $U_{q}(\mathfrak{g})$. From [22, 30], one has that the symplectic leaves are the connected components of $G \cap G_{r} x G_{r}$ where $x \in G$. Since r is H-invariant, the symplectic leaves are permuted by H with the orbits being contained in Bruhat cells in $G \times G$ indexed by $W \times W$. In the case where G_{r} is algebraic, the symplectic leaves are also algebraic and an explicit formula is given for their dimension.

The philosophy of $[15,16]$ was that, as in the case of enveloping algebras of algebraic solvable Lie algebras, the primitive ideals of $\mathbb{C}_{q}[G]$ should be in bijection with the symplectic leaves of G (in the case $u=0)$. Indeed, since the Lie bracket on $\mathfrak{g}_{r}=\operatorname{Lie}\left(G_{r}\right)$ is the linearization of the Poisson structure on G, $\operatorname{Prim} \mathbb{C}_{q, p}[G]$ should resemble Prim $U\left(\mathfrak{g}_{r}\right)$. The study of the multi-parameter versions $\mathbb{C}_{q, p}[G]$ is similar to the case of enveloping algebras of general solvable Lie algebras. In the general case Prim $U\left(\mathfrak{g}_{r}\right)$ is in bijection with the co-adjoint orbits in \mathfrak{g}_{r}^{*} under the action of the 'adjoint algebraic group' of \mathfrak{g}_{r}, [12]. It is therefore natural that, only in the case where the symplectic leaves are algebraic, does one expect and obtain a bijection between the symplectic leaves and the primitive ideals.

In section 2 we define the notion of an \mathbf{L}-bigraded Hopf \mathbb{K}-algebra, where \mathbf{L} is an abelian group. When A is finitely generated such bigradings correspond bijectively to morphisms from the algebraic group \mathbf{L}^{\vee} to the (algebraic) group $R(A)$ of one- dimensional representations of A. For any antisymmetric bicharacter p on \mathbf{L}, the multiplication in A may be twisted to give a new Hopf algebra A_{p}. Moreover, given a pair of L-bigraded Hopf algebras A and U equipped with an L-compatible Hopf pairing $A \times U \rightarrow \mathbb{K}$, one can deform the pairing to get a new Hopf pairing between $A_{p^{-1}}$ and U_{p}. This deformation commutes

[^0]with the formation of the Drinfeld double in the following sense. Suppose that A and U are bigraded Hopf algebras equipped with a compatible Hopf pairing $A^{\mathrm{op}} \times U \rightarrow \mathbb{K}$. Then the Drinfeld double $A \bowtie U$ inherits a bigrading such that $(A \bowtie U)_{p} \cong A_{p} \bowtie U_{p}$.

Let $\mathbb{C}_{q}[G]$ denote the usual one-parameter quantum group (or quantum function algebra) and let $U_{q}(\mathfrak{g})$ be the quantized enveloping algebra associated to the lattice \mathbf{L} of weights of G. Let $U_{q}\left(\mathfrak{b}^{+}\right)$ and $U_{q}\left(\mathfrak{b}^{-}\right)$be the usual sub-Hopf algebras of $U_{q}(\mathfrak{g})$ corresponding to the Borel subalgebras \mathfrak{b}^{+}and \mathfrak{b}^{-} respectively. Let $D_{q}(\mathfrak{g})=U_{q}\left(\mathfrak{b}^{+}\right) \bowtie U_{q}\left(\mathfrak{b}^{-}\right)$be the Drinfeld double. Since the groups of one-dimensional representations of $U_{q}\left(\mathfrak{b}^{+}\right), U_{q}\left(\mathfrak{b}^{-}\right), D_{q}(\mathfrak{g})$ and $\mathbb{C}_{q}[G]$ are all isomorphic to $H=\mathbf{L}^{\vee}$, these algebras are all equipped with L-bigradings. Moreover the Rosso-Tanisaki pairing is compatible with the bigradings on $U_{q}\left(\mathfrak{b}^{+}\right)$and $U_{q}\left(\mathfrak{b}^{-}\right)$. For any anti-symmetric bicharacter p on \mathbf{L} one may therefore twist simultaneously the Hopf algebras $U_{q}\left(\mathfrak{b}^{+}\right), U_{q}\left(\mathfrak{b}^{-}\right)$and $D_{q}(\mathfrak{g})$ in such a way that $D_{q, p}(\mathfrak{g}) \cong U_{q, p}\left(\mathfrak{b}^{+}\right) \bowtie U_{q, p}\left(\mathfrak{b}^{-}\right)$. The algebra $D_{q, p}(\mathfrak{g})$ is the 'multi-parameter quantized universal enveloping algebra' constructed by Okado and Yamane [25] and previously in special cases in [9, 32]. The canonical pairing between $\mathbb{C}_{q}[G]$ and $U_{q}(\mathfrak{g})$ induces a L-compatible pairing between $\mathbb{C}_{q}[G]$ and $D_{q}(\mathfrak{g})$. Thus there is an induced pairing between the multi-parameter quantum group $\mathbb{C}_{q, p}[G]$ and the multi-parameter double $D_{q, p^{-1}}(\mathfrak{g})$. Recall that the Hopf algebra $\mathbb{C}_{q}[G]$ is defined as the restricted dual of $U_{q}(\mathfrak{g})$ with respect to a certain category \mathcal{C} of modules over $U_{q}(\mathfrak{g})$. There is a natural deformation functor from this category to a category \mathcal{C}_{p} of modules over $D_{q, p^{-1}}(\mathfrak{g})$ and $\mathbb{C}_{q, p}[G]$ turns out to be the restricted dual of $D_{q, p^{-1}}(\mathfrak{g})$ with respect to this category. This Peter-Weyl theorem for $\mathbb{C}_{q, p}[G]$ was also found by Andruskiewitsch and Enriquez in [1] using a different construction of the quantized universal enveloping algebra and in special cases in [5, 14].

The main theorem describing the primitive spectrum of $\mathbb{C}_{q, p}[G]$ is proved in the final section. Since $\mathbb{C}_{q, p}[G]$ inherits an L-bigrading, there is a natural action of H as automorphisms of $\mathbb{C}_{q, p}[G]$. For each $w \in W \times W$, we construct an algebra $A_{w}=\left(\mathbb{C}_{q, p}[G] / I_{w}\right)_{\mathcal{E}_{w}}$ which is a localization of a quotient of $\mathbb{C}_{q, p}[G]$. For each prime $P \in \operatorname{Spec} \mathbb{C}_{q, p}[G]$ there is a unique $w \in W \times W$ such that $P \supset I_{w}$ and $P A_{w}$ is proper. Thus Spec $\mathbb{C}_{q, p}[G] \cong \bigsqcup_{w \in W \times W} \operatorname{Spec}_{w} \mathbb{C}_{q, p}[G]$ where $\operatorname{Spec}_{w} \mathbb{C}_{q, p}[G] \cong \operatorname{Spec} A_{w}$ is the set of primes of type w. The key results are then Theorems 4.14 and 4.15 which state that an ideal of A_{w} is generated by its intersection with the center and that H acts transitively on the maximal ideals of the center. From this it follows that the primitive ideals of $\mathbb{C}_{q, p}[G]$ of type w form an orbit under the action of H.

An earlier version of our approach to the proof of Joseph's theorem is contained in the unpublished article [17]. The approach presented here is a generalization of this proof to the multi-parameter case.

These results are algebraic analogs of results of Levendorskii [20, 21] on the irreducible representations of multi-parameter function algebras and compact quantum groups. The bijection between symplectic leaves of the compact Poisson group and irreducible $*$-representations of the compact quantum group found by Soibelman in the one-parameter case, breaks down in the multi-parameter case.

After this work was completed, the authors became aware of the work of Constantini and Varagnolo $[7,8]$ which has some overlap with the results in this paper.

1. Poisson Lie Groups

1.1. Notation. Let \mathfrak{g} be a complex semi-simple Lie algebra associated to a Cartan matrix $\left[a_{i j}\right]_{1 \leqslant i, j \leqslant n}$. Let $\left\{d_{i}\right\}_{1 \leqslant i \leqslant n}$ be relatively prime positive integers such that $\left[d_{i} a_{i j}\right]_{1 \leqslant i, j \leqslant n}$ is symmetric positive definite.

Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}, \mathbf{R} the associated root system, $\mathbf{B}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ a basis of $\mathbf{R}, \mathbf{R}_{+}$ the set of positive roots and W the Weyl group. We denote by \mathbf{P} and \mathbf{Q} the lattices of weights and roots respectively. The fundamental weights are denoted by $\varpi_{1}, \ldots, \varpi_{n}$ and the set of dominant integral weights by $\mathbf{P}^{+}=\sum_{i=1}^{n} \mathbb{N} \varpi_{i}$. Let $(-,-)$ be a non-degenerate \mathfrak{g}-invariant symmetric bilinear form on \mathfrak{g}; it will identify \mathfrak{g}, resp. \mathfrak{h}, with its dual \mathfrak{g}^{*}, resp. \mathfrak{h}^{*}. The form $(-,-)$ can be chosen in order to induce a perfect pairing $\mathbf{P} \times \mathbf{Q} \rightarrow \mathbb{Z}$ such that

$$
\left(\varpi_{i}, \alpha_{j}\right)=\delta_{i j} d_{i}, \quad\left(\alpha_{i}, \alpha_{j}\right)=d_{i} a_{i j}
$$

Hence $d_{i}=\left(\alpha_{i}, \alpha_{i}\right) / 2$ and $(\alpha, \alpha) \in 2 \mathbb{Z}$ for all $\alpha \in \mathbf{R}$. For each α_{j} we denote by $h_{j} \in \mathfrak{h}$ the corresponding coroot: $\varpi_{i}\left(h_{j}\right)=\delta_{i j}$. We also set

$$
\mathfrak{n}^{ \pm}=\oplus_{\alpha \in \mathbf{R}_{+}} \mathfrak{g}_{ \pm \alpha}, \quad \mathfrak{b}^{ \pm}=\mathfrak{h} \oplus \mathfrak{n}^{ \pm}, \quad \mathfrak{d}=\mathfrak{g} \times \mathfrak{g}, \quad \mathfrak{t}=\mathfrak{h} \times \mathfrak{h}, \quad \mathfrak{u}^{ \pm}=\mathfrak{n}^{ \pm} \times \mathfrak{n}^{\mp} .
$$

Let G be a connected complex semi-simple algebraic group such that $\operatorname{Lie}(G)=\mathfrak{g}$ and set $D=G \times G$. We identify G (and its subgroups) with the diagonal copy inside D. We denote by exp the exponential map from \mathfrak{d} to D. We shall in general denote a Lie subalgebra of \mathfrak{d} by a gothic symbol and the corresponding connected analytic subgroup of D by a capital letter.
1.2. Poisson Lie group structure on G. Let $a=\sum_{\alpha \in \mathbf{R}_{+}} e_{\alpha} \wedge e_{-\alpha} \in \wedge^{2} \mathfrak{g}$ where the e_{α} are root vectors such that $\left(e_{\alpha}, e_{\beta}\right)=\delta_{\alpha,-\beta}$. Let $u \in \wedge^{2} \mathfrak{h}$ and set $r=a-u$. Then it is well known that r satisfies the modified Yang-Baxter equation [3, 20] and that therefore the tensor $\pi(g)=\left(l_{g}\right)_{*} r-\left(r_{g}\right)_{*} r$ furnishes G with the structure of a Poisson Lie group, see [13, 22, 30] $\left(\left(l_{g}\right)_{*}\right.$ and $\left(r_{g}\right)_{*}$ are the differentials of the left and right translation by $g \in G$).

We may write $u=\sum_{1 \leq i, j \leq n} u_{i j} h_{i} \otimes h_{j}$ for a skew-symmetric $n \times n$ matrix $\left[u_{i j}\right]$. The element u can be considered either as an alternating form on \mathfrak{h}^{*} or a linear map $u \in$ End \mathfrak{h} by the formula

$$
\forall x \in \mathfrak{h}, \quad u(x)=\sum_{i, j} u_{i, j}\left(x, h_{i}\right) h_{j} .
$$

The Manin triple associated to the Poisson Lie structure on G given by r is described as follows. Set $u_{ \pm}=u \pm I \in$ End \mathfrak{h} and define

$$
\begin{gathered}
\vartheta: \mathfrak{h} \hookrightarrow \mathfrak{t}, \quad \vartheta(x)=-\left(u_{-}(x), u_{+}(x)\right), \\
\mathfrak{a}=\vartheta(\mathfrak{h}), \quad \mathfrak{g}_{r}=\mathfrak{a} \oplus \mathfrak{u}^{+} .
\end{gathered}
$$

Following [30] one sees easily that the associated Manin triple is $\left(\mathfrak{d}, \mathfrak{g}, \mathfrak{g}_{r}\right)$ where \mathfrak{g} is identified with the diagonal copy inside \mathfrak{d}. Then the corresponding triple of Lie groups is $\left(D, G, G_{r}\right)$, where $A=\exp (\mathfrak{a})$ is an analytic torus and $G_{r}=A U^{+}$. Notice that \mathfrak{g}_{r} is a solvable, but not in general algebraic, Lie subalgebra of \mathfrak{d}.

The following is an easy consequence of the definition of \mathfrak{a} and the identities $u_{+}+u_{-}=2 u, u_{+}-u_{-}=2 I$:

$$
\begin{equation*}
\mathfrak{a}=\{(x, y) \in \mathfrak{t} \mid x+y=u(y-x)\}=\left\{(x, y) \in \mathfrak{t} \mid u_{+}(x)=u_{-}(y)\right\} . \tag{1.1}
\end{equation*}
$$

Recall that $\exp : \mathfrak{h} \rightarrow H$ is surjective; let L_{H} be its kernel. We shall denote by $\mathbf{X}(K)$ the group of characters of an algebraic torus K. Any $\chi \in \mathbf{X}(H)$ is given by $\chi(\exp x)=\exp d \chi(x), x \in \mathfrak{h}$, where $d \chi \in \mathfrak{h}^{*}$ is the differential of χ. Then

$$
\mathbf{X}(H) \cong \mathbf{L}=L_{H}^{\circ}:=\left\{\xi \in \mathfrak{h}^{*} \mid \xi\left(L_{H}\right) \subset 2 i \pi \mathbb{Z}\right\}
$$

One can show that \mathbf{L} has a basis consisting of dominant weights.
Recall that if \tilde{G} is a connected simply connected algebraic group with Lie algebra \mathfrak{g} and maximal torus \tilde{H}, we have

$$
\begin{aligned}
& L_{\tilde{H}}=\mathbf{P}^{\circ}=\oplus_{j=1}^{n} 2 i \pi \mathbb{Z} h_{j}, \quad \mathbf{X}(\tilde{H}) \cong \mathbf{P} \\
& \mathbf{Q} \subseteq \mathbf{L} \subseteq \mathbf{P}, \quad \pi_{1}(G)=L_{H} / \mathbf{P}^{\circ} \cong \mathbf{P} / \mathbf{L}
\end{aligned}
$$

Notice that $L_{H} / \mathbf{P}^{\circ}$ is a finite group and $\exp u\left(L_{H}\right)$ is a subgroup of H. We set

$$
\begin{gathered}
\Gamma_{0}=\left\{(a, a) \in T \mid a^{2}=1\right\}, \quad \Delta=\left\{(a, a) \in T \mid a^{2} \in \exp u\left(L_{H}\right)\right\} \\
\Gamma=A \cap H=\{(a, a) \in T \mid a=\exp x=\exp y, x+y=u(y-x)\}
\end{gathered}
$$

It is easily seen that $\Gamma=G \cap G_{r}$.
Proposition 1.1. We have $\Delta=\Gamma . \Gamma_{0}$.

Proof. We obviously have $\Gamma_{0} \subset \Delta$. Let $(\exp h, \exp h) \in \Gamma, h \in \mathfrak{h}$. By definition there exist $(x, y) \in \mathfrak{a}$, $\ell_{1}, \ell_{2} \in L_{H}$ such that

$$
x=h+\ell_{1}, y=h+\ell_{2}, \quad y+x=u(y-x)
$$

Hence $y+x=2 h+\ell_{1}+\ell_{2}=u\left(\ell_{2}-\ell_{1}\right)$ and $(\exp h)^{2}=\exp 2 h=\exp u\left(\ell_{2}-\ell_{1}\right)$. This shows $(\exp h, \exp h) \in$ Δ. Thus $\Gamma . \Gamma_{0} \subseteq \Delta$.

Let $(a, a) \in \Delta, a=\exp h, h \in \mathfrak{h}$. From $a^{2} \in \exp u\left(L_{H}\right)$ we get $\ell, \ell^{\prime} \in L_{H}$ such that $2 h=u\left(\ell^{\prime}\right)+\ell$. Set $x=h-\ell / 2-\ell^{\prime} / 2, y=h+\ell^{\prime} / 2-\ell / 2$. Then $y+x=u(y-x)$ and we have $\exp \left(-\ell / 2-\ell^{\prime} / 2\right)=$ $\exp \left(\ell^{\prime} / 2-\ell / 2\right)$, since $\ell^{\prime} \in L_{H}$. If $b=\exp \left(-\ell^{\prime} / 2+\ell / 2\right)$ we obtain $\exp x=\exp y=a b^{-1}$, hence $(a, a)=(\exp x, \exp y) .(b, b) \in \Gamma \cdot \Gamma_{0}$. Therefore $\Gamma \cdot \Gamma_{0}=\Delta$.

Remark. When u is "generic" Γ_{0} is not contained in Γ. For example, take G to be $S L(3, \mathbb{C})$ and $u=\alpha\left(h_{1} \otimes h_{2}-h_{2} \otimes h_{1}\right)$ with $\alpha \notin \mathbb{Q}$.

Considered as a Poisson variety, G decomposes as a disjoint union of symplectic leaves. Denote by $\operatorname{Symp} G$ the set of these symplectic leaves. Since r is H-invariant, translation by an element of H is a Poisson morphism and hence there is an induced action of H on $\operatorname{Symp} G$. The key to classifying the symplectic leaves is the following result, cf. [22, 30].

Theorem 1.2. The symplectic leaves of G are exactly the connected components of $G \cap G_{r} x G_{r}$ for $x \in G$.
Remark that A, Γ and G_{r} are in general not closed subgroups of D. This has for consequence that the analysis of $\operatorname{Symp} G$ made in [15, Appendix A] in the case $u=0$ does not apply in the general case.

Set $Q=H G_{r}=T U^{+}$. Then Q is a Borel subgroup of D and, recalling that the Weyl group associated to the pair (G, T) is $W \times W$, the corresponding Bruhat decomposition yields $D=\sqcup_{w \in W \times W} Q w Q=$ $\sqcup_{w \in W \times W} Q w G_{r}$. Therefore any symplectic leaf is contained in a Bruhat cell $Q w Q$ for some $w \in W \times W$.

Definition. A leaf \mathcal{A} is said to be of type w if $\mathcal{A} \subset Q w Q$. The set of leaves of type w is denoted by $\operatorname{Symp}_{w} G$.

For each $w \in W \times W$ set $w=\left(w_{+}, w_{-}\right), w_{ \pm} \in W$, and fix a representative \dot{w} in the normaliser of T. One shows as in [15, Appendix A] that $G \cap Q \dot{w} G_{r} \neq \emptyset$, for all $w \in W \times W$; hence $\operatorname{Symp}_{w} G \neq \emptyset$ and $G \cap G_{r} \dot{w} G_{r} \neq \emptyset$, since $Q w Q=\cup_{h \in H} h G_{r} \dot{w} G_{r}$.

The adjoint action of D on itself is denoted by Ad. Set

$$
\begin{gathered}
U_{w}^{-}=\operatorname{Ad} w(U) \cap U^{+}, \quad A_{w}^{\prime}=\left\{a \in A \mid a \dot{w} G_{r}=\dot{w} G_{r}\right\} \\
T_{w}^{\prime}=\left\{t \in T \mid t G_{r} \dot{w} G_{r}=G_{r} \dot{w} G_{r}\right\}, \quad H_{w}^{\prime}=H \cap T_{w}^{\prime} .
\end{gathered}
$$

Recall that U_{w}^{-}is isomorphic to $\mathbb{C}^{l(w)}$ where $l(w)=l\left(w_{+}\right)+l\left(w_{-}\right)$is the length of w. We set $s(w)=$ $\operatorname{dim} H_{w}^{\prime}$.

Lemma 1.3. (i) $A_{w}^{\prime}=\operatorname{Ad} w(A) \cap A$ and $T_{w}^{\prime}=A$. $\operatorname{Ad} w(A)=A H_{w}^{\prime}$.
(ii) We have $\operatorname{Lie}\left(A_{w}^{\prime}\right)=\mathfrak{a}_{w}^{\prime}=\left\{\vartheta(x) \mid x \in \operatorname{Ker}\left(u_{-} w_{-}^{-1} u_{+}-u_{+} w_{+}^{-1} u_{-}\right)\right\}$and $\operatorname{dim} \mathfrak{a}_{w}^{\prime}=n-s(w)$.

Proof. (i) The first equality is obvious and the second is an easy consequence of the bijection, induced by multiplication, between $U_{w}^{-} \times T \times U^{+}$and $Q w Q=Q w G_{r}$.
(ii) By definition we have $\mathfrak{a}_{w}^{\prime}=\left\{\vartheta(x) \mid x \in \mathfrak{h}, w^{-1}(\vartheta(x)) \in \mathfrak{a}\right\}$. From (1.1) we deduce that $\vartheta(x) \in \mathfrak{a}_{w}^{\prime}$ if and only if $u_{+} w_{+}^{-1}\left(-u_{-}(x)\right)=u_{-} w_{-}^{-1}\left(-u_{+}(x)\right)$.

It follows from (i) that $\operatorname{dim} T_{w}^{\prime}=n+\operatorname{dim} H_{w}^{\prime}=2 n-\operatorname{dim} A_{w}^{\prime}$, hence $\operatorname{dim} \mathfrak{a}_{w}^{\prime}=n-s(w)$.
Recall that $u \in$ End \mathfrak{h} is an alternating bilinear form on \mathfrak{h}^{*}. It is easily seen that $\forall \lambda, \mu \in \mathfrak{h}^{*}$, $u(\lambda, \mu)=-\left({ }^{t} u(\lambda), \mu\right)$, where ${ }^{t} u \in$ End \mathfrak{h}^{*} is the transpose of u.

Notation. Set ${ }^{t} u=-\Phi, \Phi_{ \pm}=\Phi \pm I, \sigma(w)=\Phi_{-} w_{-} \Phi_{+}-\Phi_{+} w_{+} \Phi_{-}$, where $w_{ \pm} \in W$ is considered as an element of End \mathfrak{h}^{*}.

Observe that ${ }^{t} u_{ \pm}=-\Phi_{\mp}$ and that

$$
\begin{equation*}
u(\lambda, \mu)=(\Phi \lambda, \mu), \quad \text { for all } \lambda, \mu \in \mathfrak{h}^{*} . \tag{1.2}
\end{equation*}
$$

Furthermore, since the transpose of $w_{ \pm} \in \operatorname{End} \mathfrak{h}^{*}$ is $w_{ \pm}^{-1} \in \operatorname{End} \mathfrak{h}$, we have ${ }^{t} \sigma(w)=u_{-} w_{-}^{-1} u_{+}-u_{+} w_{+}^{-1} u_{-}$. Hence by Lemma 1.3

$$
\begin{equation*}
s(w)=\operatorname{codim} \operatorname{Ker}_{\mathfrak{h}^{*}} \sigma(w), \quad \operatorname{dim} A_{w}^{\prime}=\operatorname{dim} \operatorname{Ker}_{\mathfrak{h}^{*}} \sigma(w) . \tag{1.3}
\end{equation*}
$$

1.3. The algebraic case. As explained in 1.1 the Lie algebra \mathfrak{g}_{r} is in general not algebraic. We now describe its algebraic closure. Recall that a Lie subalgebra \mathfrak{m} of \mathfrak{d} is said to be algebraic if \mathfrak{m} is the Lie algebra of a closed (connected) algebraic subgroup of D.

Definition. Let \mathfrak{m} be a Lie subalgebra of \mathfrak{d}. The smallest algebraic Lie subalgebra of \mathfrak{d} containing \mathfrak{m} is called the algebraic closure of \mathfrak{m} and will be denoted by $\tilde{\mathfrak{m}}$.

Recall that $\mathfrak{g}_{r}=\mathfrak{a} \oplus \mathfrak{u}^{+}$. Notice that \mathfrak{u}^{+}is an algebraic Lie subalgebra of \mathfrak{d}; hence it follows from [4, Corollary II.7.7] that $\tilde{\mathfrak{g}}_{r}=\tilde{\mathfrak{a}} \oplus \mathfrak{u}^{+}$. Thus we only need to describe $\tilde{\mathfrak{a}}$. Since \mathfrak{t} is algebraic we have $\tilde{\mathfrak{a}} \subseteq \mathfrak{t}$ and we are reduced to characterize the algebraic closure of a Lie subalgebra of $\mathfrak{t}=\operatorname{Lie}(T)$.

The group $T=H \times H$ is an algebraic torus (of rank $2 n$). The map $\chi \mapsto d \chi$ identifies $\mathbf{X}(T)$ with $\mathbf{L} \times \mathbf{L}$.
Let $\mathfrak{k} \subset \mathfrak{t}$ be a subalgebra. We set

$$
\mathfrak{k}^{\perp}=\left\{\theta \in \mathbf{X}(T) \mid \mathfrak{k} \subset \operatorname{Ker}_{\mathfrak{t}} \theta\right\}
$$

The following proposition is well known. It can for instance be deduced from the results in [4, II. 8].
Proposition 1.4. Let \mathfrak{k} be a subalgebra of \mathfrak{t}. Then $\tilde{\mathfrak{k}}=\cap_{\theta \in \mathfrak{k}^{\perp}} \operatorname{Ker}_{\mathfrak{t}} \theta$ and $\tilde{\mathfrak{k}}$ is the Lie algebra of the closed connected algebraic subgroup $\tilde{K}=\cap_{\theta \in \mathfrak{k} \perp} \operatorname{Ker}_{T} \theta$.

Corollary 1.5. We have

$$
\begin{gathered}
\mathfrak{a}^{\perp}=\left\{(\lambda, \mu) \in \mathbf{X}(T) \mid \Phi_{+} \lambda+\Phi_{-} \mu=0\right\}, \\
\tilde{\mathfrak{a}}=\cap_{(\lambda, \mu) \in \mathfrak{a}^{\perp}} \operatorname{Ker}_{\mathfrak{t}}(\lambda, \mu), \quad \tilde{A}=\cap_{(\lambda, \mu) \in \mathfrak{a}^{\perp}} \operatorname{Ker}_{T}(\lambda, \mu) .
\end{gathered}
$$

Proof. From the definition of $\mathfrak{a}=\vartheta(\mathfrak{h})$ we obtain

$$
(\lambda, \mu) \in \mathfrak{a}^{\perp} \Longleftrightarrow \forall x \in \mathfrak{h}, \quad \lambda\left(-u_{-}(x)\right)+\mu\left(-u_{+}(x)\right)=0 .
$$

The first equality then follows from ${ }^{t} u_{ \pm}=-\Phi_{\mp}$. The remaining assertions are consequences of Proposition 1.4.

Set

$$
\begin{aligned}
& \mathfrak{h}_{\mathbb{Q}}=\mathbb{Q} \otimes_{\mathbb{Z}} \mathbf{P}^{\circ}=\oplus_{i=1}^{n} \mathbb{Q} h_{i}, \quad \mathfrak{h}_{\mathbb{Q}}^{*}=\mathbb{Q} \otimes_{\mathbb{Z}} \mathbf{P}=\oplus_{i=1}^{n} \mathbb{Q} \varpi_{i} \\
& \mathfrak{a}_{\mathbb{Q}}^{\perp}=\mathbb{Q} \otimes_{\mathbb{Z}} \mathfrak{a}^{\perp}=\left\{(\lambda, \mu) \in \mathfrak{h}_{\mathbb{Q}}^{*} \times \mathfrak{h}_{\mathbb{Q}}^{*} \mid \Phi_{+} \lambda+\Phi_{-} \mu=0\right\} .
\end{aligned}
$$

Observe that $\operatorname{dim}_{\mathbb{Q}} \mathfrak{a}_{\mathbb{Q}}^{\perp}=\mathrm{rk}_{\mathbb{Z}} \mathfrak{a}^{\perp}$ and that, by Corollary 1.5,

$$
\begin{equation*}
\operatorname{dim} \tilde{\mathfrak{a}}=2 n-\operatorname{dim}_{\mathbb{Q}} \mathfrak{a}_{\mathbb{Q}}^{\perp} . \tag{1.4}
\end{equation*}
$$

Lemma 1.6. $\mathfrak{a}_{\mathbb{Q}}^{\perp} \cong\left\{\nu \in \mathfrak{h}_{\mathbb{Q}}^{*} \mid \Phi \nu \in \mathfrak{h}_{\mathbb{Q}}^{*}\right\}$.
Proof. Define a \mathbb{Q}-linear map

$$
\left\{\nu \in \mathfrak{h}_{\mathbb{Q}}^{*} \mid \Phi \nu \in \mathfrak{h}_{\mathbb{Q}}^{*}\right\} \longrightarrow \mathfrak{a}_{\mathbb{Q}}^{\perp}, \quad \nu \mapsto\left(-\Phi_{-} \nu, \Phi_{+} \nu\right) .
$$

It is easily seen that this provides the desired isomorphism

Theorem 1.7. The following assertions are equivalent:
(i) \mathfrak{g}_{r} is an algebraic Lie subalgebra of \mathfrak{d};
(ii) $u(\mathbf{P} \times \mathbf{P}) \subset \mathbb{Q}$;
(iii) $\exists m \in \mathbb{N}^{*}, \quad \Phi(m \mathbf{P}) \subset \mathbf{P}$;
(iv) Γ is a finite subgroup of T.

Proof. Recall that \mathfrak{g}_{r} is algebraic if and only if $\mathfrak{a}=\tilde{\mathfrak{a}}$, i.e. $n=\operatorname{dim} \mathfrak{a}=\operatorname{dim} \tilde{\mathfrak{a}}$. By (1.4) and Lemma 1.6 this is equivalent to $\Phi(\mathbf{P}) \subset \mathfrak{h}_{\mathbb{Q}}^{*}=\mathbb{Q} \otimes_{\mathbb{Z}} \mathbf{P}$. The equivalence of (i) to (iii) then follows from the definitions, (1.2) and the fact that ${ }^{t} u=-\Phi$.

To prove the equivalence with (iv) we first observe that, by Proposition 1.1, Γ is finite if and only if $\exp u\left(L_{H}\right)$ is finite. Since $L_{H} / \mathbf{P}^{\circ}$ is finite this is also equivalent to $\exp u\left(\mathbf{P}^{\circ}\right)$ being finite. This holds if and only if $u\left(m \mathbf{P}^{\circ}\right) \subset \mathbf{P}^{\circ}$ for some $m \in \mathbb{N}^{*}$. Hence the result.

When the equivalent assertions of Theorem 1.7 hold, we shall say that we are in the algebraic case or that u is algebraic. In this case all the subgroups previously introduced are closed algebraic subgroups of D and we may define the algebraic quotient varieties D / G_{r} and $\bar{G}=G / \Gamma$. Let p be the projection $G \rightarrow \bar{G}$. Observe that \bar{G} is open in in D / G_{r} and that the Poisson bracket of G passes to \bar{G}. We set

$$
\begin{aligned}
\mathcal{C}_{\dot{w}}=G_{r} \dot{w} G_{r} / G_{r}, \quad \mathcal{C}_{w}=Q w G_{r} / G_{r} & =\cup_{h \in H} h \mathcal{C}_{\dot{w}} \\
\mathcal{B}_{\dot{w}} & =\mathcal{C}_{\dot{w}} \cap \bar{G}, \quad \mathcal{B}_{w}=\mathcal{C}_{w} \cap \bar{G}, \quad \mathcal{A}_{w}
\end{aligned}=p^{-1}\left(\mathcal{B}_{w}\right) . ~ \$ ~=
$$

The next theorem summarizes the description of the symplectic leaves in the algebraic case.
Theorem 1.8. 1. $\operatorname{Symp}_{w} G \neq \emptyset$ for all $w \in W \times W, \operatorname{Symp} G=\sqcup_{w \in W \times W} \operatorname{Symp}_{w} G$.
2. Each symplectic leaf of \bar{G}, resp. G, is of the form $h \mathcal{B}_{\dot{w}}$, resp. $h \mathcal{A}_{\dot{w}}$, for some $h \in H$ and $w \in W \times W$, where $\mathcal{A}_{\dot{w}}$ denotes a fixed connected component of $p^{-1}\left(\mathcal{B}_{\dot{w}}\right)$.
3. $\mathcal{C}_{\dot{w}} \cong A_{w} \times U_{w}^{-}$where $A_{w}=A / A_{w}^{\prime}$ is a torus of rank $s(w)$. Hence $\operatorname{dim} \mathcal{C}_{\dot{w}}=\operatorname{dim} \mathcal{B}_{\dot{w}}=\operatorname{dim} \mathcal{A}_{\dot{w}}=$ $l(w)+s(w)$ and $H / \operatorname{Stab}_{H} \mathcal{A}_{\dot{w}}$ is a torus of rank $n-s(w)$.

Proof. The proofs are similar to those given in [15, Appendix A] for the case $u=0$.

2. Deformations of Bigraded Hopf Algebras

2.1. Bigraded Hopf Algebras and their deformations. Let \mathbf{L} be an (additive) abelian group. We will say that a Hopf algebra $(A, i, m, \epsilon, \Delta, S)$ over a field \mathbb{K} is an \mathbf{L}-bigraded Hopf algebra if it is equipped with an $\mathbf{L} \times \mathbf{L}$ grading

$$
A=\bigoplus_{(\lambda, \mu) \in \mathbf{L} \times \mathbf{L}} A_{\lambda, \mu}
$$

such that
(1) $\mathbb{K} \subset A_{0,0}, A_{\lambda, \mu} A_{\lambda^{\prime}, \mu^{\prime}} \subset A_{\lambda+\lambda^{\prime}, \mu+\mu^{\prime}}$ (i.e. A is a graded algebra)
(2) $\Delta\left(A_{\lambda, \mu}\right) \subset \sum_{\nu \in \mathbf{L}} A_{\lambda, \nu} \otimes A_{-\nu, \mu}$
(3) $\lambda \neq-\mu$ implies $\epsilon\left(A_{\lambda, \mu}\right)=0$
(4) $S\left(A_{\lambda, \mu}\right) \subset A_{\mu, \lambda}$.

For sake of simplicity we shall often make the following abuse of notation: If $a \in A_{\lambda, \mu}$ we will write $\Delta(a)=\sum_{\nu} a_{\lambda, \nu} \otimes a_{-\nu, \mu}, a_{\lambda, \nu} \in A_{\lambda, \nu}, a_{-\nu, \mu} \in A_{-\nu, \mu}$.

Let $p: \mathbf{L} \times \mathbf{L} \rightarrow \mathbb{K}^{*}$ be an antisymmetric bicharacter on \mathbf{L} in the sense that p is multiplicative in both entries and that, for all $\lambda, \mu \in \mathbf{L}$,

$$
\text { (1) } p(\mu, \mu)=1 \text {; (2) } p(\lambda, \mu)=p(\mu,-\lambda) \text {. }
$$

Then the map $\tilde{p}:(\mathbf{L} \times \mathbf{L}) \times(\mathbf{L} \times \mathbf{L}) \rightarrow \mathbb{K}^{*}$ given by

$$
\tilde{p}\left((\lambda, \mu),\left(\lambda^{\prime}, \mu^{\prime}\right)\right)=p\left(\lambda, \lambda^{\prime}\right) p\left(\mu, \mu^{\prime}\right)^{-1}
$$

is a 2-cocycle on $\mathbf{L} \times \mathbf{L}$ such that $\tilde{p}(0,0)=1$.

One may then define a new multiplication, m_{p}, on A by

$$
\begin{equation*}
\forall a \in A_{\lambda, \mu}, b \in A_{\lambda^{\prime}, \mu^{\prime}}, \quad a \cdot b=p\left(\lambda, \lambda^{\prime}\right) p\left(\mu, \mu^{\prime}\right)^{-1} a b . \tag{2.1}
\end{equation*}
$$

Theorem 2.1. $A_{p}:=\left(A, i, m_{p}, \epsilon, \Delta, S\right)$ is an \mathbf{L}-bigraded Hopf algebra.
Proof. The proof is a slight generalization of that given in [2]. It is well known that $A_{p}=\left(A, i, m_{p}\right)$ is an associative algebra. Since Δ and ϵ are unchanged, (A, Δ, ϵ) is still a coalgebra. Thus it remains to check that ϵ, Δ are algebra morphisms and that S is an antipode.

Let $x \in A_{\lambda, \mu}$ and $y \in A_{\lambda^{\prime}, \mu^{\prime}}$. Then

$$
\begin{aligned}
\epsilon(x \cdot y) & =p\left(\lambda, \lambda^{\prime}\right) p\left(\mu, \mu^{\prime}\right)^{-1} \epsilon(x y) \\
& =p\left(\lambda, \lambda^{\prime}\right) p\left(\mu, \mu^{\prime}\right)^{-1} \delta_{\lambda,-\mu} \delta_{\lambda^{\prime},-\mu^{\prime}} \epsilon(x) \epsilon(y) \\
& =p\left(\lambda, \lambda^{\prime}\right) p\left(-\lambda,-\lambda^{\prime}\right)^{-1} \epsilon(x) \epsilon(y) \\
& =\epsilon(x) \epsilon(y)
\end{aligned}
$$

So ϵ is a homomorphism. Now suppose that $\Delta(x)=\sum x_{\lambda, \nu} \otimes x_{-\nu, \mu}$ and $\Delta(y)=\sum y_{\lambda^{\prime}, \nu^{\prime}} \otimes y_{-\nu^{\prime}, \mu^{\prime}}$. Then

$$
\begin{aligned}
\Delta(x) \cdot \Delta(y) & =\left(\sum x_{\lambda, \nu} \otimes x_{-\nu, \mu}\right) \cdot\left(\sum y_{\lambda^{\prime}, \nu^{\prime}} \otimes y_{-\nu^{\prime}, \mu^{\prime}}\right) \\
& =\sum x_{\lambda, \nu} \cdot y_{\lambda^{\prime}, \nu^{\prime}} \otimes x_{-\nu, \mu} \cdot y_{-\nu^{\prime}, \mu^{\prime}} \\
& =p\left(\lambda, \lambda^{\prime}\right) p\left(\mu, \mu^{\prime}\right)^{-1} \sum p\left(\nu, \nu^{\prime}\right)^{-1} p\left(-\nu,-\nu^{\prime}\right) x_{\lambda, \nu} y_{\lambda^{\prime}, \nu^{\prime}} \otimes x_{-\nu, \mu} y_{-\nu^{\prime}, \mu^{\prime}} \\
& =p\left(\lambda, \lambda^{\prime}\right) p\left(\mu, \mu^{\prime}\right)^{-1} \Delta(x y) \\
& =\Delta(x \cdot y)
\end{aligned}
$$

So Δ is also a homomorphism. Finally notice that

$$
\begin{aligned}
\sum S\left(x_{(1)}\right) \cdot x_{(2)} & =\sum S\left(x_{\lambda, \nu}\right) \cdot x_{-\nu, \mu} \\
& =\sum p(\nu,-\nu) p(\lambda, \mu)^{-1} S\left(x_{\lambda, \nu}\right) x_{-\nu, \mu} \\
& =p(\lambda, \mu)^{-1} \sum S\left(x_{\lambda, \nu}\right) \cdot x_{-\nu, \mu} \\
& =p(\lambda, \mu)^{-1} \epsilon(x) \\
& =\epsilon(x)
\end{aligned}
$$

A similar calculation shows that $\sum x_{(1)} \cdot S\left(x_{(2)}\right)=\epsilon(x)$. Hence S is indeed an antipode.

Remark . The isomorphism class of the algebra A_{p} depends only on the cohomology class $[\tilde{p}] \in H^{2}(\mathbf{L} \times$ $\left.\mathbf{L}, \mathbb{K}^{*}\right),[2, \S 3]$.
Remark. Theorem 2.1 is a particular case of the following more general construction. Let (A, i, m) be a \mathbb{K}-algebra. Assume that $F \in G L_{\mathbb{K}}(A \otimes A)$ is given such that (with the usual notation)
(1) $F(m \otimes 1)=(m \otimes 1) F_{23} F_{13} ; F(1 \otimes m)=(1 \otimes m) F_{12} F_{13}$
(2) $F(i \otimes 1)=i \otimes 1 ; F(1 \otimes i)=1 \otimes i$
(3) $F_{12} F_{13} F_{23}=F_{23} F_{13} F_{12}$, i.e. F satisfies the Quantum Yang-Baxter Equation.

Set $m_{F}=m \circ F$. Then $\left(A, i, m_{F}\right)$ is a \mathbb{K}-algebra.
Assume furthermore that $(A, i, m, \epsilon, \Delta, S)$ is a Hopf algebra and that
(4) $F: A \otimes A \rightarrow A \otimes A$ is morphism of coalgebras
(5) $m F(S \otimes 1) \Delta=m(S \otimes 1) \Delta$; $m F(1 \otimes S) \Delta=m(1 \otimes S) \Delta$.

Then $A_{F}:=\left(A, i, m_{F}, \epsilon, \Delta, S\right)$ is a Hopf algebra. The proofs are straightforward verifications and are left to the interested reader.

When A is an L-bigraded Hopf algebra and p is an antisymmetric bicharacter as above, we may define $F \in G L_{\mathbb{K}}(A \otimes A)$ by

$$
\forall a \in A_{\lambda, \mu}, \forall b \in A_{\lambda^{\prime}, \mu^{\prime}}, F(a \otimes b)=p\left(\lambda, \lambda^{\prime}\right) p\left(\mu, \mu^{\prime}\right)^{-1} a \otimes b
$$

It is easily checked that F satisfies the conditions (1) to (5) and that the Hopf algebras A_{F} and A_{p} coincide.

A related construction of the quantization of a monoidal category is given in [24].
2.2. Diagonalizable subgroups of $R(A)$. In the case where \mathbf{L} is a finitely generated group and A is a finitely generated algebra (which is the case for the multi-parameter quantum groups considered here), there is a simple geometric interpretation of L-bigradings. They correspond to algebraic group maps from the diagonalizable group \mathbf{L}^{\vee} to the group of one dimensional representations of A.

Assume that \mathbb{K} is algebraically closed. Let $(A, i, m, \epsilon, \Delta, S)$ be a Hopf \mathbb{K}-algebra. Denote by $R(A)$ the multiplicative group of one dimensional representations of A, i.e. the character group of the algebra A. Notice that when A is a finitely generated \mathbb{K}-algebra, $R(A)$ has the structure of an affine algebraic group over \mathbb{K}, with algebra of regular functions given by $\mathbb{K}[R(A)]=A / J$ where J is the semi-prime ideal $\cap_{h \in R(A)} \operatorname{Ker} h$. Recall that there are two natural group homomorphisms $l, r: R(A) \rightarrow \operatorname{Aut}_{\mathbb{K}}(A)$ given by

$$
\begin{gathered}
l_{h}(x)=\sum h\left(S\left(x_{(1)}\right)\right) x_{(2)}=\sum h^{-1}\left(x_{(1)}\right) x_{(2)} \\
r_{h}(x)=\sum x_{(1)} h\left(x_{(2)}\right) .
\end{gathered}
$$

Theorem 2.2. Let A be a finitely generated Hopf algebra and let \mathbf{L} be a finitely generated abelian group. Then there is a natural bijection between:
(1) L-bigradings on A;
(2) Hopf algebra maps $A \rightarrow \mathbb{K} \mathbf{L}$ (where $\mathbb{K} \mathbf{L}$ denotes the group algebra);
(3) morphisms of algebraic groups $\mathbf{L}^{\vee} \rightarrow R(A)$.

Proof. The bijection of the last two sets of maps is well-known. Given an L-bigrading on A, we may define a map $\phi: A \rightarrow \mathbb{K} \mathbf{L}$ by $\phi\left(a_{\lambda, \mu}\right)=\epsilon(a) u_{\lambda}$. It is easily verified that this is a Hopf algebra map. Conversely, given a map $\mathbf{L}^{\vee} \rightarrow R(A)$ we may construct an \mathbf{L} bigrading using the following result.

Theorem 2.3. Let $(A, i, m, \epsilon, \Delta, S)$ be a finitely generated Hopf algebra over \mathbb{K}. Let H be a closed diagonalizable algebraic subgroup of $R(A)$. Denote by \mathbf{L} the (additive) group of characters of H and by $\langle-,-\rangle: \mathbf{L} \times H \rightarrow \mathbb{K}^{*}$ the natural pairing. For $(\lambda, \mu) \in \mathbf{L} \times \mathbf{L}$ set

$$
A_{\lambda, \mu}=\left\{x \in A \mid \forall h \in H, l_{h}(x)=\langle\lambda, h\rangle x, r_{h}(x)=\langle\mu, h\rangle x\right\} .
$$

Then $(A, i, m, \epsilon, \Delta, S)$ is an \mathbf{L}-bigraded Hopf algebra.
Proof. Recall that any element of A is contained in a finite dimensional subcoalgebra of A. Therefore the actions of H via r and l are locally finite. Since they commute and H is diagonalizable, A is $\mathbf{L} \times \mathbf{L}$ diagonalizable. Thus the decomposition $A=\bigoplus_{(\lambda, \mu) \in \mathbf{L} \times \mathbf{L}} A_{\lambda, \mu}$ is a grading.

Now let C be a finite dimensional subcoalgebra of A and let $\left\{c_{1}, \ldots, c_{n}\right\}$ be a basis of $H \times H$ weight vectors. Suppose that $\Delta\left(c_{i}\right)=\sum t_{i j} \otimes c_{j}$. Then since $c_{i}=\sum t_{i j} \epsilon\left(c_{j}\right)$, the $t_{i j}$ span C and it is easily checked that $\Delta\left(t_{i j}\right)=\sum t_{i k} \otimes t_{k j}$. Since $l_{h}\left(c_{i}\right)=\sum h^{-1}\left(t_{i j}\right) c_{j}$ for all $h \in H$ and the c_{i} are weight vectors, we must have that $h\left(t_{i j}\right)=0$ for $i \neq j$. This implies that

$$
l_{h}\left(t_{i j}\right)=h^{-1}\left(t_{i i}\right) t_{i j}, \quad r_{h}\left(t_{i j}\right)=h\left(t_{j j}\right) t_{i j}
$$

and that the map $\lambda_{i}(h)=h\left(t_{i i}\right)$ is a character of H. Thus $t_{i j} \in A_{-\lambda_{i}, \lambda_{j}}$ and hence

$$
\Delta\left(t_{i j}\right)=\sum t_{i k} \otimes t_{k j} \in \sum A_{-\lambda_{i}, \lambda_{k}} \otimes A_{-\lambda_{k}, \lambda_{j}}
$$

This gives the required condition on Δ. If $\lambda+\mu \neq 0$ then there exists an $h \in H$ such that $\langle-\lambda, h\rangle \neq\langle\mu, h\rangle$. Let $x \in A_{\lambda, \mu}$. Then

$$
\langle\mu, h\rangle \epsilon(x)=\epsilon\left(r_{h}(x)\right)=h(x)=\epsilon\left(l_{h^{-1}}(x)\right)=\langle-\lambda, h\rangle \epsilon(x) .
$$

Hence $\epsilon(x)=0$. The assertion on S follows similarly.

Remark. In particular, if G is any algebraic group and H is a diagonalizable subgroup with character group \mathbf{L}, then we may deform the Hopf algebra $\mathbb{K}[G]$ using an antisymmetric bicharacter on \mathbf{L}. Such deformations are algebraic analogs of the deformations studied by Rieffel in [27].
2.3. Deformations of dual pairs. Let A and U be a dual pair of Hopf algebras. That is, there exists a bilinear pairing $\langle\mid\rangle: A \times U \rightarrow \mathbb{K}$ such that:
(1) $\langle a \mid 1\rangle=\epsilon(a) ;\langle 1 \mid u\rangle=\epsilon(u)$
(2) $\left\langle a \mid u_{1} u_{2}\right\rangle=\sum\left\langle a_{(1)} \mid u_{1}\right\rangle\left\langle a_{(2)} \mid u_{2}\right\rangle$
(3) $\left\langle a_{1} a_{2} \mid u\right\rangle=\sum\left\langle a_{1} \mid u_{(1)}\right\rangle\left\langle a_{2} \mid u_{(2)}\right\rangle$
(4) $\langle S(a) \mid u\rangle=\langle a \mid S(u)\rangle$.

Assume that A is bigraded by \mathbf{L}, U is bigraded by an abelian $\operatorname{group} \mathbf{Q}$ and that there is a homomorphism ${ }^{\smile}: \mathbf{Q} \rightarrow \mathbf{L}$ such that

$$
\begin{equation*}
\left\langle A_{\lambda, \mu} \mid U_{\gamma, \delta}\right\rangle \neq 0 \text { only if } \lambda+\mu=\breve{\gamma}+\breve{\delta} . \tag{2.2}
\end{equation*}
$$

In this case we will call the pair $\{A, U\}$ an \mathbf{L}-bigraded dual pair. We shall be interested in $\S 3$ and $\S 4$ in the case where $\mathbf{Q}=\mathbf{L}$ and ${ }^{`}=I d$.

Remark . Suppose that the bigradings above are induced from subgroups H and \breve{H} of $R(A)$ and $R(U)$ respectively and that the map $\mathbf{Q} \rightarrow \mathbf{L}$ is induced from a map $h \mapsto \breve{h}$ from H to \breve{H}. Then the condition on the pairing may be restated as the fact that the form is ad-invariant in the sense that for all $a \in A$, $u \in U$ and $h \in H$,

$$
\left\langle\operatorname{ad}_{h} a \mid u\right\rangle=\left\langle a \mid \operatorname{ad}_{\breve{h}} u\right\rangle
$$

where $\operatorname{ad}_{h} a=r_{h} l_{h}(a)$.

Theorem 2.4. Let $\{A, U\}$ be the bigraded dual pair as described above. Let p be an antisymmetric bicharacter on \mathbf{L} and let \breve{p} be the induced bicharacter on \mathbf{Q}. Define a bilinear form $\langle\mid\rangle_{p}: A_{p^{-1}} \times U_{\breve{p}} \rightarrow \mathbb{K}$ by:

$$
\left\langle a_{\lambda, \mu} \mid u_{\gamma, \delta}\right\rangle_{p}=p(\lambda, \breve{\gamma})^{-1} p(\mu, \breve{\delta})^{-1}\left\langle a_{\lambda, \mu} \mid u_{\gamma, \delta}\right\rangle
$$

Then $\langle\mid\rangle_{p}$ is a Hopf pairing and $\left\{A_{p^{-1}}, U_{\breve{p}}\right\}$ is an \mathbf{L}-bigraded dual pair.
Proof. Let $a \in A_{\lambda, \mu}$ and let $u_{i} \in U_{\gamma_{i}, \delta_{i}}, i=1,2$. Then

$$
\left\langle a \mid u_{1} u_{2}\right\rangle_{p}=p\left(\breve{\gamma}_{1}, \breve{\gamma}_{2}\right) p\left(\breve{\delta}_{1}, \breve{\delta}_{2}\right)^{-1} p\left(\lambda, \breve{\gamma}_{1}+\breve{\gamma}_{2}\right)^{-1} p\left(\mu, \breve{\delta}_{1}+\breve{\delta}_{2}\right)^{-1}\left\langle a \mid u_{1} u_{2}\right\rangle .
$$

Suppose that $\Delta(a)=\sum_{\nu} a_{\lambda, \nu} \otimes a_{-\nu, \mu}$. Then by the assumption on the pairing, the only possible value of ν for which $\left\langle a_{\lambda, \nu} \mid u_{1}\right\rangle\left\langle a_{-\nu, \mu} \mid u_{2}\right\rangle$ is non-zero is $\nu=\breve{\gamma}_{1}+\breve{\delta}_{1}-\lambda=\mu-\breve{\gamma}_{2}-\breve{\delta}_{2}$. Therefore

$$
\begin{aligned}
\left\langle a_{(1)} \mid u_{1}\right\rangle_{p}\left\langle a_{(2)} \mid u_{2}\right\rangle_{p}=p\left(\lambda, \breve{\gamma}_{1}\right)^{-1} p\left(\nu, \breve{\delta}_{1}\right)^{-1} p\left(-\nu, \breve{\gamma}_{2}\right)^{-1} p\left(\mu, \breve{\delta}_{2}\right)^{-1}\left\langle a_{(1)} \mid u_{1}\right\rangle\left\langle a_{(2)} \mid u_{2}\right\rangle \\
=p\left(\lambda, \breve{\gamma}_{1}\right)^{-1} p\left(\mu-\breve{\gamma}_{2}-\breve{\delta}_{2}, \breve{\delta}_{1}\right)^{-1} p\left(\lambda-\breve{\gamma}_{1}-\breve{\delta}_{1}, \breve{\gamma}_{2}\right)^{-1} p\left(\mu, \breve{\delta}_{2}\right)^{-1}\left\langle a_{(1)} \mid u_{1}\right\rangle\left\langle a_{(2)} \mid u_{2}\right\rangle \\
\quad=p\left(\breve{\gamma}_{1}, \breve{\gamma}_{2}\right) p\left(\breve{\delta}_{1}, \breve{\delta}_{2}\right)^{-1} p\left(\lambda, \breve{\gamma}_{1}+\breve{\gamma}_{2}\right)^{-1} p\left(\mu, \breve{\delta}_{1}+\breve{\delta}_{2}\right)^{-1}\left\langle a \mid u_{1} u_{2}\right\rangle=\left\langle a \mid u_{1} u_{2}\right\rangle_{p} .
\end{aligned}
$$

This proves the first axiom. The others are verified similarly.

Corollary 2.5. Let $\{A, U, p\}$ be as in Theorem 2.4. Let M be a right A-comodule with structure map $\rho: M \rightarrow M \otimes A$. Then M is naturally endowed with U and $U_{\breve{p}}$ left module structures, denoted by $(u, x) \mapsto u x$ and $(u, x) \mapsto u \cdot x$ respectively. Assume that $M=\oplus_{\lambda \in \mathbf{L}} M_{\lambda}$ for some \mathbb{K}-subspaces such that $\rho\left(M_{\lambda}\right) \subset \sum_{\nu} M_{-\nu} \otimes A_{\nu, \lambda}$. Then we have $U_{\gamma, \delta} M_{\lambda} \subset M_{\lambda-\breve{\gamma}-\breve{\delta}}$ and the two structures are related by

$$
\forall u \in U_{\gamma, \delta}, \forall x \in M_{\lambda}, \quad u \cdot x=p(\lambda, \breve{\gamma}-\breve{\delta}) p(\breve{\gamma}, \breve{\delta}) u x .
$$

Proof. Notice that the coalgebras A and $A_{p^{-1}}$ are the same. Set $\rho(x)=\sum x_{(0)} \otimes x_{(1)}$ for all $x \in M$. Then it is easily checked that the following formulas define the desired U and $U_{\breve{p}}$ module structures:

$$
\forall u \in U, \quad u x=\sum x_{(0)}\left\langle x_{(1)} \mid u\right\rangle, \quad u \cdot x=\sum x_{(0)}\left\langle x_{(1)} \mid u\right\rangle_{p} .
$$

When $x \in M_{\lambda}$ and $u \in U_{\gamma, \delta}$ the additional condition yields

$$
u \cdot x=\sum x_{(0)} p(\nu,-\breve{\gamma}) p(\lambda,-\breve{\delta})\left\langle x_{(1)} \mid u\right\rangle .
$$

But $\left\langle x_{(1)} \mid u\right\rangle \neq 0$ forces $-\nu=\lambda-\breve{\gamma}-\breve{\delta}$, hence $u \cdot x=p(\lambda, \breve{\gamma}-\breve{\delta}) p(\breve{\gamma}, \breve{\delta}) \sum x_{(0)}\left\langle x_{(1)} \mid u\right\rangle=p(\lambda, \breve{\gamma}-$ $\breve{\delta}) p(\breve{\gamma}, \breve{\delta}) u x$.

Denote by $A^{\text {op }}$ the opposite algebra of the \mathbb{K}-algebra A. Let $\left\{A^{\mathrm{op}}, U,\langle\mid\rangle\right\}$ be a dual pair of Hopf algebras. The double $A \bowtie U$ is defined as follows, [10,3.3]. Let I be the ideal of the tensor algebra $T(A \otimes U)$ generated by elements of type

$$
\begin{gather*}
1-1_{A}, \quad 1-1_{U} \tag{a}\\
x x^{\prime}-x \otimes x^{\prime}, x, x^{\prime} \in A, \quad y y^{\prime}-y \otimes y^{\prime}, y, y^{\prime} \in U \\
x_{(1)} \otimes y_{(1)}\left\langle x_{(2)} \mid y_{(2)}\right\rangle-\left\langle x_{(1)} \mid y_{(1)}\right\rangle y_{(2)} \otimes x_{(2)}, x \in A, y \in U \tag{c}
\end{gather*}
$$

Then the algebra $A \bowtie U:=T(A \otimes U) / I$ is called the Drinfeld double of $\{A, U\}$. It is a Hopf algebra in a natural way:

$$
\begin{gathered}
\Delta(a \otimes u)=\left(a_{(1)} \otimes u_{(1)}\right) \otimes\left(a_{(2)} \otimes u_{(2)}\right), \\
\epsilon(a \otimes u)=\epsilon(a) \epsilon(u), \quad S(a \otimes u)=(S(a) \otimes 1)(1 \otimes S(u)) .
\end{gathered}
$$

Notice for further use that $A \bowtie U$ can equally be defined by relations of type (a), (b), (ccer ${ }_{x, y}$) or (a), (b), ($\mathrm{c}_{y, x}$), where we set
$\left(\mathrm{c}_{x, y}\right)$

$$
\begin{array}{ll}
\left(\mathrm{c}_{x, y}\right) & x \otimes y=\left\langle x_{(1)} \mid y_{(1)}\right\rangle\left\langle x_{(3)} \mid S\left(y_{(3)}\right)\right\rangle y_{(2)} \otimes x_{(2)}, x \in A, y \in U \\
\left(\mathrm{c}_{y, x}\right) & y \otimes x=\left\langle x_{(1)} \mid S\left(y_{(1)}\right)\right\rangle\left\langle x_{(3)} \mid y_{(3)}\right\rangle x_{(2)} \otimes y_{(2)}, x \in A, y \in U
\end{array}
$$

Theorem 2.6. Let $\left\{A^{o p}, U\right\}$ be an \mathbf{L}-bigraded dual pair, p be an antisymmetric bicharacter on \mathbf{L} and \breve{p} be the induced bicharacter on \mathbf{Q}. Then $A \bowtie U$ inherits an \mathbf{L}-bigrading and there is a natural isomorphism of \mathbf{L}-bigraded Hopf algebras:

$$
(A \bowtie U)_{p} \cong A_{p} \bowtie U_{\breve{p}} .
$$

Proof. Recall that as a \mathbb{K}-vector space $A \bowtie U$ identifies with $A \otimes U$. Define an L-bigrading on $A \bowtie U$ by

$$
\forall \alpha, \beta \in \mathbf{L}, \quad(A \bowtie U)_{\alpha, \beta}=\sum_{\lambda-\breve{\gamma}=\alpha, \mu-\breve{\delta}=\beta} A_{\lambda, \mu} \otimes U_{\gamma, \delta}
$$

To verify that this yields a structure of graded algebra on $A \bowtie U$ it suffices to check that the defining relations of $A \bowtie U$ are homogeneous. This is clear for relations of type (a) or (b). Let $x_{\lambda, \mu} \in A_{\lambda, \mu}$ and $y_{\gamma, \delta} \in U_{\gamma, \delta}$. Then the corresponding relation of type (c) becomes

$$
\sum_{\nu, \xi} x_{\lambda, \nu} y_{\gamma, \xi}\left\langle x_{-\nu, \mu} \mid y_{-\xi, \delta}\right\rangle-\left\langle x_{\lambda, \mu} \mid y_{\gamma, \xi}\right\rangle y_{-\xi, \delta} x_{-\nu, \mu}
$$

When a term of this sum is non-zero we obtain $-\nu+\mu=-\breve{\xi}+\breve{\delta}, \lambda+\nu=\breve{\gamma}+\breve{\xi}$. Hence $\lambda-\breve{\gamma}=-\nu+\breve{\xi}=-\mu+\breve{\delta}$, which shows that the relation (\star) is homogeneous. It is easy to see that the conditions (2), (3), (4) of 2.1 hold. Hence $A \bowtie U$ is an L-bigraded Hopf algebra.

Notice that $\left(A_{p}\right)^{\mathrm{op}} \cong\left(A^{\mathrm{op}}\right)_{p^{-1}}$, so that Theorem 2.4 defines a suitable pairing between $\left(A_{p}\right)^{\mathrm{op}}$ and $U_{\breve{p}}$. Thus $A_{p} \bowtie U_{\breve{p}}$ is defined. Let ϕ be the natural surjective homomorphism from $T(A \otimes U)$ onto $A_{p} \bowtie U_{\breve{p}}$. To check that ϕ induces an isomorphism it again suffices to check that ϕ vanishes on the defining relations of $(A \bowtie U)_{p}$. Again, this is easy for relations of type (a) and (b). The relation (\star) says that

$$
p(\lambda, \breve{\gamma}) p(-\nu, \breve{\xi})\left\langle x_{-\nu, \mu} \mid y_{-\xi, \delta}\right\rangle x_{\lambda, \nu} \cdot y_{\gamma, \xi}-p(\breve{\xi}, \nu) p(\breve{\delta},-\mu)\left\langle x_{\lambda, \mu} \mid y_{\gamma, \xi}\right\rangle y_{-\xi, \delta} \cdot x_{-\nu, \mu}=0
$$

in $(A \bowtie U)_{p}$. Multiply the left hand side of this equation by $p(\lambda,-\breve{\gamma}) p(\mu,-\breve{\delta})$ and apply ϕ. We obtain the following expression in $A_{p} \bowtie U_{\breve{p}}$:

$$
p(-\nu, \breve{\xi}) p(\mu,-\breve{\delta})\left\langle x_{-\nu, \mu} \mid y_{-\xi, \delta}\right\rangle x_{\lambda, \nu} y_{\gamma, \xi}-p(\lambda,-\breve{\gamma}) p(\nu,-\breve{\xi})\left\langle x_{\lambda, \mu} \mid y_{\gamma, \xi}\right\rangle y_{-\xi, \delta} x_{-\nu, \mu}
$$

which is equal to

$$
\left\langle x_{-\nu, \mu} \mid y_{-\xi, \delta}\right\rangle_{p} x_{\lambda, \nu} y_{\gamma, \xi}-\left\langle x_{\lambda, \mu} \mid y_{\gamma, \xi}\right\rangle_{p} y_{-\xi, \delta} x_{-\nu, \mu}
$$

But this is a defining relation of type (c) in $A_{p} \bowtie U_{\breve{p}}$, hence zero.
It remains to see that ϕ induces an isomorphism of Hopf algebras, which is a straightforward consequence of the definitions.
2.4. Cocycles. Let \mathbf{L} be, in this section, an arbitrary free abelian group with basis $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ and set $\mathfrak{h}^{*}=\mathbb{C} \otimes_{\mathbb{Z}} \mathbf{L}$. We freely use the terminology of [2]. Recall that $H^{2}\left(\mathbf{L}, \mathbb{C}^{*}\right)$ is in bijection with the set \mathcal{H} of multiplicatively antisymmetric $n \times n$-matrices $\gamma=\left[\gamma_{i j}\right]$. This bijection maps the class $[c]$ onto the matrix defined by $\gamma_{i j}=c\left(\omega_{i}, \omega_{j}\right) / c\left(\omega_{j}, \omega_{i}\right)$. Furthermore it is an isomorphism of groups with respect to component-wise multiplication of matrices.

Remark. The notation is as in 2.1. We recalled that the isomorphism class of the algebra A_{p} depends only on the cohomology class $[\tilde{p}] \in H^{2}\left(\mathbf{L} \times \mathbf{L}, \mathbb{K}^{*}\right)$. Let $\gamma \in \mathcal{H}$ be the matrix associated to p and γ^{-1} its inverse in \mathcal{H}. Notice that the multiplicative matrix associated to $[\tilde{p}]$ is then $\tilde{\gamma}=\left[\begin{array}{ll}\gamma & 1 \\ 1 & \gamma^{-1}\end{array}\right]$ in the basis given by the $\left(\omega_{i}, 0\right),\left(0, \omega_{i}\right) \in \mathbf{L} \times \mathbf{L}$. Therefore the isomorphism class of the algebra A_{p} depends only on the cohomology class $[p] \in H^{2}\left(\mathbf{L}, \mathbb{K}^{*}\right)$.

Let $\hbar \in \mathbb{C}^{*}$. If $x \in \mathbb{C}$ we set $q^{x}=\exp (-x \hbar / 2)$. In particular $q=\exp (-\hbar / 2)$. Let $u: \mathbf{L} \times \mathbf{L} \rightarrow \mathbb{C}$ be a complex alternating \mathbb{Z}-bilinear form. Define

$$
\begin{equation*}
p: \mathbf{L} \times \mathbf{L} \rightarrow \mathbb{C}^{*}, \quad p(\lambda, \mu)=\exp \left(-\frac{\hbar}{4} u(\lambda, \mu)\right)=q^{\frac{1}{2} u(\lambda, \mu)} \tag{2.3}
\end{equation*}
$$

Then it is clear that p is an antisymmetric bicharacter on \mathbf{L}.
Observe that, since $\mathfrak{h}^{*}=\mathbb{C} \otimes_{\mathbb{Z}} \mathbf{L}$, there is a natural isomorphism of additive groups between $\wedge^{2} \mathfrak{h}$ and the group of complex alternating \mathbb{Z}-bilinear forms on \mathbf{L}, where \mathfrak{h} is the \mathbb{C}-dual of \mathfrak{h}^{*}. Set $\mathcal{Z}_{\hbar}=\{u \in$ $\left.\wedge^{2} \mathfrak{h} \left\lvert\, u(\mathbf{L} \times \mathbf{L}) \subset \frac{4 i \pi}{\hbar} \mathbb{Z}\right.\right\}$.
Theorem 2.7. There are isomorphisms of abelian groups:

$$
H^{2}\left(\mathbf{L}, \mathbb{C}^{*}\right) \cong \mathcal{H} \cong \wedge^{2} \mathfrak{h} / \mathcal{Z}_{\hbar}
$$

Proof. The first isomorphism has been described above. Let $\gamma=\left[\gamma_{i j}\right] \in \mathcal{H}$ and choose $u_{i j}, 1 \leq i<j \leq n$ such that $\gamma_{i j}=\exp \left(-\frac{\hbar}{2} u_{i j}\right)$. We can define $u \in \wedge^{2} \mathfrak{h}$ by setting $u\left(\omega_{i}, \omega_{j}\right)=u_{i j}, 1 \leq i<j \leq n$. It is then easily seen that one can define an injective morphism of abelian groups

$$
\varphi: H^{2}\left(\mathbf{L}, \mathbb{C}^{*}\right) \cong \mathcal{H} \longrightarrow \wedge^{2} \mathfrak{h} / \mathcal{Z}_{\hbar}, \quad \varphi(\gamma)=[u]
$$

where $[u]$ is the class of u. If $u \in \wedge^{2} \mathfrak{h}$, define a 2-cocycle p by the formula (2.3). Then the multiplicative matrix associated to $[p] \in H^{2}\left(\mathbf{L}, \mathbb{C}^{*}\right)$ is given by

$$
\gamma_{i j}=p\left(\omega_{i}, \omega_{j}\right) / p\left(\omega_{j}, \omega_{i}\right)=p\left(\omega_{i}, \omega_{j}\right)^{2}=\exp \left(-\frac{\hbar}{2} u\left(\omega_{i}, \omega_{j}\right)\right)
$$

This shows that $[u]=\varphi\left(\left[\gamma_{i j}\right]\right)$; thus φ is an isomorphism.
We list some consequences of Theorem 2.7. We denote by $[u]$ an element of $\wedge^{2} \mathfrak{h} / \mathcal{Z}_{\hbar}$ and we set $[p]=\varphi^{-1}([u])$. We have seen that we can define a representative p by the formula (2.3).

1. [p] of finite order in $H^{2}\left(\mathbf{L}, \mathbb{C}^{*}\right) \Leftrightarrow u(\mathbf{L} \times \mathbf{L}) \subset \frac{i \pi}{\hbar} \mathbb{Q}$, and q root of unity $\Leftrightarrow \hbar \in i \pi \mathbb{Q}$.
2. Notice that $u=0$ is algebraic, whether q is a root of unity or not. Assume that q is a root of unity; then we get from 1 that

$$
[p] \text { of finite order } \Leftrightarrow u \text { is algebraic. }
$$

3. Assume that q is not a root of unity and that $u \neq 0$. Then $[p]$ of finite order implies $(0) \neq u(\mathbf{L} \times \mathbf{L}) \subset$ $\frac{i \pi}{\hbar} \mathbb{Q}$. This shows that

$$
0 \neq u \text { algebraic } \Rightarrow[p] \text { is not of finite order. }
$$

Definition. The bicharacter $p:(\lambda, \mu) \mapsto q^{\frac{1}{2} u(\lambda, \mu)}$ is called q-rational if $u \in \wedge^{2} \mathfrak{h}$ is algebraic.
The following technical result will be used in the next section. Recall the definition of $\Phi_{-}=\Phi-I$ given in the Section 1.

Proposition 2.8. Let $\mathbf{K}=\left\{\lambda \in \mathbf{L}:\left(\Phi_{-} \lambda, \mathbf{L}\right) \subset \frac{4 i \pi}{\hbar} \mathbb{Z}\right\}$. If q is not a root of unity, then $\mathbf{K}=0$.
Proof. Let $\lambda \in \mathbf{K}$. We can define $z: \mathfrak{h}_{\mathbb{Q}}^{*} \rightarrow \mathbb{Q}$, by

$$
\forall \mu \in \mathfrak{h}_{\mathbb{Q}}^{*}, \quad\left(\Phi_{-} \lambda, \mu\right)=\frac{4 i \pi}{\hbar} z(\mu)
$$

The map z is clearly \mathbb{Q}-linear. It follows, since (,) is non-degenerate on $\mathfrak{h}_{\mathbb{Q}}^{*}$, that there exists $\nu \in \mathfrak{h}_{\mathbb{Q}}^{*}$ such that $z(\mu)=(\nu, \mu)$ for all $\mu \in \mathfrak{h}_{\mathbb{Q}}^{*}$. Therefore $\Phi_{-} \lambda=\frac{4 i \pi}{\hbar} \nu$, and so $\Phi \lambda=\lambda+\frac{4 i \pi}{\hbar} \nu$.

Now, $(\Phi \lambda, \lambda)=u(\lambda, \lambda)=0$ implies that

$$
\frac{4 i \pi}{\hbar}(\nu, \lambda)=-(\lambda, \lambda)
$$

If $(\lambda, \lambda) \neq 0$ then $\hbar \in i \pi \mathbb{Q}$, contradicting the assumption that q is not a root of unity. Hence $(\lambda, \lambda)=0$, which forces $\lambda=0$ since $\lambda \in \mathbf{L} \subset \mathfrak{h}_{\mathbb{Q}}^{*}$.

3. Multiparameter Quantum Groups

3.1. One-parameter quantized enveloping algebras. The notation is as in sections 1 and 2. In particular we fix a lattice \mathbf{L} such that $\mathbf{Q} \subset \mathbf{L} \subset \mathbf{P}$ and we denote by G the connected semi-simple algebraic group with maximal torus H such that $\operatorname{Lie}(G)=\mathfrak{g}$ and $\mathbf{X}(H) \cong \mathbf{L}$.

Let $q \in \mathbb{C}^{*}$ and assume that q is not a root of unity. Let $\hbar \in \mathbb{C} \backslash i \pi \mathbb{Q}$ such that $q=\exp (-\hbar / 2)$ as in 2.4. We set

$$
q_{i}=q^{d_{i}}, \quad \hat{q}_{i}=\left(q_{i}-q_{i}^{-1}\right)^{-1}, \quad 1 \leq i \leq n
$$

Denote by U^{0} the group algebra of $\mathbf{X}(H)$, hence

$$
U^{0}=\mathbb{C}\left[k_{\lambda} ; \lambda \in \mathbf{L}\right], \quad k_{0}=1, \quad k_{\lambda} k_{\mu}=k_{\lambda+\mu}
$$

Set $k_{i}=k_{\alpha_{i}}, 1 \leq i \leq n$. The one parameter quantized enveloping algebra associated to this data, cf. [33], is the Hopf algebra

$$
U_{q}(\mathfrak{g})=U^{0}\left[e_{i}, f_{i} ; 1 \leq i \leq n\right]
$$

with defining relations:

$$
\begin{gathered}
k_{\lambda} e_{j} k_{\lambda}^{-1}=q^{\left(\lambda, \alpha_{j}\right)} e_{j}, \quad k_{\lambda} f_{j} k_{\lambda}^{-1}=q^{-\left(\lambda, \alpha_{j}\right)} f_{j} \\
e_{i} f_{j}-f_{j} e_{i}=\delta_{i j} \hat{q}_{i}\left(k_{i}-k_{i}^{-1}\right) \\
\sum_{k=0}^{1-a_{i j}}(-1)^{k}\left[\begin{array}{c}
1-a_{i j} \\
k
\end{array}\right]_{q_{i}} e_{i}^{1-a_{i j}-k} e_{j} e_{i}^{k}=0, \text { if } i \neq j \\
\sum_{k=0}^{1-a_{i j}}(-1)^{k}\left[\begin{array}{c}
1-a_{i j} \\
k
\end{array}\right]_{q_{i}} f_{i}^{1-a_{i j}-k} f_{j} f_{i}^{k}=0, \text { if } i \neq j
\end{gathered}
$$

where $[m]_{t}=\left(t-t^{-1}\right) \ldots\left(t^{m}-t^{-m}\right)$ and $\left[\begin{array}{c}m \\ k\end{array}\right]_{t}=\frac{[m]_{t}}{[k]_{t}[m-k]_{t}}$. The Hopf algebra structure is given by

$$
\begin{gathered}
\Delta\left(k_{\lambda}\right)=k_{\lambda} \otimes k_{\lambda}, \quad \epsilon\left(k_{\lambda}\right)=1, \quad S\left(k_{\lambda}\right)=k_{\lambda}^{-1} \\
\Delta\left(e_{i}\right)=e_{i} \otimes 1+k_{i} \otimes e_{i}, \quad \Delta\left(f_{i}\right)=f_{i} \otimes k_{i}^{-1}+1 \otimes f_{i} \\
\epsilon\left(e_{i}\right)=\epsilon\left(f_{i}\right)=0, \quad S\left(e_{i}\right)=-k_{i}^{-1} e_{i}, \quad S\left(f_{i}\right)=-f_{i} k_{i} .
\end{gathered}
$$

We define subalgebras of $U_{q}(\mathfrak{g})$ as follows

$$
\begin{array}{cc}
U_{q}\left(\mathfrak{n}^{+}\right)=\mathbb{C}\left[e_{i}, ; 1 \leq i \leq n\right], & U_{q}\left(\mathfrak{n}^{-}\right)=\mathbb{C}\left[f_{i}, ; 1 \leq i \leq n\right] \\
U_{q}\left(\mathfrak{b}^{+}\right)=U^{0}\left[e_{i}, ; 1 \leq i \leq n\right], & U_{q}\left(\mathfrak{b}^{-}\right)=U^{0}\left[f_{i}, ; 1 \leq i \leq n\right]
\end{array}
$$

For simplicity we shall set $U^{ \pm}=U_{q}\left(\mathfrak{n}^{ \pm}\right)$. Notice that U^{0} and $U_{q}\left(\mathfrak{b}^{ \pm}\right)$are Hopf subalgebras of $U_{q}(\mathfrak{g})$.
Recall [23] that the multiplication in $U_{q}(\mathfrak{g})$ induces isomorphisms of vector spaces

$$
U_{q}(\mathfrak{g}) \cong U^{-} \otimes U^{0} \otimes U^{+} \cong U^{+} \otimes U^{0} \otimes U^{-}
$$

Set $\mathbf{Q}_{+}=\oplus_{i=1}^{n} \mathbb{N} \alpha_{i}$ and

$$
\forall \beta \in \mathbf{Q}_{+}, \quad U_{\beta}^{ \pm}=\left\{u \in U^{ \pm} \mid \forall \lambda \in \mathbf{L}, k_{\lambda} u k_{\lambda}^{-1}=q^{(\lambda, \pm \beta)} u\right\}
$$

Then one gets: $U^{ \pm}=\oplus_{\beta \in \mathbf{Q}_{+}} U_{ \pm \beta}^{ \pm}$.
3.2. The Rosso-Tanisaki-Killing form. Recall the following result, [28, 33].

Theorem 3.1. 1. There exists a unique non degenerate Hopf pairing

$$
\langle\mid\rangle: U_{q}\left(\mathfrak{b}^{+}\right)^{o p} \otimes U_{q}\left(\mathfrak{b}^{-}\right) \longrightarrow \mathbb{C}
$$

satisfying the following conditions:
(i) $\left\langle k_{\lambda} \mid k_{\mu}\right\rangle=q^{-(\lambda, \mu)}$;
(ii) $\forall \lambda \in \mathbf{L}, 1 \leq i \leq n,\left\langle k_{\lambda} \mid f_{i}\right\rangle=\left\langle e_{i} \mid k_{\lambda}\right\rangle=0$;
(iii) $\forall 1 \leq i, j \leq n$, $\left\langle e_{i} \mid f_{j}\right\rangle=-\delta_{i j} \hat{q}_{i}$.
2. If $\gamma, \eta \in \mathbf{Q}_{+},\left\langle U_{\gamma}^{+} \mid U_{-\eta}^{-}\right\rangle \neq 0$ implies $\gamma=\eta$.

The results of $\S 2.3$ then apply and we may define the associated double:

$$
D_{q}(\mathfrak{g})=U_{q}\left(\mathfrak{b}^{+}\right) \bowtie U_{q}\left(\mathfrak{b}^{-}\right) .
$$

It is well known, e.g. [10], that

$$
D_{q}(\mathfrak{g})=\mathbb{C}\left[s_{\lambda}, t_{\lambda}, e_{i}, f_{i} ; \lambda \in \mathbf{L}, 1 \leq i \leq n\right]
$$

where $s_{\lambda}=k_{\lambda} \otimes 1, t_{\lambda}=1 \otimes k_{\lambda}, e_{i}=e_{i} \otimes 1, f_{i}=1 \otimes f_{i}$. The defining relations of the double given in $\S 2.3$ imply that

$$
\begin{gathered}
s_{\lambda} t_{\mu}=t_{\mu} s_{\lambda}, \quad e_{i} f_{j}-f_{j} e_{i}=\delta_{i j} \hat{q}_{i}\left(s_{\alpha_{i}}-t_{\alpha_{i}}^{-1}\right) \\
s_{\lambda} e_{j} s_{\lambda}^{-1}=q^{\left(\lambda, \alpha_{j}\right)} e_{j}, t_{\lambda} e_{j} t_{\lambda}^{-1}=q^{\left(\lambda, \alpha_{j}\right)} e_{j}, s_{\lambda} f_{j} s_{\lambda}^{-1}=q^{-\left(\lambda, \alpha_{j}\right)} f_{j}, t_{\lambda} f_{j} t_{\lambda}^{-1}=q^{-\left(\lambda, \alpha_{j}\right)} f_{j}
\end{gathered}
$$

It follows that

$$
D_{q}(\mathfrak{g}) /\left(s_{\lambda}-t_{\lambda} ; \lambda \in \mathbf{L}\right) \xrightarrow{\sim} U_{q}(\mathfrak{g}), e_{i} \mapsto e_{i}, f_{i} \mapsto f_{i}, s_{\lambda} \mapsto k_{\lambda}, t_{\lambda} \mapsto k_{\lambda}
$$

Observe that this yields an isomorphism of Hopf algebras. The next proposition collects some well known elementary facts.

Proposition 3.2. 1. Any finite dimensional simple $U_{q}\left(\mathfrak{b}^{ \pm}\right)$-module is one dimensional and $R\left(U_{q}\left(\mathfrak{b}^{ \pm}\right)\right)$ identifies with H via

$$
\forall h \in H, \quad h\left(k_{\lambda}\right)=\langle\lambda, h\rangle, \quad h\left(e_{i}\right)=0, \quad h\left(f_{i}\right)=0
$$

2. $R\left(D_{q}(\mathfrak{g})\right)$ identifies with H via

$$
\forall h \in H, \quad h\left(s_{\lambda}\right)=\langle\lambda, h\rangle, \quad h\left(t_{\lambda}\right)=\langle\lambda, h\rangle^{-1}, \quad h\left(e_{i}\right)=h\left(f_{i}\right)=0
$$

Corollary 3.3. 1. $\left\{U_{q}\left(\mathfrak{b}^{+}\right)^{o p}, U_{q}\left(\mathfrak{b}^{-}\right)\right\}$is an \mathbf{L}-bigraded dual pair. We have

$$
k_{\lambda} \in U_{q}\left(\mathfrak{b}^{ \pm}\right)_{-\lambda, \lambda}, \quad e_{i} \in U_{q}\left(\mathfrak{b}^{+}\right)_{-\alpha_{i}, 0}, \quad f_{i} \in U_{q}\left(\mathfrak{b}^{-}\right)_{0,-\alpha_{i}}
$$

2. $D_{q}(\mathfrak{g})$ is an \mathbf{L}-bigraded Hopf algebra where

$$
s_{\lambda} \in D_{q}(\mathfrak{g})_{-\lambda, \lambda}, \quad t_{\lambda} \in D_{q}(\mathfrak{g})_{\lambda,-\lambda}, \quad e_{i} \in D_{q}(\mathfrak{g})_{-\alpha_{i}, 0}, \quad f_{i} \in D_{q}(\mathfrak{g})_{0, \alpha_{i}}
$$

Proof. 1. Observe that for all $h \in H$,

$$
\begin{gathered}
l_{h}\left(k_{\lambda}\right)=h^{-1}\left(k_{\lambda}\right)=\langle-\lambda, h\rangle k_{\lambda}, \quad r_{h}\left(k_{\lambda}\right)=h\left(k_{\lambda}\right)=\langle\lambda, h\rangle k_{\lambda} \\
l_{h}\left(e_{i}\right)=h^{-1}\left(k_{i}\right) e_{i}=\left\langle-\alpha_{i}, h\right\rangle e_{i}, \quad r_{h}\left(e_{i}\right)=e_{i} \\
l_{h}\left(f_{i}\right)=f_{i}, \quad r_{h}\left(f_{i}\right)=h\left(k_{i}^{-1}\right) f_{i}=\left\langle-\alpha_{i}, h\right\rangle f_{i}
\end{gathered}
$$

It is then clear that $U_{-\gamma, 0}^{+}=U_{\gamma}^{+}$and $U_{0,-\gamma}^{-}=U_{-\gamma}^{-}$for all $\gamma \in \mathbf{Q}_{+}$. The claims then follow from these formulas, Theorem 2.3, Theorem 3.1, and the definitions.
2. The fact that $D_{q}(\mathfrak{g})$ is an \mathbf{L}-bigraded Hopf algebra follows from Theorem 2.3. The assertions about the $\mathbf{L} \times \mathbf{L}$ degree of the generators is proved by direct computation using Proposition 3.2.

Remark. We have shown in Theorem 2.6 that, as a double, $D_{q}(\mathfrak{g})$ inherits an L-bigrading given by:

$$
D_{q}(\mathfrak{g})_{\alpha, \beta}=\sum_{\lambda-\gamma=\alpha, \mu-\delta=\beta} U_{q}\left(\mathfrak{b}^{+}\right)_{\lambda, \mu} \otimes U_{q}\left(\mathfrak{b}^{-}\right)_{\gamma, \delta}
$$

It is easily checked that this bigrading coincides with the bigrading obtained in the above corollary by means of Theorem 2.3.
3.3. One-parameter quantized function algebras. Let M be a left $D_{q}(\mathfrak{g})$-module. The dual M^{*} will be considered in the usual way as a left $D_{q}(\mathfrak{g})$-module by the rule: $(u f)(x)=f(S(u) x), x \in M, f \in M^{*}$, $u \in D_{q}(\mathfrak{g})$. Assume that M is an $U_{q}(\mathfrak{g})$-module. An element $x \in M$ is said to have weight $\mu \in \mathbf{L}$ if $k_{\lambda} x=q^{(\lambda, \mu)} x$ for all $\lambda \in \mathbf{L}$; we denote by M_{μ} the subspace of elements of weight μ.

It is known, [13], that the category of finite dimensional (left) $U_{q}(\mathfrak{g})$-modules is a completely reducible braided rigid monoidal category. Set $\mathbf{L}^{+}=\mathbf{L} \cap \mathbf{P}^{+}$and recall that for each $\Lambda \in \mathbf{L}^{+}$there exists a finite dimensional simple module of highest weight Λ, denoted by $L(\Lambda)$, cf. [29] for instance. One has $L(\Lambda)^{*} \cong L\left(w_{0} \Lambda\right)$ where w_{0} is the longest element of W. (Notice that the results quoted usually cover the case where $\mathbf{L}=\mathbf{Q}$. One defines the modules $L(\lambda)$ in the general case in the following way. Let us denote temporarily the algebra $U_{q}(\mathfrak{g})$ for a given choice of \mathbf{L} by $U_{q, \mathbf{L}}(\mathfrak{g})$. Given a module $L(\lambda)$ defined on $U_{q, \mathbf{Q}}(\mathfrak{g})$ we may define an action of $U_{q, \mathbf{L}}(\mathfrak{g})$ by setting $k_{\lambda} \cdot x=q^{(\lambda, \mu)} x$ for all elements x of weight μ, where $q^{(\lambda, \mu)}$ is as defined in section 2.4.)

Let \mathcal{C}_{q} be the subcategory of finite dimensional $U_{q}(\mathfrak{g})$-modules consisting of finite direct sums of $L(\Lambda)$, $\Lambda \in \mathbf{L}^{+}$. The category \mathcal{C}_{q} is closed under tensor products and the formation of duals. Notice that \mathcal{C}_{q} can
be considered as a braided rigid monoidal category of $D_{q}(\mathfrak{g})$-modules where s_{λ}, t_{λ} act as k_{λ} on an object of \mathcal{C}_{q}.

Let $M \in \operatorname{obj}\left(\mathcal{C}_{q}\right)$, then $M=\oplus_{\mu \in \mathbf{L}} M_{\mu}$. For $f \in M^{*}, v \in M$ we define the coordinate function $c_{f, v} \in U_{q}(\mathfrak{g})^{*}$ by

$$
\forall u \in U_{q}(\mathfrak{g}), \quad c_{f, v}(u)=\langle f, u v\rangle
$$

where \langle,$\rangle is the duality pairing. Using the standard isomorphism (M \otimes N)^{*} \cong N^{*} \otimes M^{*}$ one has the following formula for multiplication,

$$
c_{f, v} c_{f^{\prime}, v^{\prime}}=c_{f^{\prime} \otimes f, v \otimes v^{\prime}}
$$

Definition . The quantized function algebra $\mathbb{C}_{q}[G]$ is the restricted dual of \mathcal{C}_{q} : that is to say

$$
\mathbb{C}_{q}[G]=\mathbb{C}\left[c_{f, v} ; v \in M, f \in M^{*}, M \in \operatorname{obj}\left(\mathcal{C}_{q}\right)\right]
$$

The algebra $\mathbb{C}_{q}[G]$ is a Hopf algebra; we denote by Δ, ϵ, S the comultiplication, counit and antipode on $\mathbb{C}_{q}[G]$. If $\left\{v_{1}, \ldots, v_{s} ; f_{1}, \ldots, f_{s}\right\}$ is a dual basis for $M \in \operatorname{obj}\left(\mathcal{C}_{q}\right)$ one has

$$
\begin{equation*}
\Delta\left(c_{f, v}\right)=\sum_{i} c_{f, v_{i}} \otimes c_{f_{i}, v}, \quad \epsilon\left(c_{f, v}\right)=\langle f, v\rangle, \quad S\left(c_{f, v}\right)=c_{v, f} . \tag{3.1}
\end{equation*}
$$

Notice that we may assume that $v_{j} \in M_{\nu_{j}}, f_{j} \in M_{-\nu_{j}}^{*}$. We set

$$
C(M)=\mathbb{C}\left\langle c_{f, v} ; f \in M^{*}, v \in M\right\rangle, \quad C(M)_{\lambda, \mu}=\mathbb{C}\left\langle c_{f, v} ; f \in M_{\lambda}^{*}, v \in M_{\mu}\right\rangle .
$$

Then $C(M)$ is a subcoalgebra of $\mathbb{C}_{q}[G]$ such that $C(M)=\bigoplus_{(\lambda, \mu) \in \mathbf{L} \times \mathbf{L}} C(M)_{\lambda, \mu}$. When $M=L(\Lambda)$ we abbreviate the notation to $C(M)=C(\Lambda)$. It is then classical that

$$
\mathbb{C}_{q}[G]=\bigoplus_{\Lambda \in \mathbf{L}^{+}} C(\Lambda)
$$

Since $\mathbb{C}_{q}[G] \subset U_{q}(\mathfrak{g})^{*}$ we have a duality pairing

$$
\langle,\rangle: \mathbb{C}_{q}[G] \times D_{q}(\mathfrak{g}) \longrightarrow \mathbb{C} .
$$

Observe that there is a natural injective morphism of algebraic groups

$$
H \longrightarrow R\left(\mathbb{C}_{q}[G]\right), \quad h\left(c_{f, v}\right)=\langle\mu, h\rangle \epsilon\left(c_{f, v}\right) \text { for all } v \in M_{\mu}, M \in \operatorname{obj}\left(\mathcal{C}_{q}\right)
$$

The associated automorphisms $r_{h}, l_{h} \in \operatorname{Aut}\left(\mathbb{C}_{q}[G]\right)$ are then described by

$$
\forall c_{f, v} \in C(M)_{\lambda, \mu}, \quad r_{h}\left(c_{f, v}\right)=\langle\mu, h\rangle c_{f, v}, l_{h}\left(c_{f, v}\right)=\langle\lambda, h\rangle c_{f, v}
$$

Define

$$
\forall(\lambda, \mu) \in \mathbf{L} \times \mathbf{L}, \quad \mathbb{C}_{q}[G]_{\lambda, \mu}=\left\{a \in \mathbb{C}_{q}[G] \mid r_{h}(a)=\langle\mu, h\rangle a, l_{h}(a)=\langle\lambda, h\rangle a\right\} .
$$

Theorem 3.4. The pair of Hopf algebras $\left\{\mathbb{C}_{q}[G], D_{q}(\mathfrak{g})\right\}$ is an L-bigraded dual pair.
Proof. It follows from (3.1) that $\mathbb{C}_{q}[G]$ is an \mathbf{L}-bigraded Hopf algebra. The axioms (1) to (4) of 2.3 are satisfied by definition of the Hopf algebra $\mathbb{C}_{q}[G]$. We take ${ }^{\checkmark}$ to be the identity map of \mathbf{L}. The condition (2.2) is consequence of $D_{q}(\mathfrak{g})_{\gamma, \delta} M_{\mu} \subset M_{\mu-\gamma-\delta}$ for all $M \in \mathcal{C}_{q}$. To verify this inclusion, notice that

$$
e_{j} \in D_{q}(\mathfrak{g})_{-\alpha_{j}, 0}, f_{j} \in D_{q}(\mathfrak{g})_{0, \alpha_{j}}, \quad e_{j} M_{\mu} \subset M_{\mu+\alpha_{j}}, \quad f_{j} M_{\mu} \subset M_{\mu-\alpha_{j}}
$$

The result then follows easily
Consider the algebras $D_{q^{-1}}(\mathfrak{g})$ and $\mathbb{C}_{q^{-1}}[G]$ and use ^ to distinguish elements, subalgebras, etc. of $D_{q^{-1}}(\mathfrak{g})$ and $\mathbb{C}_{q^{-1}}[G]$. It is easily verified that the map $\sigma: D_{q}(\mathfrak{g}) \rightarrow D_{q^{-1}}(\mathfrak{g})$ given by

$$
s_{\lambda} \mapsto \hat{s}_{\lambda}, t_{\lambda} \mapsto \hat{t}_{\lambda}, \quad e_{i} \mapsto q_{i}^{1 / 2} \hat{f}_{i} \hat{t}_{\alpha_{i}}, \quad f_{i} \mapsto q_{i}^{1 / 2} \hat{e}_{i} \hat{s}_{\alpha_{i}}^{-1}
$$

is an isomorphism of Hopf algebras.

For each $\Lambda \in \mathbf{L}^{+}, \sigma$ gives a bijection $\sigma: L\left(-w_{0} \Lambda\right) \rightarrow \hat{L}(\Lambda)$ which sends $v \in L\left(-w_{0} \Lambda\right)_{\mu}$ onto $\hat{v} \in$ $\hat{L}(\Lambda)_{-\mu}$. Therefore we obtain an isomorphism $\sigma: \mathbb{C}_{q^{-1}}[G] \rightarrow \mathbb{C}_{q}[G]$ such that

$$
\begin{equation*}
\forall f \in L\left(-w_{0} \Lambda\right)_{-\lambda}^{*}, v \in L\left(-w_{0} \Lambda\right)_{\mu}, \quad \sigma\left(\hat{c}_{\hat{f}, \hat{v}}\right)=c_{f, v} . \tag{3.2}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\sigma\left(D_{q}(\mathfrak{g})_{\gamma, \delta}\right)=D_{q^{-1}}(\mathfrak{g})_{-\gamma,-\delta} \quad \text { and } \sigma\left(\mathbb{C}_{q^{-1}}[G]_{\lambda, \mu}\right)=\mathbb{C}_{q}[G]_{-\lambda,-\mu} \tag{3.3}
\end{equation*}
$$

3.4. Deformation of one-parameter quantum groups. We continue with the same notation. Let $[p] \in H^{2}\left(\mathbf{L}, \mathbb{C}^{*}\right)$. As seen in $\S 2.4$ we can, and we do, choose p to be an antisymmetric bicharacter such that

$$
\forall \lambda, \mu \in \mathbf{L}, \quad p(\lambda, \mu)=q^{\frac{1}{2} u(\lambda, \mu)}
$$

for some $u \in \wedge^{2} \mathfrak{h}$. Recall that $\tilde{p} \in Z^{2}\left(\mathbf{L} \times \mathbf{L}, \mathbb{C}^{*}\right)$, cf. 2.1.
We now apply the results of $\S 2.1$ to $D_{q}(\mathfrak{g})$ and $\mathbb{C}_{q}[G]$. Using Theorem 2.1 we can twist $D_{q}(\mathfrak{g})$ by \tilde{p}^{-1} and $\mathbb{C}_{q}[G]$ by \tilde{p}. The resulting L-bigraded Hopf algebras will be denoted by $D_{q, p^{-1}}(\mathfrak{g})$ and $\mathbb{C}_{q, p}[G]$. The algebra $\mathbb{C}_{q, p}[G]$ will be referred to as the multi-parameter quantized function algebra. Versions of $D_{q, p^{-1}}(\mathfrak{g})$ are referred to by some authors as the multi-parameter quantized enveloping algebra. Alternatively, this name can be applied to the quotient of $D_{q, p^{-1}}(\mathfrak{g})$ by the radical of the pairing with $\mathbb{C}_{q, p}[G]$.

Theorem 3.5. Let $U_{q, p^{-1}}\left(\mathfrak{b}^{+}\right)$and $U_{q, p^{-1}}\left(\mathfrak{b}^{-}\right)$be the deformations by p^{-1} of $U_{q}\left(\mathfrak{b}^{+}\right)$and $U_{q}\left(\mathfrak{b}^{-}\right)$respectively. Then the deformed pairing

$$
\langle\mid\rangle_{p^{-1}}: U_{q, p^{-1}}\left(\mathfrak{b}^{+}\right)^{o p} \otimes U_{q, p^{-1}}\left(\mathfrak{b}^{-}\right) \rightarrow \mathbb{C}
$$

is a non-degenerate Hopf pairing satisfying:

$$
\begin{equation*}
\forall x \in U^{+}, y \in U^{-}, \lambda, \mu \in \mathbf{L}, \quad\left\langle x \cdot k_{\lambda} \mid y \cdot k_{\mu}\right\rangle_{p^{-1}}=q^{\left(\Phi_{-} \lambda, \mu\right)}\langle x \mid y\rangle \tag{3.4}
\end{equation*}
$$

Moreover,

$$
U_{q, p^{-1}}\left(\mathfrak{b}^{+}\right) \bowtie U_{q, p^{-1}}\left(\mathfrak{b}^{-}\right) \cong\left(U_{q}\left(\mathfrak{b}^{+}\right) \bowtie U_{q}\left(\mathfrak{b}^{-}\right)\right)_{p^{-1}}=D_{q, p^{-1}}(\mathfrak{g})
$$

Proof. By Theorem 2.4 the deformed pairing is given by

$$
\left\langle a_{\lambda, \mu} \mid u_{\gamma, \delta}\right\rangle_{p^{-1}}=p(\lambda, \gamma) p(\mu, \delta)\left\langle a_{\lambda, \mu} \mid u_{\gamma, \delta}\right\rangle .
$$

To prove (3.4) we can assume that $x \in U_{-\gamma, 0}^{+}, y \in U_{0,-\nu}^{-}$. Then we obtain

$$
\begin{aligned}
\left\langle x \cdot k_{\lambda} \mid y \cdot k_{\mu}\right\rangle_{p^{-1}} & =p(\lambda+\gamma, \mu) p(\lambda, \mu-\nu)\left\langle x \cdot k_{\lambda} \mid y \cdot k_{\mu}\right\rangle \\
& =p(\lambda, 2 \mu) p(\lambda-\mu, \gamma-\nu) q^{-(\lambda, \mu)}\langle x \mid y\rangle
\end{aligned}
$$

by the definition of the product • and [33, 2.1.3]. But $\langle x \mid y\rangle=0$ unless $\gamma=\nu$, hence the result. Observe in particular that $\langle x \mid y\rangle_{p^{-1}}=\langle x \mid y\rangle$. Therefore [33, 2.1.4] shows that $\langle\mid\rangle_{p^{-1}}$ is non-degenerate on $U_{\gamma}^{+} \times U_{-\gamma}^{-}$. It then follows from (3.4) and Proposition 2.8 that $\langle\mid\rangle_{p^{-1}}$ is non-degenerate. The remaining isomorphism follows from Theorem 2.6.

Many authors have defined multi-parameter quantized enveloping algebras. In [14, 25] a definition is given using explicit generators and relations, and in [1] the construction is made by twisting the comultiplication, following [26]. It can be easily verified that these algebras and the algebras $D_{q, p^{-1}}(\mathfrak{g})$ coincide. The construction of a multi-parameter quantized function algebra by twisting the multiplication was first performed in the $G L(n)$-case in [2].

The fact that $D_{q, p^{-1}}(\mathfrak{g})$ and $\mathbb{C}_{q, p}[G]$ form a Hopf dual pair has already been observed in particular cases, see e.g. [14]. We will now deduce from the previous results that this phenomenon holds for an arbitrary semi-simple group.

Theorem 3.6. $\left\{\mathbb{C}_{q, p}[G], D_{q, p^{-1}}(\mathfrak{g})\right\}$ is an \mathbf{L}-bigraded dual pair. The associated pairing is given by

$$
\forall a \in \mathbb{C}_{q, p}[G]_{\lambda, \mu}, \forall u \in D_{q, p^{-1}}(\mathfrak{g})_{\gamma, \delta}, \quad\langle a, u\rangle_{p}=p(\lambda, \gamma) p(\mu, \delta)\langle a, u\rangle
$$

Proof. This follows from Theorem 2.4 applied to the pair $\{A, U\}=\left\{\mathbb{C}_{q}[G], D_{q}(\mathfrak{g})\right\}$ and the bicharacter p^{-1} (recall that the map ${ }^{\circ}$ is the identity).

Let $M \in \operatorname{obj}\left(\mathcal{C}_{q}\right)$. The left $D_{q}(\mathfrak{g})$-module structure on M yields a right $\mathbb{C}_{q}[G]$-comodule structure in the usual way. Let $\left\{v_{1}, \ldots, v_{s} ; f_{1}, \ldots, f_{s}\right\}$ be a dual basis for M. The structure map $\rho: M \rightarrow M \otimes \mathbb{C}_{q}[G]$, is given by $\rho(x)=\sum_{j} v_{j} \otimes c_{f_{j}, x}$ for $x \in M$. Using this comodule structure on M, one can check that

$$
M_{\mu}=\left\{x \in M \mid \forall h \in H, r_{h}(x)=\langle\mu, h\rangle x\right\} .
$$

Proposition 3.7. Let $M \in \operatorname{obj}\left(\mathcal{C}_{q}\right)$. Then M has a natural structure of left $D_{q, p^{-1}}(\mathfrak{g})$ module. Denote by M^{\sim} this module and by $(u, x) \mapsto u \cdot x$ the action of $D_{q, p^{-1}}(\mathfrak{g})$. Then

$$
\forall u \in D_{q}(\mathfrak{g})_{\gamma, \delta}, \forall x \in M_{\lambda}, \quad u \cdot x=p(\lambda, \delta-\gamma) p(\delta, \gamma) u x .
$$

Proof. The proposition is a translation in this particular setting of Corollary 2.5.
Denote by $\mathcal{C}_{q, p}$ the subcategory of finite dimensional left $D_{q, p^{-1}}(\mathfrak{g})$-modules whose objects are the $M^{\breve{\prime}}$, $M \in \operatorname{obj}\left(\mathcal{C}_{q}\right)$. It follows from Proposition 3.7 that if $M \in \operatorname{obj}\left(\mathcal{C}_{q}\right)$, then $M^{\sim}=\oplus_{\mu \in \mathbf{L}} M_{\mu}$, where

$$
M_{\mu}=\left\{x \in M \mid \forall \alpha \in \mathbf{L}, s_{\alpha} \cdot x=p(\mu, 2 \alpha) q^{(\mu, \alpha)} x, t_{\alpha} \cdot x=p(\mu,-2 \alpha) q^{(\mu, \alpha)} x\right\} .
$$

Notice that $p(\mu, \pm 2 \alpha) q^{(\mu, \alpha)}=q^{ \pm\left(\Phi_{ \pm} \mu, \alpha\right)}$.
Theorem 3.8. 1. The functor $M \rightarrow M^{\smile}$ from \mathcal{C}_{q} to $\mathcal{C}_{q, p}$ is an equivalence of rigid monoidal categories.
2. The Hopf pairing \langle,\rangle_{p} identifies the Hopf algebra $\mathbb{C}_{q, p}[G]$ with the restricted dual of $\mathcal{C}_{q, p}$, i.e. the Hopf algebra of coordinate functions on the objects of $\mathcal{C}_{q, p}$.

Proof. 1. One needs in particular to prove that, for $M, N \in \operatorname{obj}\left(\mathcal{C}_{q}\right)$, there are natural isomorphisms of $D_{q, p^{-1}}(\mathfrak{g})$-modules: $\varphi_{M, N}:(M \otimes N)^{\breve{ }} \rightarrow M^{\breve{ }} \otimes N^{\breve{ }}$. These isomorphisms are given by $x \otimes y \mapsto p(\lambda, \mu) x \otimes y$ for all $x \in M_{\lambda}, y \in N_{\mu}$. The other verifications are elementary.
2. We have to show that if $M \in \operatorname{obj}\left(\mathcal{C}_{q}\right), f \in M^{*}, v \in M$ and $u \in D_{q, p^{-1}}(\mathfrak{g})$, then $\left\langle c_{f, v}, u\right\rangle_{p}=\langle f, u \cdot v\rangle$. It suffices to prove the result in the case where $f \in M_{\lambda}^{*}, v \in M_{\mu}$ and $u \in D_{q, p^{-1}}(\mathfrak{g})_{\gamma, \delta}$. Then

$$
\begin{aligned}
\langle f, u \cdot v\rangle & =p(\mu, \delta-\gamma) p(\delta, \gamma)\langle f, u v\rangle \\
& =\delta_{-\lambda+\gamma+\delta, \mu} p(-\lambda+\gamma+\delta, \delta-\gamma) p(\delta, \gamma)\langle f, u v\rangle \\
& =p(\lambda, \gamma) p(\mu, \delta)\langle f, u v\rangle \\
& =\left\langle c_{f, v}, u\right\rangle_{p}
\end{aligned}
$$

by Theorem 3.6.
Recall that we introduced in $\S 3.3$ isomorphisms $\sigma: D_{q}(\mathfrak{g}) \rightarrow D_{q^{-1}}(\mathfrak{g})$ and $\sigma: \mathbb{C}_{q}[G] \rightarrow \mathbb{C}_{q^{-1}}[G]$. From (3.3) it follows that, after twisting by \tilde{p}^{-1} or \tilde{p}, σ induces isomorphisms

$$
D_{q, p^{-1}}(\mathfrak{g}) \xrightarrow{\sim} D_{q^{-1}, p^{-1}}(\mathfrak{g}), \quad \mathbb{C}_{q^{-1}, p}[G] \xrightarrow{\sim} \mathbb{C}_{q, p}[G]
$$

which satisfy (3.2).
3.5. Braiding isomorphisms. We remarked above that the categories $\mathcal{C}_{q, p}$ are braided. In the one parameter case this braiding is well-known. Let M and N be objects of \mathcal{C}_{q}. Let $E: M \otimes N \rightarrow M \otimes N$ be the operator given by

$$
E(m \otimes n)=q^{(\lambda, \mu)} m \otimes n
$$

for $m \in M_{\lambda}$ and $n \in N_{\mu}$. Let $\tau: M \otimes N \rightarrow N \otimes M$ be the usual twist operator. Finally let C be the operator given by left multiplication by

$$
C=\sum_{\beta \in \mathbf{Q}_{+}} C_{\beta}
$$

where C_{β} is the canonical element of $D_{q}(\mathfrak{g})$ associated to the non-degenerate pairing $U_{\beta}^{+} \otimes U_{-\beta}^{-} \rightarrow \mathbb{C}$ described above. Then one deduces from [33, 4.3] that the operators

$$
\theta_{M, N}=\tau \circ C \circ E^{-1}: M \otimes N \rightarrow N \otimes M
$$

define the braiding on \mathcal{C}_{q}.
As mentioned above, the category $\mathcal{C}_{q, p}$ inherits a braiding given by

$$
\psi_{M, N}=\varphi_{N, M} \circ \theta_{M, N} \circ \varphi_{M, N}^{-1}
$$

where $\varphi_{M, N}$ is the isomorphism $(M \otimes N)^{\leftrightharpoons} \xrightarrow{\sim} M^{\sim} \otimes N^{\sim}$ introduced in the proof of Theorem 3.8 (the same formula can be found in $[1, \S 10]$ and in a more general situation in [24]). We now note that these general operators are of the same form as those in the one parameter case. Let M and N be objects of $\mathcal{C}_{q, p}$ and let $E: M \otimes N \rightarrow M \otimes N$ be the operator given by

$$
E(m \otimes n)=q^{\left(\Phi_{+} \lambda, \mu\right)} m \otimes n
$$

for $m \in M_{\lambda}$ and $n \in N_{\mu}$. Denote by C_{β} the canonical element of $D_{q, p^{-1}}(\mathfrak{g})$ associated to the nondegenerate pairing $U_{q, p^{-1}}\left(\mathfrak{b}^{+}\right)_{-\beta, 0} \otimes U_{q, p^{-1}}\left(\mathfrak{b}^{-}\right)_{0,-\beta} \rightarrow \mathbb{C}$ and let $C: M \otimes N \rightarrow M \otimes N$ be the operator given by left multiplication by

$$
C=\sum_{\beta \in \mathbf{Q}_{+}} C_{\beta} .
$$

Theorem 3.9. The braiding operators $\psi_{M, N}$ are given by

$$
\psi_{M, N}=\tau \circ C \circ E^{-1}
$$

Moreover $\left(\psi_{M, N}\right)^{*}=\psi_{M^{*}, N^{*}}$.
Proof. The assertions follow easily from the analogous assertions for $\theta_{M, N}$.
The following commutation relations are well known [31], [21, 4.2.2]. We include a proof for completeness.

Corollary 3.10. Let $\Lambda, \Lambda^{\prime} \in \mathbf{L}^{+}$, let $g \in L\left(\Lambda^{\prime}\right)_{-\eta}^{*}$ and $f \in L(\Lambda)_{-\mu}^{*}$ and let $v_{\Lambda} \in L(\Lambda)_{\Lambda}$. Then for any $v \in L\left(\Lambda^{\prime}\right)_{\gamma}$,

$$
c_{g, v} \cdot c_{f, v_{\Lambda}}=q^{\left(\Phi_{+} \Lambda, \gamma\right)-\left(\Phi_{+} \mu, \eta\right)} c_{f, v_{\Lambda}} \cdot c_{g, v}+q^{\left(\Phi_{+} \Lambda, \gamma\right)-\left(\Phi_{+} \mu, \eta\right)} \sum_{\nu \in \mathbf{Q}_{+}} c_{f_{\nu}, v_{\Lambda}} \cdot c_{g_{\nu}, v}
$$

where $f_{\nu} \in\left(U_{q, p^{-1}}\left(\mathfrak{b}^{+}\right) f\right)_{-\mu+\nu}$ and $g_{\nu} \in\left(U_{q, p^{-1}}\left(\mathfrak{b}^{-}\right) g\right)_{-\eta-\nu}$ are such that $\sum f_{\nu} \otimes g_{\nu}=\sum_{\beta \in \mathbf{Q}^{+} \backslash\{0\}} C_{\beta}(f \otimes$ g).

Proof. Let $\psi=\psi_{L(\Lambda), L\left(\Lambda^{\prime}\right)}$. Notice that

$$
c_{f \otimes g, \psi\left(v_{\Lambda} \otimes v\right)}=c_{\psi^{*}(f \otimes g), v_{\Lambda} \otimes v}
$$

Using the theorem above we obtain

$$
\psi^{*}(f \otimes g)=q^{-\left(\Phi_{+} \mu, \eta\right)}\left(g \otimes f+\sum g_{\nu} \otimes f_{\nu}\right)
$$

and

$$
\begin{equation*}
\psi\left(v_{\Lambda} \otimes v\right)=q^{-\left(\Phi_{+} \Lambda, \gamma\right)}\left(v \otimes v_{\Lambda}\right) \tag{3.5}
\end{equation*}
$$

Combining these formulae yields the required relations.

4. Prime and Primitive Spectrum of $\mathbb{C}_{q, p}[G]$

In this section we prove our main result on the primitive spectrum of $\mathbb{C}_{q, p}[G]$; namely that the H orbits inside $\operatorname{Prim}_{w} \mathbb{C}_{q, p}[G]$ are parameterized by the double Weyl group. For completeness we have attempted to make the proof more or less self-contained. The overall structure of the proof is similar to that used in [16] except that the proof of the key 4.12 (and the lemmas leading up to it) form a modified and abbreviated version of Joseph's proof of this result in the one-parameter case [18]. One of the main differences with the approach of [18] is the use of the Rosso-Tanisaki form introduced in 3.2 which simplifies the analysis of the adjoint action of $\mathbb{C}_{q, p}[G]$. The ideas behind the first few results of this section go back to Soibelman's work in the one-parameter 'compact' case [31]. These ideas were adapted to the multi-parameter case by Levendorskii [20].
4.1. Parameterization of the prime spectrum. Let q, p be as in $\S 3.4$. For simplicity we set

$$
A=\mathbb{C}_{q, p}[G]
$$

and the product $a \cdot b$ as defined in (2.1) will be denoted by $a b$.
For each $\Lambda \in \mathbf{L}^{+}$choose weight vectors

$$
v_{\Lambda} \in L(\Lambda)_{\Lambda}, v_{w_{0} \Lambda} \in L(\Lambda)_{w_{0} \Lambda}, f_{-\Lambda} \in L(\Lambda)_{-\Lambda}^{*}, f_{-w_{0} \Lambda} \in L(\Lambda)_{-w_{0} \Lambda}^{*}
$$

such that $\left\langle f_{-\Lambda}, v_{\Lambda}\right\rangle=\left\langle f_{-w_{0} \Lambda}, v_{w_{0} \Lambda}\right\rangle=1$. Set

$$
A^{+}=\sum_{\mu \in \mathbf{L}^{+}} \sum_{f \in L(\mu)^{*}} \mathbb{C} c_{f, v_{\mu}}, \quad A^{-}=\sum_{\mu \in \mathbf{L}^{+}} \sum_{f \in L(\mu)^{*}} \mathbb{C} c_{f, v_{w_{0} \mu}}
$$

Recall the following result.
Theorem 4.1. The multiplication map $A^{+} \otimes A^{-} \rightarrow A$ is surjective .
Proof. Clearly it is enough to prove the theorem in the one-parameter case. When $\mathbf{L}=\mathbf{P}$ the result is proved in [31, 3.1] and [18, Theorem 3.7].

The general case can be deduced from the simply-connected case as follows. One first observes that $\mathbb{C}_{q}[G] \subset \mathbb{C}_{q}[\tilde{G}]=\bigoplus_{\Lambda \in \mathbf{P}^{+}} C(\Lambda)$. Therefore any $a \in \mathbb{C}_{q}[G]$ can be written in the form $a=$ $\sum_{\Lambda^{\prime}, \Lambda^{\prime \prime} \in \mathbf{P}^{+}} c_{f, v_{\Lambda^{\prime}}} c_{g, v_{-\Lambda^{\prime \prime}}}$ where $\Lambda^{\prime}-\Lambda^{\prime \prime} \in \mathbf{L}$. Let $\Lambda \in \mathbf{P}$ and $\left\{v_{i} ; f_{i}\right\}_{i}$ be a dual basis of $L(\Lambda)$. Then we have

$$
1=\epsilon\left(c_{v_{\Lambda}, f_{-\Lambda}}\right)=\sum_{i} c_{f_{i}, v_{\Lambda}} c_{v_{i}, f_{-\Lambda}} .
$$

Let Λ^{\prime} be as above and choose Λ such that $\Lambda+\Lambda^{\prime} \in \mathbf{L}^{+}$. Then, for all $i, c_{f, v_{\Lambda^{\prime}}} c_{f_{i}, v_{\Lambda}} \in C\left(\Lambda+\Lambda^{\prime}\right) \cap A^{+}$ and $c_{v_{i}, f-\Lambda} c_{g, v_{-\Lambda^{\prime \prime}}} \in C\left(-w_{0}\left(\Lambda+\Lambda^{\prime \prime}\right)\right) \cap A^{-}$. The result then follows by inserting 1 between the terms $c_{f, v_{\Lambda^{\prime}}}$ and $c_{g, v_{-\Lambda^{\prime \prime}}}$.

Remark. The algebra A is a Noetherian domain (this result will not be used in the sequel). The fact that A is a domain follows from the same result in [18, Lemma 3.1]. The fact that A is Noetherian is consequence of [18, Proposition 4.1] and [6, Theorem 3.7].

For each $y \in W$ define the following ideals of A

$$
\begin{gathered}
I_{y}^{+}=\left\langle c_{f, v_{\Lambda}} \mid f \in\left(U_{q, p^{-1}}\left(\mathfrak{b}^{+}\right) L(\Lambda)_{y \Lambda}\right)^{\perp}, \Lambda \in \mathbf{L}^{+}\right\rangle, \\
I_{y}^{-}=\left\langle c_{f, v_{w_{0} \Lambda}} \mid f \in\left(U_{q, p^{-1}}\left(\mathfrak{b}^{-}\right) L(\Lambda)_{y w_{0} \Lambda}\right)^{\perp}, \Lambda \in \mathbf{L}^{+}\right\rangle
\end{gathered}
$$

where ()$^{\perp}$ denotes the orthogonal in $L(\Lambda)^{*}$. Notice that $I_{y}^{-}=\sigma\left(\hat{I}_{y}^{+}\right), \sigma$ as in $\S 3.4$, and that $I_{y}^{ \pm}$is an $\mathbf{L} \times \mathbf{L}$ homogeneous ideal of A.

Notation. For $w=\left(w_{+}, w_{-}\right) \in W \times W$ set $I_{w}=I_{w_{+}}^{+}+I_{w_{-}}^{-}$. For $\Lambda \in \mathbf{L}^{+}$set $c_{w \Lambda}=c_{f_{-w_{+} \Lambda}, v_{\Lambda}} \in$ $C(\Lambda)_{-w_{+} \Lambda, \Lambda}$ and $\tilde{c}_{w \Lambda}=c_{v_{w_{-} \Lambda}, f_{-\Lambda}} \in C\left(-w_{0} \Lambda\right)_{w_{-} \Lambda,-\Lambda}$.

Lemma 4.2. Let $\Lambda \in \mathbf{L}^{+}$and $a \in A_{-\eta, \gamma}$. Then

$$
\begin{array}{rll}
c_{w \Lambda} a \equiv q^{\left(\Phi_{+} w_{+} \Lambda, \eta\right)-\left(\Phi_{+} \Lambda, \gamma\right)} a c_{w \Lambda} & \bmod I_{w_{+}}^{+} \\
\tilde{c}_{w \Lambda} a \equiv q^{\left(\Phi_{-} \Lambda, \gamma\right)-\left(\Phi_{-} w_{-} \Lambda, \eta\right)} a \tilde{c}_{w \Lambda} & \bmod I_{w_{-}}^{-}
\end{array}
$$

Proof. The first identity follows from Corollary 3.10 and the definition of $I_{w_{+}}^{+}$. The second identity can be deduced from the first one by applying σ.

We continue to denote by $c_{w \Lambda}$ and $\tilde{c}_{w \Lambda}$ the images of these elements in A / I_{w}. It follows from Lemma 4.2 that the sets

$$
\mathcal{E}_{w_{+}}=\left\{\alpha c_{w \Lambda} \mid \alpha \in \mathbb{C}^{*}, \Lambda \in \mathbf{L}^{+}\right\}, \mathcal{E}_{w_{-}}=\left\{\alpha \tilde{c}_{w \Lambda} \mid \alpha \in \mathbb{C}^{*}, \Lambda \in \mathbf{L}^{+}\right\}, \mathcal{E}_{w}=\mathcal{E}_{w_{+}} \mathcal{E}_{w_{-}}
$$

are multiplicatively closed sets of normal elements in A / I_{w}. Thus \mathcal{E}_{w} is an Ore set in A / I_{w}. Define

$$
A_{w}=\left(A / I_{w}\right)_{\mathcal{E}_{w}}
$$

Notice that σ extends to an isomorphism $\sigma: \hat{A}_{\hat{w}} \rightarrow A_{w}$, where $\hat{w}=\left(w_{-}, w_{+}\right)$.
Proposition 4.3. For all $w \in W \times W, A_{w} \neq(0)$.
Proof. Notice first that since the generators of A_{w} and the elements of \mathcal{E}_{w} are $\mathbf{L} \times \mathbf{L}$ homogeneous, it suffices to work in the one-parameter case. The proof is then similar to that of [15, Theorem 2.2.3] (written in the $S L(n)$-case). For completeness we recall the steps of this proof. The technical details are straightforward generalizations to the general case of [15, loc. cit.].

For $1 \leq i \leq n$ denote by $U_{q}\left(\mathfrak{s l}_{i}(2)\right)$ the Hopf subalgebra of $U_{q}(\mathfrak{g})$ generated by $e_{i}, f_{i}, k_{i}^{ \pm 1}$. The associated quantized function algebra $A_{i} \cong \mathbb{C}_{q}[S L(2)]$ is naturally a quotient of A. Let σ_{i} be the reflection associated to the root α_{i}. It is easily seen that there exist M_{i}^{+}and M_{i}^{-}, non-zero $\left(A_{i}\right)_{\left(\sigma_{i}, e\right)}$ and $\left(A_{i}\right)_{\left(e, \sigma_{i}\right)}$ modules respectively. These modules can then be viewed as non-zero A-modules.

Let $w_{+}=\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ and $w_{-}=\sigma_{j_{1}} \ldots \sigma_{j_{m}}$ be reduced expressions for $w_{ \pm}$. Then

$$
M_{i_{1}}^{+} \otimes \cdots \otimes M_{i_{k}}^{+} \otimes M_{j_{1}}^{-} \otimes \cdots \otimes M_{j_{m}}^{-}
$$

is a non-zero A_{w}-module.
In the one-parameter case the proof of the following result was found independently by the authors in [16, 1.2] and Joseph in [18, 6.2].

Theorem 4.4. Let $P \in \operatorname{Spec} \mathbb{C}_{q, p}[G]$. There exists a unique $w \in W \times W$ such that $P \supset I_{w}$ and $\left(P / I_{w}\right) \cap \mathcal{E}_{w}=\emptyset$.
Proof. Fix a dominant weight Λ. Define an ordering on the weight vectors of $L(\Lambda)^{*}$ by $f \leq f^{\prime}$ if $f^{\prime} \in U_{q, p^{-1}}\left(\mathfrak{b}^{+}\right) f$. This is a preordering which induces a partial ordering on the set of one dimensional weight spaces. Consider the set:

$$
\mathcal{F}(\Lambda)=\left\{f \in L(\Lambda)_{\mu}^{*} \mid c_{f, v_{\Lambda}} \notin P\right\}
$$

Let f be an element of $\mathcal{F}(\Lambda)$ which is maximal for the above ordering. Suppose that f^{\prime} has the same property and that f and f^{\prime} have weights μ and μ^{\prime} respectively. By Corollary 3.10 the two elements $c_{f, v_{\Lambda}}$ and $c_{f^{\prime}, v_{\Lambda}}$ are normal modulo P. Therefore we have, modulo P,

$$
c_{f, v_{\Lambda}} c_{f^{\prime}, v_{\Lambda}}=q^{\left(\Phi_{+} \Lambda, \Lambda\right)-\left(\Phi_{+} \mu, \mu^{\prime}\right)} c_{f^{\prime}, v_{\Lambda}} c_{f, v_{\Lambda}}=q^{2\left(\Phi_{+} \Lambda, \Lambda\right)-\left(\Phi_{+} \mu, \mu^{\prime}\right)-\left(\Phi_{+} \mu^{\prime}, \mu\right)} c_{f, v_{\Lambda}} c_{f^{\prime}, v_{\Lambda}}
$$

But, since u is alternating, $2\left(\Phi_{+} \Lambda, \Lambda\right)-\left(\Phi_{+} \mu, \mu^{\prime}\right)-\left(\Phi_{+} \mu^{\prime}, \mu\right)=2(\Lambda, \Lambda)-2\left(\mu, \mu^{\prime}\right)$. Since P is prime and q is not a root of unity we can deduce that $(\Lambda, \Lambda)=\left(\mu, \mu^{\prime}\right)$. This forces $\mu=\mu^{\prime} \in W(-\Lambda)$. In conclusion, we have shown that for all dominant Λ there exists a unique (up to scalar multiplication) maximal element $g_{\Lambda} \in \mathcal{F}(\Lambda)$ with weight $-w_{\Lambda} \Lambda, w_{\Lambda} \in W$. Applying the argument above to a pair of such elements, $c_{g_{\Lambda}, v_{\Lambda}}$
and $c_{g_{\Lambda}, v_{\Lambda^{\prime}}}$, yields that $\left(w_{\Lambda} \Lambda, w_{\Lambda^{\prime}} \Lambda^{\prime}\right)=\left(\Lambda, \Lambda^{\prime}\right)$ for all $\Lambda, \Lambda^{\prime} \in \mathbf{L}^{+}$. Then it is not difficult to show that this furnishes a unique $w_{+} \in W$ such that $w_{+} \Lambda=w_{\Lambda} \Lambda$ for all $\Lambda \in \mathbf{L}^{+}$. Thus for each $\Lambda \in \mathbf{L}^{+}$,

$$
c_{g, v_{\Lambda}} \in P \Longleftrightarrow g \not \leq f_{-w_{+} \Lambda} .
$$

Hence $P \supset I_{w_{+}}^{+}$and $P \cap \mathcal{E}_{w_{+}}=\emptyset$. It is easily checked that such a w_{+}must be unique. Using σ one deduces the existence and uniqueness of w_{-}.

Definition . A prime ideal P such that $P \supset I_{w}$ and $P \cap \mathcal{E}_{w}=\emptyset$ will be called a prime ideal of type w. We denote by $\operatorname{Spec}_{w} \mathbb{C}_{q, p}[G]$, resp. $\operatorname{Prim}_{w} \mathbb{C}_{q, p}[G]$, the subset of $\operatorname{Spec} \mathbb{C}_{q, p}[G]$ consisting of prime, resp. primitive, ideals of type w.

Clearly $\operatorname{Spec}_{w} \mathbb{C}_{q, p}[G] \cong \operatorname{Spec} A_{w}$ and $\sigma\left(\operatorname{Spec}_{\hat{w}} \mathbb{C}_{q^{-1}, p}[G]\right)=\operatorname{Spec}_{w} \mathbb{C}_{q, p}[G]$. The following corollary is therefore clear.

Corollary 4.5. One has

$$
\operatorname{Spec} \mathbb{C}_{q, p}[G]=\sqcup_{w \in W \times W} \operatorname{Spec}_{w} \mathbb{C}_{q, p}[G], \quad \operatorname{Prim} \mathbb{C}_{q, p}[G]=\sqcup_{w \in W \times W} \operatorname{Prim}_{w} \mathbb{C}_{q, p}[G]
$$

We end this section by a result which is the key idea in [18] for analyzing the adjoint action of A on A_{w}. It says that in the one parameter case the quantized function algebra $\mathbb{C}_{q}\left[B^{-}\right]$identifies with $U_{q}\left(\mathfrak{b}^{+}\right)$through the Rosso-Tanisaki-Killing form, [10, 17, 18]. Evidently this continues to hold in the multi-parameter case. For completeness we include a proof of that result.

Set $\mathbb{C}_{q, p}\left[B^{-}\right]=A / I_{\left(w_{0}, e\right)}$. The embedding $U_{q, p^{-1}}\left(\mathfrak{b}^{-}\right) \rightarrow D_{q, p^{-1}}(\mathfrak{g})$ induces a Hopf algebra map ϕ : $A \rightarrow U_{q, p^{-1}}\left(\mathfrak{b}^{-}\right)^{\circ}$, where $U_{q, p^{-1}}\left(\mathfrak{b}^{-}\right)^{\circ}$ denotes the cofinite dual. On the other hand the non-degenerate Hopf algebra pairing $\langle\mid\rangle_{p^{-1}}$ furnishes an injective morphism $\theta: U_{q, p^{-1}}\left(\mathfrak{b}^{+}\right)^{\mathrm{op}} \rightarrow U_{q, p^{-1}}\left(\mathfrak{b}^{-}\right)^{*}$.

Proposition 4.6. 1. $\mathbb{C}_{q, p}\left[B^{-}\right]$is an \mathbf{L}-bigraded Hopf algebra.
2. The map $\gamma=\theta^{-1} \phi: \mathbb{C}_{q, p}\left[B^{-}\right] \rightarrow U_{q, p^{-1}}\left(\mathfrak{b}^{+}\right)^{o p}$ is an isomorphism of Hopf algebras.

Proof. 1. It is easy to check that $I_{\left(w_{0}, e\right)}$ is an $\mathbf{L} \times \mathbf{L}$ graded bi-ideal of the bialgebra A. Let $\mu \in \mathbf{L}^{+}$and fix a dual basis $\left\{v_{\nu} ; f_{-\nu}\right\}_{\nu}$ of $L(\mu)$ (with the usual abuse of notation). Then

$$
\sum_{\nu} c_{v_{\nu}, f_{-\eta}} c_{f_{-\nu}, v_{\gamma}}=\sum_{\nu} S\left(c_{f_{-\eta}, v_{\nu}}\right) c_{f_{-\nu}, v_{\gamma}}=\epsilon\left(c_{f_{-\eta}, v_{\gamma}}\right) .
$$

Taking $\gamma=\eta=\mu$ yields $\tilde{c}_{\mu} c_{\mu}=1$ modulo $I_{\left(w_{0}, e\right)}$. If $\gamma=w_{0} \mu$ and $\eta \neq w_{0} \mu$, the above relation shows that $S\left(c_{f_{-\eta}, v_{w_{0} \mu}}\right) \tilde{c}_{-w_{0} \mu} \in I_{\left(w_{0}, e\right)}$. Thus $I_{\left(w_{0}, e\right)}$ is a Hopf ideal.
2. We first show that

$$
\begin{equation*}
\forall \Lambda \in \mathbf{L}^{+}, c_{f, v_{\Lambda}} \in C(\Lambda)_{-\lambda, \Lambda}, \exists!x_{\lambda} \in U_{\Lambda-\lambda}^{+}, \quad \phi\left(c_{f, v_{\Lambda}}\right)=\theta\left(x_{\lambda} \cdot k_{-\Lambda}\right) \tag{4.1}
\end{equation*}
$$

Set $c=c_{f, v_{\Lambda}}$. Then $c\left(U_{-\eta}^{-}\right)=0$ unless $\eta=\Lambda-\lambda$; denote by \bar{c} the restriction of c to U^{-}. By the non-degeneracy of the pairing on $U_{\Lambda-\lambda}^{+} \times U_{\lambda-\Lambda}^{-}$we know that there exists a unique $x_{\lambda} \in U_{\Lambda-\lambda}^{+}$such that $\bar{c}=\theta\left(x_{\lambda}\right)$. Then, for all $y \in U_{\lambda-\Lambda}^{-}$, we have

$$
\begin{aligned}
c\left(y \cdot k_{\mu}\right) & =\left\langle f, y \cdot k_{\mu} \cdot v_{\Lambda}\right\rangle=q^{-\left(\Phi_{-} \Lambda, \mu\right)} \bar{c}(y)=q^{-\left(\Phi_{-} \Lambda, \mu\right)}\left\langle x_{\lambda} \mid y\right\rangle \\
& =\left\langle x_{\lambda} \cdot k_{-\Lambda} \mid y \cdot k_{\mu}\right\rangle_{p^{-1}}
\end{aligned}
$$

by (3.4). This proves (4.1).
We now show that ϕ is injective on A^{+}. Suppose that $c=c_{f, v_{\Lambda}} \in C(\Lambda)_{-\lambda, \Lambda} \cap \operatorname{Ker} \phi$, hence $c=0$ on $U_{q, p^{-1}}\left(\mathfrak{b}^{-}\right)$. Since $L(\Lambda)=U_{q, p^{-1}}\left(\mathfrak{b}^{-}\right) v_{\Lambda}=D_{q, p^{-1}}(\mathfrak{g}) v_{\Lambda}$ it follows that $c=0$. An easy weight argument using (4.1) shows then that ϕ is injective on A^{+}.

It is clear that $\operatorname{Ker} \phi \supset I_{\left(w_{0}, e\right)}$, and that $A^{+} A^{-}=A$ implies $\phi(A)=\phi\left(A^{+}\left[\tilde{c}_{\mu} ; \mu \in \mathbf{L}^{+}\right]\right)$. Since $\tilde{c}_{\mu}=c_{\mu}^{-1}$ modulo $I_{\left(w_{0}, e\right)}$ by part 1 , if $a \in A$ there exists $\nu \in \mathbf{L}^{+}$such that $\phi\left(c_{\nu}\right) \phi(a) \in \phi\left(A^{+}\right)$. The inclusion $\operatorname{Ker} \phi \subset I_{\left(w_{0}, e\right)}$ follows easily. Therefore γ is a well defined Hopf algebra morphism.

If $\alpha_{j} \in \mathbf{B}$, there exists $\Lambda \in \mathbf{L}^{+}$such that $L(\Lambda)_{\Lambda-\alpha_{j}} \neq(0)$. Pick $0 \neq f \in L(\Lambda)_{-\Lambda+\alpha_{j}}^{*}$. Then (4.1) shows that, up to some scalar, $\phi\left(c_{f, v_{\Lambda}}\right)=\theta\left(e_{j} \cdot k_{-\Lambda}\right)$. If $\lambda \in \mathbf{L}$, there exists $\Lambda \in W \lambda \cap \mathbf{L}^{+}$; in particular $L(\Lambda)_{\lambda} \neq(0)$. Let $v \in L(\Lambda)_{\lambda}$ and $f \in L(\Lambda)_{-\lambda}^{*}$ such that $\langle f, v\rangle=1$. Then it is easily verified that $\phi\left(c_{f, v}\right)=\theta\left(k_{-\lambda}\right)$. This proves that γ is surjective, and the proposition.
4.2. The adjoint action. Recall that if M is an arbitrary A-bimodule one defines the adjoint action of A on M by

$$
\forall a \in A, x \in M, \quad \operatorname{ad}(a) \cdot x=\sum a_{(1)} x S\left(a_{(2)}\right) .
$$

Then it is well known that the subspace of ad-invariant elements $M^{\text {ad }}=\{x \in M \mid \forall a \in A, \operatorname{ad}(a) \cdot x=$ $\epsilon(a) x\}$ is equal to $\{x \in M \mid \forall a \in A, a x=x a\}$.

Henceforth we fix $w \in W \times W$ and work inside A_{w}. For $\Lambda \in \mathbf{L}^{+}, f \in L(\Lambda)^{*}$ and $v \in L(\Lambda)$ we set

$$
z_{f}^{+}=c_{w \Lambda}^{-1} c_{f, v_{\Lambda}}, \quad z_{v}^{-}=\tilde{c}_{w \Lambda}^{-1} c_{v, f_{-\Lambda}}
$$

Let $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be a basis of \mathbf{L} such that $\omega_{i} \in \mathbf{L}^{+}$for all i. Observe that $c_{w \Lambda} c_{w \Lambda^{\prime}}$ and $c_{w \Lambda^{\prime}} c_{w \Lambda}$ differ by a non-zero scalar (similarly for $\tilde{c}_{w \Lambda} \tilde{c}_{w \Lambda^{\prime}}$). For each $\lambda=\sum_{i} \ell_{i} \omega_{i} \in \mathbf{L}$ we define normal elements of A_{w} by

$$
c_{w \lambda}=\prod_{i=1}^{n} c_{w \omega_{i}}^{\ell_{i}}, \quad \tilde{c}_{w \lambda}=\prod_{i=1}^{n} \tilde{c}_{w \omega_{i}}^{\ell_{i}}, \quad d_{\lambda}=\left(\tilde{c}_{w \lambda} c_{w \lambda}\right)^{-1}
$$

Notice then that, for $\Lambda \in \mathbf{L}^{+}$, the "new" $c_{w \Lambda}$ belongs to $\mathbb{C}^{*} c_{f_{-w_{+} \Lambda}, v_{\Lambda}}$ (similarly for $\tilde{c}_{w \Lambda}$). Define subalgebras of A_{w} by

$$
\begin{gathered}
C_{w}=\mathbb{C}\left[z_{f}^{+}, z_{v}^{-}, c_{w \lambda} ; f \in L(\Lambda)^{*}, v \in L(\Lambda), \Lambda \in \mathbf{L}^{+}, \lambda \in \mathbf{L}\right] \\
C_{w}^{+}=\mathbb{C}\left[z_{f}^{+} ; f \in L(\Lambda)^{*}, \Lambda \in \mathbf{L}^{+}\right], \quad C_{w}^{-}=\mathbb{C}\left[z_{v}^{-} ; v \in L(\Lambda), \Lambda \in \mathbf{L}^{+}\right]
\end{gathered}
$$

Recall that the torus H acts on $A_{\lambda, \mu}$ by $r_{h}(a)=\mu(h) a$, where $\mu(h)=\langle\mu, h\rangle$. Since the generators of I_{w} and the elements of \mathcal{E}_{w} are eigenvectors for H, the action of H extends to an action on A_{w}. The algebras C_{w} and $C_{w}^{ \pm}$are obviously H-stable.

Theorem 4.7. 1. $C_{w}^{H}=\mathbb{C}\left[z_{f}^{+}, z_{v}^{-} ; f \in L(\Lambda)^{*}, v \in L(\Lambda), \Lambda \in \mathbf{L}^{+}\right]$.
2. The set $\mathcal{D}=\left\{d_{\Lambda} ; \Lambda \in \mathbf{L}^{+}\right\}$is an Ore subset of C_{w}^{H}. Furthermore $A_{w}=\left(C_{w}\right)_{\mathcal{D}}$ and $A_{w}^{H}=\left(C_{w}^{H}\right)_{\mathcal{D}}$.
3. For each $\lambda \in \mathbf{L}$, let $\left(A_{w}\right)_{\lambda}=\left\{a \in A_{w} \mid r_{h}(a)=\lambda(h) a\right\}$. Then $A_{w}=\bigoplus_{\lambda \in \mathbf{L}}\left(A_{w}\right)_{\lambda}$ and $\left(A_{w}\right)_{\lambda}=$ $A_{w}^{H} c_{w \lambda}$. Moreover each $\left(A_{w}\right)_{\lambda}$ is an ad-invariant subspace.

Proof. Assertion 1 follows from

$$
\forall h \in H, \quad r_{h}\left(z_{f}^{ \pm}\right)=z_{f}^{ \pm}, \quad r_{h}\left(c_{w \lambda}\right)=\lambda(h) c_{w \lambda}, \quad r_{h}\left(\tilde{c}_{w \lambda}\right)=\lambda(h)^{-1} \tilde{c}_{w \lambda}
$$

Let $\left\{v_{i} ; f_{i}\right\}_{i}$ be a dual basis for $L(\Lambda)$. Then

$$
1=\epsilon\left(c_{f_{-\Lambda}, v_{\Lambda}}\right)=\sum_{i} S\left(c_{f_{-\Lambda}, v_{i}}\right) c_{f_{i}, v_{\Lambda}}=\sum_{i} c_{v_{i}, f_{-\Lambda}} c_{f_{i}, v_{\Lambda}}
$$

Multiplying both sides of the equation by d_{Λ} and using the normality of $c_{w \Lambda}$ and $\tilde{c}_{w \Lambda}$ yields $d_{\Lambda}=$ $\sum_{i} a_{i} z_{v_{i}}^{-} z_{f_{i}}^{+}$for some $a_{i} \in \mathbb{C}$. Thus $\mathcal{D} \subset C_{w}^{H}$. Now by Theorem 4.1 any element of A_{w} can be written in the form $c_{f_{1}, v_{1}} c_{f_{2}, v_{2}} d_{\Lambda}^{-1}$ where $v_{1}=v_{\Lambda_{1}}, v_{2}=v_{-\Lambda_{2}}$ and $\Lambda_{1}, \Lambda_{2}, \Lambda \in \mathbf{L}^{+}$. This element lies in $\left(A_{w}\right)_{\lambda}$ if and only if $\Lambda_{1}-\Lambda_{2}=\lambda$. In this case $c_{f_{1}, v_{1}} c_{f_{2}, v_{2}} d_{\Lambda}^{-1}$ is equal, up to a scalar, to the element $z_{f_{1}}^{+} z_{f_{2}}^{-} d_{\Lambda+\Lambda_{2}}^{-1} c_{w \lambda} \in$ $\left(C_{w}^{H}\right)_{\mathcal{D}} c_{w \lambda}$. Since the adjoint action commutes with the right action of $H,\left(A_{w}\right)_{\lambda}$ is an ad-invariant subspace. The remaining assertions then follow.

We now study the adjoint action of $\mathbb{C}_{q, p}[G]$ on A_{w}. The key result is Theorem 4.12.
Lemma 4.8. Let $T_{\Lambda}=\left\{z_{f}^{+} \mid f \in L(\Lambda)^{*}\right\}$. Then $C_{w}^{+}=\bigcup_{\Lambda \in \mathbf{L}} T_{\Lambda}$.

Proof. It suffices to prove that if $\Lambda, \Lambda^{\prime} \in \mathbf{L}^{+}$and $f \in L(\Lambda)^{*}$, then there exists a $g \in L\left(\Lambda+\Lambda^{\prime}\right)^{*}$ such that $z_{f}^{+}=z_{g}^{+}$. Clearly we may assume that f is a weight vector. Let $\iota: L\left(\Lambda+\Lambda^{\prime}\right) \rightarrow L(\Lambda) \otimes L\left(\Lambda^{\prime}\right)$ be the canonical map. Then

$$
c_{f, v_{\Lambda}} c_{f_{-w_{+} \Lambda^{\prime}}, v_{\Lambda^{\prime}}}=c_{f_{-w_{+} \Lambda^{\prime}} \otimes f, v_{\Lambda} \otimes v_{\Lambda^{\prime}}}=c_{g, v_{\Lambda+\Lambda^{\prime}}}
$$

where $g=\iota^{*}\left(f_{-w_{+} \Lambda^{\prime}} \otimes f\right)$. Multiplying the images of these elements in A_{w} by the inverse of $c_{w\left(\Lambda+\Lambda^{\prime}\right)} \in$ $\mathbb{C}^{*} c_{w \Lambda} c_{w \Lambda^{\prime}}$ yields the desired result.

Proposition 4.9. Let E be an object of $\mathcal{C}_{q, p}$ and let $\Lambda \in \mathbf{L}^{+}$. Let $\sigma: L(\Lambda) \rightarrow E \otimes L(\Lambda) \otimes E^{*}$ be the map $\left(1 \otimes \psi^{-1}\right)(\iota \otimes 1)$ where $\iota: \mathbb{C} \rightarrow E \otimes E^{*}$ is the canonical embedding and $\psi^{-1}: E^{*} \otimes L(\Lambda) \rightarrow L(\Lambda) \otimes E^{*}$ is the inverse of the braiding map described in §3.5. Then for any $c=c_{g, v} \in C(E)_{-\eta, \gamma}$ and $f \in L(\Lambda)^{*}$

$$
\operatorname{ad}(c) . z_{f}^{+}=q^{\left(\Phi_{+} w_{+} \Lambda, \eta\right)} z_{\sigma^{*}(v \otimes f \otimes g)}^{+} .
$$

In particular C_{w}^{+}is a locally finite $\mathbb{C}_{q, p}[G]$-module for the adjoint action.
Proof. Let $\left\{v_{i} ; g_{i}\right\}_{i}$ be a dual basis of E where $v_{i} \in E_{\nu_{i}}, g_{i} \in E_{-\nu_{i}}^{*}$. Then $\iota(1)=\sum v_{i} \otimes g_{i}$. By (3.5) we have

$$
\psi^{-1}\left(g_{i} \otimes v_{\Lambda}\right)=a_{i}\left(v_{\Lambda} \otimes g_{i}\right)
$$

where $a_{i}=q^{-\left(\Phi_{+} \Lambda, \nu_{i}\right)}=q^{\left(\Phi_{-} \nu_{i}, \Lambda\right)}$. On the other hand the commutation relations given in Corollary 3.10 imply that $c_{g, v_{i}} c_{w \Lambda}^{-1}=b a_{i} c_{w \Lambda}^{-1} c_{g, v_{i}}$, where $b=q^{\left(\Phi_{+} w_{+} \Lambda, \eta\right)}$. Therefore

$$
\operatorname{ad}(c) . z_{f}^{+}=\sum b a_{i} c_{w \Lambda}^{-1} c_{g, v_{i}} c_{f, v_{\Lambda}} c_{v, g_{i}}=b c_{w \Lambda}^{-1} c_{v \otimes f \otimes g, \sum a_{i} v_{i} \otimes v_{\Lambda} \otimes g_{i}}=b c_{w \Lambda}^{-1} c_{v \otimes f \otimes g, \sigma\left(v_{\Lambda}\right)} .
$$

Since the map σ is a morphism of $D_{q, p^{-1}}(\mathfrak{g})$-modules it is easy to see that $c_{v \otimes f \otimes g, \sigma\left(v_{\Lambda}\right)}=c_{\sigma^{*}(v \otimes f \otimes g), v_{\Lambda}}$.
Let $\gamma: \mathbb{C}_{q, p}[G] \rightarrow U_{q, p^{-1}}\left(\mathfrak{b}^{+}\right)$be the algebra anti-isomorphism given in Proposition 4.6.
Lemma 4.10. Let $c=c_{g, v} \in \mathbb{C}_{q, p}[G]_{-\eta, \gamma}, f \in L(\Lambda)^{*}$ be as in the previous theorem and $x \in U_{q, p^{-1}}\left(\mathfrak{b}^{+}\right)$ be such that $\gamma(c)=x$. Then

$$
c_{S^{-1}(x) \cdot f, v_{\Lambda}}=c_{\sigma^{*}(v \otimes f \otimes g), v_{\Lambda}}
$$

Proof. Notice that it suffices to show that

$$
c_{S^{-1}(x) \cdot f, v_{\Lambda}}(y)=c_{\sigma^{*}(v \otimes f \otimes g), v_{\Lambda}}(y)
$$

for all $y \in U_{q, p^{-1}}\left(\mathfrak{b}^{-}\right)$. Denote by $\langle\mid\rangle$the Hopf pairing $\langle\mid\rangle_{p^{-1}}$ between $U_{q, p^{-1}}\left(\mathfrak{b}^{+}\right)^{\text {op }}$ and $U_{q, p^{-1}}\left(\mathfrak{b}^{-}\right)$as in §3.4. Let χ be the one dimensional representation of $U_{q, p^{-1}}\left(\mathfrak{b}^{+}\right)$associated to v_{Λ} and let $\tilde{\chi}=\chi \cdot \gamma$. Notice that $\chi(x)=\left\langle x \mid t_{-\Lambda}\right\rangle$; so $\tilde{\chi}(c)=c\left(t_{-\Lambda}\right)$. Recalling that γ is a morphism of coalgebras and using the relation $\left(c_{x y}\right)$ of $\S 2.3$ in the double $U_{q, p^{-1}}\left(\mathfrak{b}^{+}\right) \bowtie U_{q, p^{-1}}\left(\mathfrak{b}^{-}\right)$, we obtain

$$
\begin{aligned}
c_{S^{-1}(x) \cdot f, v_{\Lambda}}(y) & =f\left(x y v_{\Lambda}\right) \\
& =\sum\left\langle x_{(1)} \mid y_{(1)}\right\rangle\left\langle x_{(3)} \mid S\left(y_{(3)}\right)\right\rangle f\left(y_{(2)} x_{(2)} v_{\Lambda}\right) \\
& =\sum\left\langle x_{(1)} \mid y_{(1)}\right\rangle\left\langle x_{(3)} \mid S\left(y_{(3)}\right)\right\rangle \chi\left(x_{(2)}\right) f\left(y_{(2)} v_{\Lambda}\right) \\
& =\sum\left\langle x_{(1)} \chi\left(x_{(2)}\right) \mid y_{(1)}\right\rangle\left\langle x_{(3)}\right| S\left(y_{(3)}\right\rangle f\left(y_{(2)} v_{\Lambda}\right) \\
& =\sum\left(c_{(1)} \tilde{\chi}\left(c_{(2)}\right)\right)\left(y_{(1)}\right) c_{(3)}\left(S\left(y_{(3)}\right)\right) f\left(y_{(2)} v_{\Lambda}\right) \\
& =\sum r_{\tilde{\chi}}\left(c_{(1)}\right)\left(y_{(1)}\right) c_{f, v_{\Lambda}}\left(y_{(2)}\right) S\left(c_{(2)}\right)\left(y_{(3)}\right) .
\end{aligned}
$$

Since $r_{\tilde{\chi}}\left(c_{g, v_{i}}\right)=q^{\left(\Phi_{-} \nu_{i}, \Lambda\right)} c_{g, v_{i}}$, one shows as in the proof of Proposition 4.9 that

$$
\begin{aligned}
c_{S^{-1}(x) \cdot f, v_{\Lambda}}(y) & =\sum r_{\tilde{\chi}}\left(c_{(1)}\right)\left(y_{(1)}\right) c_{f, v_{\Lambda}}\left(y_{(2)}\right) S\left(c_{(2)}\right)\left(y_{(3)}\right) \\
& =\sum q^{\left(\Phi_{-} \nu_{i}, \Lambda\right)}\left(c_{g, v_{i}} c_{f, v_{\Lambda}} c_{v, g_{i}}\right)(y) \\
& =c_{\sigma^{*}(v \otimes f \otimes g), v_{\Lambda}}(y),
\end{aligned}
$$

as required.
Theorem 4.11. Consider C_{w}^{+}as $a \mathbb{C}_{q, p}[G]$-module via the adjoint action. Then
(1) $\operatorname{Soc} C_{w}^{+}=\mathbb{C}$.
(2) $\operatorname{Ann} C_{w}^{+} \supset I_{\left(w_{0}, e\right)}$.
(3) The elements $c_{f_{-\mu}, v_{\mu}}, \mu \in \mathbf{L}^{+}$, act diagonalizably on C_{w}^{+}.
(4) $\operatorname{Soc} C_{w}^{+}=\left\{z \in C_{w}^{+} \mid \operatorname{Ann} z \supset I_{(e, e)}\right\}$.

Proof. For $\Lambda \in \mathbf{L}^{+}$, define a $U_{q, p^{-1}}\left(\mathfrak{b}^{+}\right)$-module by

$$
S_{\Lambda}=\left(U_{q, p^{-1}}\left(\mathfrak{b}^{+}\right) v_{w_{+} \Lambda}\right)^{*}=L(\Lambda)^{*} /\left(U_{q, p^{-1}}\left(\mathfrak{b}^{+}\right) v_{w_{+} \Lambda}\right)^{\perp} .
$$

It is easily checked that $\operatorname{Soc} S_{\Lambda}=\mathbb{C} f_{-w_{+} \Lambda}$ (see $\left.[18,7.3]\right)$. Let $\delta: S_{\Lambda} \rightarrow T_{\Lambda}$ be the linear map given by $\bar{f} \mapsto z_{f}^{+}$. Denote by ζ the one-dimensional representation of $\mathbb{C}_{q, p}[G]$ given by $\zeta(c)=c\left(t_{-w_{+} \Lambda}\right)$. Let $c=c_{g, v} \in C(E)_{-\eta, \gamma}$. Then $l_{\zeta}(c)=q^{\left(\Phi_{-}, w_{+} \Lambda\right)} c=q^{\left.-\left(\Phi_{+} w_{+} \Lambda, \eta\right)\right)} c$. Then, using Proposition 4.9 and Lemma 4.10 we obtain,

$$
\operatorname{ad}\left(l_{\zeta}(c)\right) \cdot \delta(\bar{f})=q^{-\left(\Phi_{+} w_{+} \Lambda, \eta\right)} \operatorname{ad}(c) \cdot z_{f}^{+}=z_{S^{-1} \gamma(c) \cdot f}^{+}=\delta\left(S^{-1}(\gamma(c)) \bar{f}\right)
$$

Hence, $\operatorname{ad}\left(l_{\zeta}(c)\right) \cdot \delta(\bar{f})=\delta\left(S^{-1}(\gamma(c)) \bar{f}\right)$ for all $c \in A$. This immediately implies part (2) since $\operatorname{Ker} \gamma \supset$ $I_{\left(w_{0}, e\right)}$ and $l_{\zeta}\left(I_{\left(w_{0}, e\right)}\right)=I_{\left(w_{0}, e\right)}$. If S_{Λ} is given the structure of an A-module via $S^{-1} \gamma$, then δ is a homomorphism from S_{Λ} to the module T_{Λ} twisted by the automorphism l_{ζ}. Since $\delta\left(f_{-w_{+\Lambda}}\right)=1$ it follows that δ is bijective and that $\operatorname{Soc} T_{\Lambda}=\delta\left(\operatorname{Soc} S_{\Lambda}\right)=\mathbb{C}$. Part (1) then follows from Lemma 4.8. Part (3) follows from the above formula and the fact that $\gamma\left(c_{f_{-\mu}, v_{\mu}}\right)=s_{-\mu}$. Since $A / I_{(e, e)}$ is generated by the images of the elements $c_{f_{-\mu}, v_{\mu}},(4)$ is a consequence of the definitions.

Theorem 4.12. Consider C_{w}^{H} as a $\mathbb{C}_{q, p}[G]$-module via the adjoint action. Then

$$
\operatorname{Soc} C_{w}^{H}=\mathbb{C}
$$

Proof. By Theorem 4.11 we have that $\operatorname{Soc} C_{w}^{+}=\mathbb{C}$. Using the map σ, one obtains analogous results for C_{w}^{-}. The map $C_{w}^{+} \otimes C_{w}^{-} \rightarrow C_{w}^{H}$ is a module map for the adjoint action which is surjective by Theorem 4.1. So it suffices to show that $\operatorname{Soc} C_{w}^{+} \otimes C_{w}^{-}=\mathbb{C}$. The following argument is taken from [18].

By the analog of Theorem 4.11 for C_{w}^{-}we have that the elements $c_{f_{-\Lambda}, v_{\Lambda}}$ act as commuting diagonalizable operators on C_{w}^{-}. Therefore an element of $C_{w}^{+} \otimes C_{w}^{-}$may be written as $\sum a_{i} \otimes b_{i}$ where the b_{i} are linearly independent weight vectors. Let $c_{f, v_{\Lambda}}$ be a generator of I_{e}^{+}. Suppose that $\sum a_{i} \otimes b_{i} \in \operatorname{Soc}\left(C_{w}^{+} \otimes C_{w}^{-}\right)$. Then

$$
\begin{aligned}
0=\operatorname{ad}\left(c_{f, v_{\Lambda}}\right) \cdot\left(\sum_{i} a_{i} \otimes b_{i}\right) & =\sum_{i, j} \operatorname{ad}\left(c_{f, v_{j}}\right) \cdot a_{i} \otimes \operatorname{ad}\left(c_{f_{j}, v_{\Lambda}}\right) \cdot b_{i} \\
& =\sum_{i} \operatorname{ad}\left(c_{f, v_{\Lambda}}\right) \cdot a_{i} \otimes \operatorname{ad}\left(c_{f_{-\Lambda}, v_{\Lambda}}\right) \cdot b_{i} \\
& =\sum_{i} \operatorname{ad}\left(c_{f, v_{\Lambda}}\right) \cdot a_{i} \otimes \alpha_{i} b_{i}
\end{aligned}
$$

for some $\alpha_{i} \in \mathbb{C}^{*}$. Thus $\operatorname{ad}\left(c_{f, v_{\Lambda}}\right) \cdot a_{i}=0$ for all i. Thus the a_{i} are annihilated by the left ideal generated by the $c_{f, v_{\Lambda}}$. But this left ideal is two-sided modulo $I_{\left(w_{0}, e\right)}$ and Ann $C_{w}^{+} \supset I_{\left(w_{0}, e\right)}$. Thus the a_{i} are annihilated by $I_{(e, e)}$ and so lie in $\operatorname{Soc} C_{w}^{+}$by Theorem 4.11. Thus $\sum a_{i} \otimes b_{i} \in \operatorname{Soc}\left(\mathbb{C} \otimes C_{w}^{-}\right)=\mathbb{C} \otimes \mathbb{C}$.

Corollary 4.13. The algebra A_{w}^{H} contains no nontrivial ad-invariant ideals. Furthermore, $\left(A_{w}^{H}\right)^{\text {ad }}=\mathbb{C}$.
Proof. Notice that Theorem 4.12 implies that C_{w}^{H} contains no nontrivial ad-invariant ideals. Since A_{w}^{H} is a localization of C_{w}^{H} the same must be true for A_{w}^{H}. Let $a \in\left(A_{w}^{H}\right)^{\text {ad }} \backslash \mathbb{C}$. Then a is central and so for any $\alpha \in \mathbb{C},(a-\alpha)$ is a non-zero ad-invariant ideal of A_{w}^{H}. This implies that $a-\alpha$ is invertible in A_{w}^{H} for any $\alpha \in \mathbb{C}$. This contradicts the fact that A_{w}^{H} has countable dimension over \mathbb{C}.

Theorem 4.14. Let Z_{w} be the center of A_{w}. Then
(1) $Z_{w}=A_{w}^{a d}$;
(2) $Z_{w}=\bigoplus_{\lambda \in \mathbf{L}} Z_{\lambda}$ where $Z_{\lambda}=Z_{w} \cap A_{w}^{H} c_{w \lambda}$;
(3) If $Z_{\lambda} \neq(0)$, then $Z_{\lambda}=\mathbb{C} u_{\lambda}$ for some unit u_{λ};
(4) The group H acts transitively on the maximal ideals of Z_{w}.

Proof. The proof of (1) is standard. Assertion (2) follows from Theorem 4.7. Let u_{λ} be a non-zero element of Z_{λ}. Then $u_{\lambda}=a c_{w \lambda}$, for some $a \in A_{w}^{H}$. This implies that a is normal and hence a generates an ad-invariant ideal of A_{w}^{H}. Thus a (and hence also u_{λ}) is a unit by Theorem 4.13. Since $Z_{0}=\mathbb{C}$, it follows that $Z_{\lambda}=\mathbb{C} u_{\lambda}$. Since the action of H is given by $r_{h}\left(u_{\lambda}\right)=\lambda(h) u_{\lambda}$, it is clear that H acts transitively on the maximal ideals of Z_{w}.

Theorem 4.15. The ideals of A_{w} are generated by their intersection with the center, Z_{w}.
Proof. Any element $f \in A_{w}$ may be written uniquely in the form $f=\sum a_{\lambda} c_{w \lambda}$ where $a_{\lambda} \in A_{w}^{H}$. Define $\pi: A_{w} \rightarrow A_{w}^{H}$ to be the projection given by $\pi\left(\sum a_{\lambda} c_{w \lambda}\right)=a_{0}$ and notice that π is a module map for the adjoint action. Define the support of f to be $\operatorname{Supp}(f)=\left\{\lambda \in \mathbf{L} \mid a_{\lambda} \neq 0\right\}$. Let I be an ideal of A_{w}. For any set $Y \subseteq \mathbf{L}$ such that $0 \in Y$ define

$$
I_{Y}=\left\{b \in A_{w}^{H} \mid b=\pi(f) \text { for some } f \in I \text { such that } \operatorname{Supp}(f) \subseteq Y\right\}
$$

If I is ad-invariant then I_{Y} is an ad-invariant ideal of A_{w}^{H} and hence is either (0) or A_{w}^{H}.
Now let $I^{\prime}=\left(I \cap Z_{w}\right) A_{w}$ and suppose that $I \neq I^{\prime}$. Choose an element $f=\sum a_{\lambda} c_{w \lambda} \in I \backslash I^{\prime}$ whose support S has the smallest cardinality. We may assume without loss of generality that $0 \in S$. Suppose that there exists $g \in I^{\prime}$ with $\operatorname{Supp}(g) \subset S$. Then there exists a $g^{\prime} \in I^{\prime}$ with $\operatorname{Supp}\left(g^{\prime}\right) \subset S$ and $\pi\left(g^{\prime}\right)=1$. But then $f-a_{0} g^{\prime}$ is an element of I^{\prime} with smaller support than F. Thus there can be no elements in I^{\prime} whose support is contained in S. So we may assume that $\pi(f)=a_{0}=1$. For any $c \in \mathbb{C}_{q, p}[G]$, set $f_{c}=\operatorname{ad}(c) . f-\epsilon(c) f$. Since $\pi\left(f_{c}\right)=0$ it follows that $\left|\operatorname{Supp}\left(f_{c}\right)\right|<|S u p p(f)|$ and hence that $f_{c}=0$. Thus $f \in I \cap A_{w}^{\text {ad }}=I \cap Z_{w}$, a contradiction.

Putting these results together yields the main theorem of this section, which completes Corollary 4.5 by describing the set of primitive ideals of type w.

Theorem 4.16. For $w \in W \times W$ the subsets $\operatorname{Prim}_{w} \mathbb{C}_{q, p}[G]$ are precisely the H-orbits inside Prim $\mathbb{C}_{q, p}[G]$.
Finally we calculate the size of these orbits in the algebraic case. Set $\mathbf{L}_{w}=\left\{\lambda \in \mathbf{L} \mid Z_{\lambda} \neq(0)\right\}$. Recall the definition of $s(w)$ from (1.3) and that p is called q-rational if u is algebraic. In this case we know by Theorem 1.7 that there exists $m \in \mathbb{N}^{*}$ such that $\Phi(m \mathbf{L}) \subset \mathbf{L}$.

Proposition 4.17. Suppose that p is q-rational. Let $\lambda \in \mathbf{L}$ and $y_{\lambda}=c_{w \Phi_{-} m \lambda} \tilde{c}_{w \Phi_{+}} m \lambda$. Then
(1) y_{λ} is ad-semi-invariant. In fact, for any $c \in A_{-\eta, \gamma}$,

$$
\operatorname{ad}(c) \cdot y_{\lambda}=q^{(m \sigma(w) \lambda, \eta)} \epsilon(c) y_{\lambda} .
$$

where $\sigma(w)=\Phi_{-} w_{-} \Phi_{+}-\Phi_{+} w_{+} \Phi_{-}$
(2) $\mathbf{L}_{w} \cap 2 m \mathbf{L}=2 \operatorname{Ker} \sigma(w) \cap m \mathbf{L}$
(3) $\operatorname{dim} Z_{w}=n-s(w)$

Proof. Using Lemma 4.2, we have that for $c \in A_{-\eta, \gamma}$

$$
\begin{aligned}
c y_{\lambda} & =q^{\left(\Phi_{+} w_{+} \Phi_{-} m \lambda,-\eta\right)} q^{\left(\Phi_{+} \Phi_{-} m \lambda, \gamma\right)} q^{\left(\Phi_{-} w_{-} \Phi_{+} m \lambda, \eta\right)} q^{\left(\Phi_{-} \Phi_{+} m \lambda,-\gamma\right)} y_{\lambda} c \\
& =q^{(m \sigma(w) \lambda, \eta)} y_{\lambda} c .
\end{aligned}
$$

From this it follows easily that

$$
\operatorname{ad}(c) \cdot y_{\lambda}=q^{(m \sigma(w) \lambda, \eta)} \epsilon(c) y_{\lambda} .
$$

Since (up to some scalar) $y_{\lambda}=d_{\Phi m \lambda}^{-1} d_{m \lambda}^{-1} c_{w m \lambda}^{-2}$ it follows from Theorem 4.7 that $y_{\lambda} \in\left(A_{w}\right)_{-2 m \lambda}$. However, as a $\mathbb{C}_{q, p}[G]$-module via the adjoint action, $A_{w}^{H} y_{\lambda} \cong A_{w}^{H} \otimes \mathbb{C} y_{\lambda}$ and hence Soc $A_{w}^{H} y_{\lambda}=\mathbb{C} y_{\lambda}$. Thus $Z_{-2 m \lambda} \neq(0)$ if and only if y_{λ} is ad-invariant; that is, if and only if $m \sigma(w) \lambda=0$. Hence

$$
\begin{aligned}
\operatorname{dim} Z_{w} & =\operatorname{rk} \mathbf{L}_{w}=\operatorname{rk}\left(\mathbf{L}_{w} \cap 2 m \mathbf{L}\right)=\operatorname{rk} \operatorname{Ker}_{m \mathbf{L}} \sigma(w) \\
& =\operatorname{dim} \operatorname{Ker}_{\mathfrak{h}^{*}} \sigma(w)=n-s(w)
\end{aligned}
$$

as required.
Finally, we may deduce that in the algebraic case the size of the of the H-orbits $\operatorname{Symp}_{w} G$ and $\operatorname{Prim}_{w} \mathbb{C}_{q, p}[G]$ are the same, cf. Theorem 1.8.

Theorem 4.18. Suppose that p is q-rational and let $w \in W \times W$. Then

$$
\forall P \in \operatorname{Prim}_{w} \mathbb{C}_{q, p}[G], \quad \operatorname{dim}\left(H / \operatorname{Stab}_{H} P\right)=n-s(w)
$$

Proof. This follows easily from theorems 4.15, 4.16 and Proposition 4.17.

References

[1] N. Andruskiewitsch and B. Enriquez, Examples of compact matrix pseudogroups arising from the twisting operation, Comm. Math. Phys., 149 (1992), 195-207.
[2] M. Artin, W. Schelter and J. Tate, Quantum deformations of $G L_{n}$, Comm. Pure Appl. Math., 44 (1991), 879-895.
[3] A. A. Belavin and V. G. Drinfeld, Triangle equations and simple Lie algebras, Mathematical Physics reviews (S. P. Novikov, ed.), Harwood, New York 1984, 93-166.
[4] A. Borel, Linear algebraic groups, W.A. Benjamin, New York 1969.
[5] W. Chin and I. Musson, Multi-parameter quantum enveloping algebras, preprint 1994.
[6] W. Chin and D. Quinn, Rings graded by polycyclic-by-finite groups, Proc. Amer. Math. Soc., 102 (1988), 235-241.
[7] M. Constantini and M. Varagnolo, Quantum double and multi-parameter quantum group, Comm. Alg., 22 (1994), 6305-6321.
[8] M. Constantini and M. Varagnolo, Multi-parameter quantum function algebra at roots of 1, preprint.
[9] P. Cotta-Ramusino and M. Rinaldi, Multi-parameter quantum groups related to link diagrams, Comm. Math. Phys. 142 (1991), 589-604.
[10] C. De Concini and V. Lyubashenko, Quantum function algebra at roots of 1, Adv. Math., 108 (1994), 205-262.
[11] C. De Concini and C. Procesi, Quantum groups, in D-modules, representation theory and quantum groups, Lecture Notes in Mathematics 1565, Springer 1994, 31-140.
[12] J. Dixmier, Algèbres Enveloppantes, Gauthier-Villars, Paris 1974.
[13] V.G.Drinfeld, Quantum groups, in Proceedings ICM, Berkeley, AMS, 1987, 798-820.
[14] T. Hayashi, Quantum groups and quantum determinants, J. Algebra, 152 (1992), 146-165.
[15] T. J. Hodges and T. Levasseur, Primitive ideals of $\mathbb{C}_{q}[S L(3)]$, Comm. Math. Phys., 156 (1993), 581-605.
[16] T. J. Hodges and T. Levasseur, Primitive ideals of $\mathbb{C}_{q}[S L(n)]$, J. Algebra, 168 (1994), 455-468.
[17] T. J. Hodges and T. Levasseur, Primitive ideals of $\mathbb{C}_{q}[G]$, University of Cincinnati 1993 (unpublished).
[18] A. Joseph, On the prime and primitive spectrum of the algebra of functions on a quantum group, J. Algebra, 169 (1994), 441-511.
[19] A. Joseph, Idéaux premiers et primitifs de l'algèbre des fonctions sur un groupe quantique, C. R. Acad. Sci. Paris, 316 I (1993), 1139-1142.
[20] S. Z. Levendorskii, Twisted function algebras on a compact quantum group and their representations, St. Petersburg Math J. 3 (1992), 405-423.
[21] S. Z. Levendorskii and Y. S. Soibelman, Algebras of functions on compact quantum groups, Schubert cells and quantum tori, Comm. Math. Phys. 139 (1991), 141-170.
[22] J.-H. Lu and A. Weinstein, Poisson Lie groups, dressing transformations and Bruhat decompositions, J. Differential Geometry, 31 (1990), 501-526.
[23] G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Advances in Math., 70 (1988), 237-249.
[24] V. Lychagin, Braided differential operators and quantizations in ABC-categories, C. R. Acad. Sci. Paris, 318 I (1994), 857-862.
[25] M. Okado and H. Yamane, R-matrices with gauge parameters and multi-parameter quantized enveloping algebras, in Special functions (Okayama 1990), ICM-90 Satell. Conf. Proc., Springer 1991, 289-293.
[26] N. Y. Reshetikhin, Multi-parameter quantum groups and twisted quasi-triangular Hopf algebras, Lett. Math. Phys. 20 (1990), 331-335.
[27] M. Rieffel, Compact quantum groups associated with toral subgroups, in Representation Theory of Groups and Algebras, Contemporary Math., 145 (1993), 465-491.
[28] M. Rosso, Analogues de la forme de Killing et du théorème de Harish-Chandra pour les groupes quantiques, Ann. Sci. Ec. Norm. Sup., 23 (1990), 445-467.
[29] M. Rosso, Représentations des groupes quantiques, in Séminaire Bourbaki, Exposé 744, Soc. Math. France 1991, 443-483.
[30] M. A. Semenov-Tian-Shansky, Dressing transformations and Poisson group actions, Publ. RIMS, Kyoto Univ., 21 (1985), 1237-1260.
[31] Ya. S. Soibelman, The algebra of functions on a compact quantum group, and its representations, Leningrad Math. J. 2 (1991), 161-178.
[32] A. Sudberry, Consistent multi-parameter quantization of GL(n), J. Phys., A 23 (1990), L697-L704.
[33] T. Tanisaki, Killing forms, Harish-Chandra isomorphisms, and universal R-Matrices for Quantum Algebras, in Infinite Analysis, Proceedings of the RIMS research project 1991, Part B, World Scientific, 1992, 941-961.

University of Cincinnati, Cincinnati, OH 45221-0025, U.S.A.
E-mail address: timothy.hodges@uc.edu
Université de Poitiers, 86022 Poitiers, France
E-mail address: levasseu@mathlabo.univ-poitiers.fr
Universidad Nacional de Colombia, Apartado Aéreo, Medellin, Colombia
E-mail address: mmtoro@perseus.unalmed.edu.co

[^0]: Date: June, 1994.
 The first author was partially supported by grants from the National Security Agency and the C. P. Taft Memorial Fund.

 The third author was partially supported by a grant from Colciencias.

