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Introduction

Let G be a connected semi-simple complex Lie group. We define and study the multi-parameter
quantum group Cq,p[G] in the case where q is a complex parameter that is not a root of unity. Using
a method of twisting bigraded Hopf algebras by a cocycle, [2], we develop a unified approach to the
construction of Cq,p[G] and of the multi-parameter Drinfeld double Dq,p. Using a general method of
deforming bigraded pairs of Hopf algebras, we construct a Hopf pairing between these algebras from which
we deduce a Peter-Weyl-type theorem for Cq,p[G]. We then describe the prime and primitive spectra of
Cq,p[G], generalizing a result of Joseph. In the one-parameter case this description was conjectured, and
established in the SL(n)-case, by the first and second authors in [15, 16]. It was proved in the general case
by Joseph in [18, 19]. In particular the orbits in PrimCq,p[G] under the natural action of the maximal
torus H are indexed, as in the one-parameter case by the elements of the double Weyl group W ×W .
Unlike the one-parameter case there is not in general a bijection between SympG and PrimCq,p[G].
However in the case when the symplectic leaves are algebraic such a bijection does exist since the orbits
corresponding to a given w ∈W ×W have the same dimension.

In the first section we discuss the Poisson structures on G defined by classical r-matrices of the form
r = a − u where a =

∑
α∈R+

eα ∧ e−α ∈ ∧2g and u ∈ ∧2h. Given such an r one constructs a Manin
triple of Lie groups (G × G,G,Gr). Unlike the one-parameter case (where u = 0), the dual group Gr
will generally not be an algebraic subgroup of G × G. In fact this happens if and only if u ∈ ∧2hQ.
Since the quantized universal enveloping algebra Uq(g) is a deformation of the algebra of functions on
the algebraic group Gr [11], this explains the difficulty in constructing multi-parameter versions of Uq(g).
From [22, 30], one has that the symplectic leaves are the connected components of G ∩ GrxGr where
x ∈ G. Since r is H-invariant, the symplectic leaves are permuted by H with the orbits being contained
in Bruhat cells in G×G indexed by W ×W . In the case where Gr is algebraic, the symplectic leaves are
also algebraic and an explicit formula is given for their dimension.

The philosophy of [15, 16] was that, as in the case of enveloping algebras of algebraic solvable Lie
algebras, the primitive ideals of Cq[G] should be in bijection with the symplectic leaves of G (in the case
u = 0). Indeed, since the Lie bracket on gr = Lie(Gr) is the linearization of the Poisson structure on G,
PrimCq,p[G] should resemble PrimU(gr). The study of the multi-parameter versions Cq,p[G] is similar
to the case of enveloping algebras of general solvable Lie algebras. In the general case PrimU(gr) is in
bijection with the co-adjoint orbits in g∗r under the action of the ‘adjoint algebraic group’ of gr, [12]. It
is therefore natural that, only in the case where the symplectic leaves are algebraic, does one expect and
obtain a bijection between the symplectic leaves and the primitive ideals.

In section 2 we define the notion of an L-bigraded Hopf K-algebra, where L is an abelian group. When
A is finitely generated such bigradings correspond bijectively to morphisms from the algebraic group L∨ to
the (algebraic) group R(A) of one- dimensional representations of A. For any antisymmetric bicharacter
p on L, the multiplication in A may be twisted to give a new Hopf algebra Ap. Moreover, given a pair
of L-bigraded Hopf algebras A and U equipped with an L-compatible Hopf pairing A × U → K, one
can deform the pairing to get a new Hopf pairing between Ap−1 and Up. This deformation commutes
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with the formation of the Drinfeld double in the following sense. Suppose that A and U are bigraded
Hopf algebras equipped with a compatible Hopf pairing Aop ×U → K. Then the Drinfeld double A on U
inherits a bigrading such that (A on U)p ∼= Ap on Up.

Let Cq[G] denote the usual one-parameter quantum group (or quantum function algebra) and let
Uq(g) be the quantized enveloping algebra associated to the lattice L of weights of G. Let Uq(b+)
and Uq(b−) be the usual sub-Hopf algebras of Uq(g) corresponding to the Borel subalgebras b+ and b−

respectively. Let Dq(g) = Uq(b
+) on Uq(b

−) be the Drinfeld double. Since the groups of one-dimensional
representations of Uq(b+), Uq(b−), Dq(g) and Cq[G] are all isomorphic to H = L∨, these algebras are all
equipped with L-bigradings. Moreover the Rosso-Tanisaki pairing is compatible with the bigradings on
Uq(b

+) and Uq(b−). For any anti-symmetric bicharacter p on L one may therefore twist simultaneously
the Hopf algebras Uq(b+), Uq(b−) and Dq(g) in such a way that Dq,p(g) ∼= Uq,p(b

+) on Uq,p(b
−). The

algebra Dq,p(g) is the ‘multi-parameter quantized universal enveloping algebra’ constructed by Okado and
Yamane [25] and previously in special cases in [9, 32]. The canonical pairing between Cq[G] and Uq(g)
induces a L-compatible pairing between Cq[G] and Dq(g). Thus there is an induced pairing between the
multi-parameter quantum group Cq,p[G] and the multi-parameter double Dq,p−1(g). Recall that the Hopf
algebra Cq[G] is defined as the restricted dual of Uq(g) with respect to a certain category C of modules
over Uq(g). There is a natural deformation functor from this category to a category Cp of modules over
Dq,p−1(g) and Cq,p[G] turns out to be the restricted dual of Dq,p−1(g) with respect to this category. This
Peter-Weyl theorem for Cq,p[G] was also found by Andruskiewitsch and Enriquez in [1] using a different
construction of the quantized universal enveloping algebra and in special cases in [5, 14].

The main theorem describing the primitive spectrum of Cq,p[G] is proved in the final section. Since
Cq,p[G] inherits an L-bigrading, there is a natural action of H as automorphisms of Cq,p[G]. For each
w ∈W×W , we construct an algebra Aw = (Cq,p[G]/Iw)Ew which is a localization of a quotient of Cq,p[G].
For each prime P ∈ SpecCq,p[G] there is a unique w ∈ W ×W such that P ⊃ Iw and PAw is proper.
Thus SpecCq,p[G] ∼=

⊔
w∈W×W Specw Cq,p[G] where Specw Cq,p[G] ∼= SpecAw is the set of primes of type

w. The key results are then Theorems 4.14 and 4.15 which state that an ideal of Aw is generated by its
intersection with the center and that H acts transitively on the maximal ideals of the center. From this
it follows that the primitive ideals of Cq,p[G] of type w form an orbit under the action of H.

An earlier version of our approach to the proof of Joseph’s theorem is contained in the unpublished
article [17]. The approach presented here is a generalization of this proof to the multi-parameter case.

These results are algebraic analogs of results of Levendorskii [20, 21] on the irreducible representations
of multi-parameter function algebras and compact quantum groups. The bijection between symplectic
leaves of the compact Poisson group and irreducible ∗-representations of the compact quantum group
found by Soibelman in the one-parameter case, breaks down in the multi-parameter case.

After this work was completed, the authors became aware of the work of Constantini and Varagnolo
[7, 8] which has some overlap with the results in this paper.

1. Poisson Lie Groups

1.1. Notation. Let g be a complex semi-simple Lie algebra associated to a Cartan matrix [aij ]16i,j6n.
Let {di}16i6n be relatively prime positive integers such that [diaij ]16i,j6n is symmetric positive definite.

Let h be a Cartan subalgebra of g, R the associated root system, B = {α1, . . . , αn} a basis of R, R+

the set of positive roots and W the Weyl group. We denote by P and Q the lattices of weights and
roots respectively. The fundamental weights are denoted by $1, . . . , $n and the set of dominant integral
weights by P+ =

∑n
i=1N$i. Let (−,−) be a non-degenerate g-invariant symmetric bilinear form on g;

it will identify g, resp. h, with its dual g∗, resp. h∗. The form (−,−) can be chosen in order to induce a
perfect pairing P×Q→ Z such that

($i, αj) = δijdi, (αi, αj) = diaij .
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Hence di = (αi, αi)/2 and (α, α) ∈ 2Z for all α ∈ R. For each αj we denote by hj ∈ h the corresponding
coroot: $i(hj) = δij . We also set

n± = ⊕α∈R+
g±α, b± = h⊕ n±, d = g× g, t = h× h, u± = n± × n∓.

Let G be a connected complex semi-simple algebraic group such that Lie(G) = g and set D = G×G.
We identifyG (and its subgroups) with the diagonal copy insideD. We denote by exp the exponential map
from d to D. We shall in general denote a Lie subalgebra of d by a gothic symbol and the corresponding
connected analytic subgroup of D by a capital letter.

1.2. Poisson Lie group structure on G. Let a =
∑
α∈R+

eα∧e−α ∈ ∧2g where the eα are root vectors
such that (eα, eβ) = δα,−β . Let u ∈ ∧2h and set r = a − u. Then it is well known that r satisfies the
modified Yang-Baxter equation [3, 20] and that therefore the tensor π(g) = (lg)∗r − (rg)∗r furnishes G
with the structure of a Poisson Lie group, see [13, 22, 30] ((lg)∗ and (rg)∗ are the differentials of the left
and right translation by g ∈ G).

We may write u =
∑

1≤i,j≤n uijhi ⊗ hj for a skew-symmetric n × n matrix [uij ]. The element u can
be considered either as an alternating form on h∗ or a linear map u ∈ End h by the formula

∀x ∈ h, u(x) =
∑
i,j

ui,j(x, hi)hj .

The Manin triple associated to the Poisson Lie structure on G given by r is described as follows. Set
u± = u± I ∈ End h and define

ϑ : h ↪→ t, ϑ(x) = −(u−(x), u+(x)),

a = ϑ(h), gr = a⊕ u+.

Following [30] one sees easily that the associated Manin triple is (d, g, gr) where g is identified with the
diagonal copy inside d. Then the corresponding triple of Lie groups is (D,G,Gr), where A = exp(a) is an
analytic torus and Gr = AU+. Notice that gr is a solvable, but not in general algebraic, Lie subalgebra
of d.

The following is an easy consequence of the definition of a and the identities u++u− = 2u, u+−u− = 2I:

(1.1) a = {(x, y) ∈ t | x+ y = u(y − x)} = {(x, y) ∈ t | u+(x) = u−(y)}.

Recall that exp : h → H is surjective; let LH be its kernel. We shall denote by X(K) the group
of characters of an algebraic torus K. Any χ ∈ X(H) is given by χ(expx) = exp dχ(x), x ∈ h, where
dχ ∈ h∗ is the differential of χ. Then

X(H) ∼= L = LH
◦ := {ξ ∈ h∗ | ξ(LH) ⊂ 2iπZ}.

One can show that L has a basis consisting of dominant weights.
Recall that if G̃ is a connected simply connected algebraic group with Lie algebra g and maximal torus

H̃, we have

LH̃ = P◦ = ⊕nj=12iπZhj , X(H̃) ∼= P,

Q ⊆ L ⊆ P, π1(G) = LH/P
◦ ∼= P/L.

Notice that LH/P◦ is a finite group and expu(LH) is a subgroup of H. We set

Γ0 = {(a, a) ∈ T | a2 = 1}, ∆ = {(a, a) ∈ T | a2 ∈ expu(LH)},
Γ = A ∩H = {(a, a) ∈ T | a = expx = exp y, x+ y = u(y − x)}.

It is easily seen that Γ = G ∩Gr.

Proposition 1.1. We have ∆ = Γ.Γ0.
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Proof. We obviously have Γ0 ⊂ ∆. Let (exph, exph) ∈ Γ, h ∈ h. By definition there exist (x, y) ∈ a,
`1, `2 ∈ LH such that

x = h+ `1, y = h+ `2, y + x = u(y − x).

Hence y+x = 2h+`1 +`2 = u(`2−`1) and (exph)2 = exp 2h = expu(`2−`1). This shows (exph, exph) ∈
∆. Thus Γ.Γ0 ⊆ ∆.

Let (a, a) ∈ ∆, a = exph, h ∈ h. From a2 ∈ expu(LH) we get `, `′ ∈ LH such that 2h = u(`′) + `.
Set x = h − `/2 − `′/2, y = h + `′/2 − `/2. Then y + x = u(y − x) and we have exp(−`/2 − `′/2) =
exp(`′/2 − `/2), since `′ ∈ LH . If b = exp(−`′/2 + `/2) we obtain expx = exp y = ab−1, hence
(a, a) = (expx, exp y).(b, b) ∈ Γ.Γ0. Therefore Γ.Γ0 = ∆. �

Remark . When u is “generic” Γ0 is not contained in Γ. For example, take G to be SL(3,C) and
u = α(h1 ⊗ h2 − h2 ⊗ h1) with α /∈ Q.

Considered as a Poisson variety, G decomposes as a disjoint union of symplectic leaves. Denote by
SympG the set of these symplectic leaves. Since r is H-invariant, translation by an element of H is a
Poisson morphism and hence there is an induced action of H on SympG. The key to classifying the
symplectic leaves is the following result, cf. [22, 30].

Theorem 1.2. The symplectic leaves of G are exactly the connected components of G∩GrxGr for x ∈ G.

Remark that A, Γ and Gr are in general not closed subgroups of D. This has for consequence that
the analysis of SympG made in [15, Appendix A] in the case u = 0 does not apply in the general case.

Set Q = HGr = TU+. Then Q is a Borel subgroup of D and, recalling that the Weyl group associated
to the pair (G,T ) is W × W , the corresponding Bruhat decomposition yields D = tw∈W×WQwQ =
tw∈W×WQwGr. Therefore any symplectic leaf is contained in a Bruhat cell QwQ for some w ∈W ×W .

Definition . A leaf A is said to be of type w if A ⊂ QwQ. The set of leaves of type w is denoted by
SympwG.

For each w ∈ W ×W set w = (w+, w−), w± ∈ W, and fix a representative ẇ in the normaliser of T .
One shows as in [15, Appendix A] that G ∩ QẇGr 6= ∅, for all w ∈ W ×W ; hence SympwG 6= ∅ and
G ∩GrẇGr 6= ∅, since QwQ = ∪h∈HhGrẇGr.

The adjoint action of D on itself is denoted by Ad. Set

U−w = Adw(U) ∩ U+, A′w = {a ∈ A | aẇGr = ẇGr},
T ′w = {t ∈ T | tGrẇGr = GrẇGr}, H ′w = H ∩ T ′w.

Recall that U−w is isomorphic to Cl(w) where l(w) = l(w+) + l(w−) is the length of w. We set s(w) =
dimH ′w.

Lemma 1.3. (i) A′w = Adw(A) ∩A and T ′w = A.Adw(A) = AH ′w.
(ii) We have Lie(A′w) = a′w = {ϑ(x) | x ∈ Ker(u−w

−1
− u+ − u+w

−1
+ u−)} and dim a′w = n− s(w).

Proof. (i) The first equality is obvious and the second is an easy consequence of the bijection, induced
by multiplication, between U−w × T × U+ and QwQ = QwGr.

(ii) By definition we have a′w = {ϑ(x) | x ∈ h, w−1(ϑ(x)) ∈ a}. From (1.1) we deduce that ϑ(x) ∈ a′w
if and only if u+w

−1
+ (−u−(x)) = u−w

−1
− (−u+(x)).

It follows from (i) that dimT ′w = n+ dimH ′w = 2n− dimA′w, hence dim a′w = n− s(w). �

Recall that u ∈ End h is an alternating bilinear form on h∗. It is easily seen that ∀λ, µ ∈ h∗,
u(λ, µ) = −(tu(λ), µ), where tu ∈ End h∗ is the transpose of u.

Notation . Set tu = −Φ, Φ± = Φ± I, σ(w) = Φ−w−Φ+ −Φ+w+Φ−, where w± ∈W is considered as an
element of End h∗.
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Observe that tu± = −Φ∓ and that

(1.2) u(λ, µ) = (Φλ, µ), for all λ, µ ∈ h∗.

Furthermore, since the transpose of w± ∈ End h∗ is w−1
± ∈ End h, we have tσ(w) = u−w

−1
− u+−u+w

−1
+ u−.

Hence by Lemma 1.3

(1.3) s(w) = codim Kerh∗ σ(w), dimA′w = dim Kerh∗ σ(w).

1.3. The algebraic case. As explained in 1.1 the Lie algebra gr is in general not algebraic. We now
describe its algebraic closure. Recall that a Lie subalgebra m of d is said to be algebraic if m is the Lie
algebra of a closed (connected) algebraic subgroup of D.

Definition . Let m be a Lie subalgebra of d. The smallest algebraic Lie subalgebra of d containing m is
called the algebraic closure of m and will be denoted by m̃.

Recall that gr = a⊕ u+. Notice that u+ is an algebraic Lie subalgebra of d; hence it follows from [4,
Corollary II.7.7] that g̃r = ã ⊕ u+. Thus we only need to describe ã. Since t is algebraic we have ã ⊆ t
and we are reduced to characterize the algebraic closure of a Lie subalgebra of t = Lie(T ).

The group T = H×H is an algebraic torus (of rank 2n). The map χ 7→ dχ identifies X(T ) with L×L.
Let k ⊂ t be a subalgebra. We set

k⊥ = {θ ∈ X(T ) | k ⊂ Kert θ}.

The following proposition is well known. It can for instance be deduced from the results in [4, II. 8].

Proposition 1.4. Let k be a subalgebra of t. Then k̃ = ∩θ∈k⊥ Kert θ and k̃ is the Lie algebra of the closed
connected algebraic subgroup K̃ = ∩θ∈k⊥ KerT θ.

Corollary 1.5. We have

a⊥ = {(λ, µ) ∈ X(T ) | Φ+λ+ Φ−µ = 0},

ã = ∩(λ,µ)∈a⊥ Kert(λ, µ), Ã = ∩(λ,µ)∈a⊥ KerT (λ, µ).

Proof. From the definition of a = ϑ(h) we obtain

(λ, µ) ∈ a⊥ ⇐⇒ ∀x ∈ h, λ(−u−(x)) + µ(−u+(x)) = 0.

The first equality then follows from tu± = −Φ∓. The remaining assertions are consequences of Proposition
1.4. �

Set

hQ = Q⊗Z P◦ = ⊕ni=1Qhi, h∗Q = Q⊗Z P = ⊕ni=1Q$i

a⊥Q = Q⊗Z a⊥ = {(λ, µ) ∈ h∗Q × h∗Q | Φ+λ+ Φ−µ = 0}.

Observe that dimQ a⊥Q = rkZ a⊥ and that, by Corollary 1.5,

(1.4) dim ã = 2n− dimQ a⊥Q .

Lemma 1.6. a⊥Q
∼= {ν ∈ h∗Q | Φν ∈ h∗Q}.

Proof. Define a Q-linear map

{ν ∈ h∗Q | Φν ∈ h∗Q} −→ a⊥Q , ν 7→ (−Φ−ν,Φ+ν).

It is easily seen that this provides the desired isomorphism. �
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Theorem 1.7. The following assertions are equivalent:
(i) gr is an algebraic Lie subalgebra of d;
(ii) u(P×P) ⊂ Q;
(iii) ∃m ∈ N∗, Φ(mP) ⊂ P;
(iv) Γ is a finite subgroup of T .

Proof. Recall that gr is algebraic if and only if a = ã, i.e. n = dim a = dim ã. By (1.4) and Lemma 1.6
this is equivalent to Φ(P) ⊂ h∗Q = Q⊗ZP. The equivalence of (i) to (iii) then follows from the definitions,
(1.2) and the fact that tu = −Φ.

To prove the equivalence with (iv) we first observe that, by Proposition 1.1, Γ is finite if and only if
expu(LH) is finite. Since LH/P◦ is finite this is also equivalent to expu(P◦) being finite. This holds if
and only if u(mP◦) ⊂ P◦ for some m ∈ N∗. Hence the result. �

When the equivalent assertions of Theorem 1.7 hold, we shall say that we are in the algebraic case or
that u is algebraic. In this case all the subgroups previously introduced are closed algebraic subgroups
of D and we may define the algebraic quotient varieties D/Gr and Ḡ = G/Γ. Let p be the projection
G→ Ḡ. Observe that Ḡ is open in in D/Gr and that the Poisson bracket of G passes to Ḡ. We set

Cẇ = GrẇGr/Gr, Cw = QwGr/Gr = ∪h∈HhCẇ
Bẇ = Cẇ ∩ Ḡ, Bw = Cw ∩ Ḡ, Aw = p−1(Bw).

The next theorem summarizes the description of the symplectic leaves in the algebraic case.

Theorem 1.8. 1. SympwG 6= ∅ for all w ∈W ×W , SympG = tw∈W×W SympwG.
2. Each symplectic leaf of Ḡ, resp. G, is of the form hBẇ, resp. hAẇ, for some h ∈ H and w ∈W×W ,

where Aẇ denotes a fixed connected component of p−1(Bẇ).
3. Cẇ ∼= Aw × U−w where Aw = A/A′w is a torus of rank s(w). Hence dim Cẇ = dimBẇ = dimAẇ =

l(w) + s(w) and H/StabH Aẇ is a torus of rank n− s(w).

Proof. The proofs are similar to those given in [15, Appendix A] for the case u = 0. �

2. Deformations of Bigraded Hopf Algebras

2.1. Bigraded Hopf Algebras and their deformations. Let L be an (additive) abelian group. We
will say that a Hopf algebra (A, i,m, ε,∆, S) over a field K is an L-bigraded Hopf algebra if it is equipped
with an L× L grading

A =
⊕

(λ,µ)∈L×L

Aλ,µ

such that
(1) K ⊂ A0,0, Aλ,µAλ′,µ′ ⊂ Aλ+λ′,µ+µ′ (i.e. A is a graded algebra)
(2) ∆(Aλ,µ) ⊂

∑
ν∈LAλ,ν ⊗A−ν,µ

(3) λ 6= −µ implies ε(Aλ,µ) = 0
(4) S(Aλ,µ) ⊂ Aµ,λ.
For sake of simplicity we shall often make the following abuse of notation: If a ∈ Aλ,µ we will write

∆(a) =
∑
ν aλ,ν ⊗ a−ν,µ, aλ,ν ∈ Aλ,ν , a−ν,µ ∈ A−ν,µ.

Let p : L×L→ K∗ be an antisymmetric bicharacter on L in the sense that p is multiplicative in both
entries and that, for all λ, µ ∈ L,

(1) p(µ, µ) = 1 ; (2) p(λ, µ) = p(µ,−λ).

Then the map p̃ : (L× L)× (L× L)→ K∗ given by

p̃((λ, µ), (λ′, µ′)) = p(λ, λ′)p(µ, µ′)−1

is a 2-cocycle on L× L such that p̃(0, 0) = 1.
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One may then define a new multiplication, mp, on A by

(2.1) ∀ a ∈ Aλ,µ, b ∈ Aλ′,µ′ , a · b = p(λ, λ′)p(µ, µ′)−1ab.

Theorem 2.1. Ap := (A, i,mp, ε,∆, S) is an L-bigraded Hopf algebra.

Proof. The proof is a slight generalization of that given in [2]. It is well known that Ap = (A, i,mp) is an
associative algebra. Since ∆ and ε are unchanged, (A,∆, ε) is still a coalgebra. Thus it remains to check
that ε,∆ are algebra morphisms and that S is an antipode.

Let x ∈ Aλ,µ and y ∈ Aλ′,µ′ . Then

ε(x · y) = p(λ, λ′)p(µ, µ′)−1ε(xy)

= p(λ, λ′)p(µ, µ′)−1δλ,−µδλ′,−µ′ε(x)ε(y)

= p(λ, λ′)p(−λ,−λ′)−1ε(x)ε(y)

= ε(x)ε(y)

So ε is a homomorphism. Now suppose that ∆(x) =
∑
xλ,ν ⊗x−ν,µ and ∆(y) =

∑
yλ′,ν′ ⊗ y−ν′,µ′ . Then

∆(x) ·∆(y) = (
∑

xλ,ν ⊗ x−ν,µ) · (
∑

yλ′,ν′ ⊗ y−ν′,µ′)

=
∑

xλ,ν · yλ′,ν′ ⊗ x−ν,µ · y−ν′,µ′

= p(λ, λ′)p(µ, µ′)−1
∑

p(ν, ν′)−1p(−ν,−ν′)xλ,νyλ′,ν′ ⊗ x−ν,µy−ν′,µ′

= p(λ, λ′)p(µ, µ′)−1∆(xy)

= ∆(x · y)

So ∆ is also a homomorphism. Finally notice that∑
S(x(1)) · x(2) =

∑
S(xλ,ν) · x−ν,µ

=
∑

p(ν,−ν)p(λ, µ)−1S(xλ,ν)x−ν,µ

= p(λ, µ)−1
∑

S(xλ,ν) · x−ν,µ
= p(λ, µ)−1ε(x)

= ε(x)

A similar calculation shows that
∑
x(1) · S(x(2)) = ε(x). Hence S is indeed an antipode. �

Remark . The isomorphism class of the algebra Ap depends only on the cohomology class [p̃] ∈ H2(L×
L,K∗), [2, §3].

Remark . Theorem 2.1 is a particular case of the following more general construction. Let (A, i,m) be a
K-algebra. Assume that F ∈ GLK(A⊗A) is given such that (with the usual notation)

(1) F (m⊗ 1) = (m⊗ 1)F23F13 ; F (1⊗m) = (1⊗m)F12F13

(2) F (i⊗ 1) = i⊗ 1 ; F (1⊗ i) = 1⊗ i
(3) F12F13F23 = F23F13F12, i.e. F satisfies the Quantum Yang-Baxter Equation.

Set mF = m ◦ F . Then (A, i,mF ) is a K-algebra.
Assume furthermore that (A, i,m, ε,∆, S) is a Hopf algebra and that

(4) F : A⊗A→ A⊗A is morphism of coalgebras
(5) mF (S ⊗ 1)∆ = m(S ⊗ 1)∆ ; mF (1⊗ S)∆ = m(1⊗ S)∆.

Then AF := (A, i,mF , ε,∆, S) is a Hopf algebra. The proofs are straightforward verifications and are left
to the interested reader.
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When A is an L-bigraded Hopf algebra and p is an antisymmetric bicharacter as above, we may define
F ∈ GLK(A⊗A) by

∀a ∈ Aλ,µ, ∀b ∈ Aλ′,µ′ , F (a⊗ b) = p(λ, λ′)p(µ, µ′)−1a⊗ b.

It is easily checked that F satisfies the conditions (1) to (5) and that the Hopf algebras AF and Ap
coincide.

A related construction of the quantization of a monoidal category is given in [24].

2.2. Diagonalizable subgroups of R(A). In the case where L is a finitely generated group and A is a
finitely generated algebra (which is the case for the multi-parameter quantum groups considered here),
there is a simple geometric interpretation of L-bigradings. They correspond to algebraic group maps
from the diagonalizable group L∨ to the group of one dimensional representations of A.

Assume that K is algebraically closed. Let (A, i,m, ε,∆, S) be a Hopf K-algebra. Denote by R(A)
the multiplicative group of one dimensional representations of A, i.e. the character group of the algebra
A. Notice that when A is a finitely generated K-algebra, R(A) has the structure of an affine algebraic
group over K, with algebra of regular functions given by K[R(A)] = A/J where J is the semi-prime ideal
∩h∈R(A) Kerh. Recall that there are two natural group homomorphisms l, r : R(A)→ AutK(A) given by

lh(x) =
∑

h(S(x(1)))x(2) =
∑

h−1(x(1))x(2)

rh(x) =
∑

x(1)h(x(2)).

Theorem 2.2. Let A be a finitely generated Hopf algebra and let L be a finitely generated abelian group.
Then there is a natural bijection between:

(1) L-bigradings on A;
(2) Hopf algebra maps A→ KL (where KL denotes the group algebra);
(3) morphisms of algebraic groups L∨ → R(A).

Proof. The bijection of the last two sets of maps is well-known. Given an L-bigrading on A, we may
define a map φ : A → KL by φ(aλ,µ) = ε(a)uλ. It is easily verified that this is a Hopf algebra map.
Conversely, given a map L∨ → R(A) we may construct an L bigrading using the following result.

Theorem 2.3. Let (A, i,m, ε,∆, S) be a finitely generated Hopf algebra over K. Let H be a closed
diagonalizable algebraic subgroup of R(A). Denote by L the (additive) group of characters of H and by
〈−,−〉 : L×H → K∗ the natural pairing. For (λ, µ) ∈ L× L set

Aλ,µ = {x ∈ A | ∀h ∈ H, lh(x) = 〈λ, h〉x, rh(x) = 〈µ, h〉x}.

Then (A, i,m, ε,∆, S) is an L-bigraded Hopf algebra.

Proof. Recall that any element of A is contained in a finite dimensional subcoalgebra of A. Therefore
the actions of H via r and l are locally finite. Since they commute and H is diagonalizable, A is L× L
diagonalizable. Thus the decomposition A =

⊕
(λ,µ)∈L×LAλ,µ is a grading.

Now let C be a finite dimensional subcoalgebra of A and let {c1, . . . , cn} be a basis of H ×H weight
vectors. Suppose that ∆(ci) =

∑
tij ⊗ cj . Then since ci =

∑
tijε(cj), the tij span C and it is easily

checked that ∆(tij) =
∑
tik⊗tkj . Since lh(ci) =

∑
h−1(tij)cj for all h ∈ H and the ci are weight vectors,

we must have that h(tij) = 0 for i 6= j. This implies that

lh(tij) = h−1(tii)tij , rh(tij) = h(tjj)tij

and that the map λi(h) = h(tii) is a character of H. Thus tij ∈ A−λi,λj and hence

∆(tij) =
∑

tik ⊗ tkj ∈
∑

A−λi,λk ⊗A−λk,λj .
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This gives the required condition on ∆. If λ+µ 6= 0 then there exists an h ∈ H such that 〈−λ, h〉 6= 〈µ, h〉.
Let x ∈ Aλ,µ. Then

〈µ, h〉ε(x) = ε(rh(x)) = h(x) = ε(lh−1(x)) = 〈−λ, h〉ε(x).

Hence ε(x) = 0. The assertion on S follows similarly. �

Remark . In particular, if G is any algebraic group and H is a diagonalizable subgroup with character
group L, then we may deform the Hopf algebra K[G] using an antisymmetric bicharacter on L. Such
deformations are algebraic analogs of the deformations studied by Rieffel in [27].

2.3. Deformations of dual pairs. Let A and U be a dual pair of Hopf algebras. That is, there exists
a bilinear pairing 〈 | 〉 : A× U → K such that:

(1) 〈a | 1〉 = ε(a) ; 〈1 | u〉 = ε(u)
(2) 〈a | u1u2〉 =

∑
〈a(1) | u1〉〈a(2) | u2〉

(3) 〈a1a2 | u〉 =
∑
〈a1 | u(1)〉〈a2 | u(2)〉

(4) 〈S(a) | u〉 = 〈a | S(u)〉.
Assume thatA is bigraded by L, U is bigraded by an abelian groupQ and that there is a homomorphism

˘: Q→ L such that

(2.2) 〈Aλ,µ | Uγ,δ〉 6= 0 only if λ+ µ = γ̆ + δ̆.

In this case we will call the pair {A,U} an L-bigraded dual pair. We shall be interested in §3 and §4 in
the case where Q = L and ˘ = Id.

Remark . Suppose that the bigradings above are induced from subgroups H and H̆ of R(A) and R(U)

respectively and that the map Q → L is induced from a map h 7→ h̆ from H to H̆. Then the condition
on the pairing may be restated as the fact that the form is ad-invariant in the sense that for all a ∈ A,
u ∈ U and h ∈ H,

〈adh a | u〉 = 〈a | adh̆ u〉
where adh a = rhlh(a).

Theorem 2.4. Let {A,U} be the bigraded dual pair as described above. Let p be an antisymmetric
bicharacter on L and let p̆ be the induced bicharacter on Q. Define a bilinear form 〈 | 〉p : Ap−1×Up̆ → K
by:

〈aλ,µ | uγ,δ〉p = p(λ, γ̆)−1p(µ, δ̆)−1〈aλ,µ | uγ,δ〉.
Then 〈 | 〉p is a Hopf pairing and {Ap−1 , Up̆} is an L-bigraded dual pair.

Proof. Let a ∈ Aλ,µ and let ui ∈ Uγi,δi , i = 1, 2. Then

〈a | u1u2〉p = p(γ̆1, γ̆2)p(δ̆1, δ̆2)−1p(λ, γ̆1 + γ̆2)−1p(µ, δ̆1 + δ̆2)−1〈a | u1u2〉.

Suppose that ∆(a) =
∑
ν aλ,ν ⊗ a−ν,µ. Then by the assumption on the pairing, the only possible value

of ν for which 〈aλ,ν | u1〉〈a−ν,µ | u2〉 is non-zero is ν = γ̆1 + δ̆1 − λ = µ− γ̆2 − δ̆2. Therefore

〈a(1) | u1〉p〈a(2) | u2〉p = p(λ, γ̆1)−1p(ν, δ̆1)−1p(−ν, γ̆2)−1p(µ, δ̆2)−1〈a(1) | u1〉〈a(2) | u2〉

= p(λ, γ̆1)−1p(µ− γ̆2 − δ̆2, δ̆1)−1p(λ− γ̆1 − δ̆1, γ̆2)−1p(µ, δ̆2)−1〈a(1) | u1〉〈a(2) | u2〉

= p(γ̆1, γ̆2)p(δ̆1, δ̆2)−1p(λ, γ̆1 + γ̆2)−1p(µ, δ̆1 + δ̆2)−1〈a | u1u2〉 = 〈a | u1u2〉p.

This proves the first axiom. The others are verified similarly. �
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Corollary 2.5. Let {A,U, p} be as in Theorem 2.4. Let M be a right A-comodule with structure map
ρ : M → M ⊗ A. Then M is naturally endowed with U and Up̆ left module structures, denoted by
(u, x) 7→ ux and (u, x) 7→ u · x respectively. Assume that M = ⊕λ∈LMλ for some K-subspaces such that
ρ(Mλ) ⊂

∑
νM−ν ⊗Aν,λ. Then we have Uγ,δMλ ⊂Mλ−γ̆−δ̆ and the two structures are related by

∀u ∈ Uγ,δ, ∀x ∈Mλ, u · x = p(λ, γ̆ − δ̆)p(γ̆, δ̆)ux.

Proof. Notice that the coalgebras A and Ap−1 are the same. Set ρ(x) =
∑
x(0) ⊗ x(1) for all x ∈ M .

Then it is easily checked that the following formulas define the desired U and Up̆ module structures:

∀u ∈ U, ux =
∑

x(0)〈x(1) | u〉, u · x =
∑

x(0)〈x(1) | u〉p.

When x ∈Mλ and u ∈ Uγ,δ the additional condition yields

u · x =
∑

x(0)p(ν,−γ̆)p(λ,−δ̆)〈x(1) | u〉.

But 〈x(1) | u〉 6= 0 forces −ν = λ − γ̆ − δ̆, hence u · x = p(λ, γ̆ − δ̆)p(γ̆, δ̆)
∑
x(0)〈x(1) | u〉 = p(λ, γ̆ −

δ̆)p(γ̆, δ̆)ux. �

Denote by Aop the opposite algebra of the K-algebra A. Let {Aop, U, 〈 | 〉} be a dual pair of Hopf
algebras. The double A on U is defined as follows, [10, 3.3]. Let I be the ideal of the tensor algebra
T (A⊗ U) generated by elements of type

1− 1A, 1− 1U(a)

xx′ − x⊗ x′, x, x′ ∈ A, yy′ − y ⊗ y′, y, y′ ∈ U(b)
x(1) ⊗ y(1)〈x(2) | y(2)〉 − 〈x(1) | y(1)〉y(2) ⊗ x(2), x ∈ A, y ∈ U(c)

Then the algebra A on U := T (A⊗U)/I is called the Drinfeld double of {A,U}. It is a Hopf algebra in a
natural way:

∆(a⊗ u) = (a(1) ⊗ u(1))⊗ (a(2) ⊗ u(2)),

ε(a⊗ u) = ε(a)ε(u), S(a⊗ u) = (S(a)⊗ 1)(1⊗ S(u)).

Notice for further use that A on U can equally be defined by relations of type (a), (b), (cx,y) or (a),
(b), (cy,x), where we set

x⊗ y = 〈x(1) | y(1)〉〈x(3) | S(y(3))〉y(2) ⊗ x(2), x ∈ A, y ∈ U(cx,y)
y ⊗ x = 〈x(1) | S(y(1))〉〈x(3) | y(3)〉x(2) ⊗ y(2), x ∈ A, y ∈ U(cy,x)

Theorem 2.6. Let {Aop, U} be an L-bigraded dual pair, p be an antisymmetric bicharacter on L and p̆
be the induced bicharacter on Q. Then A on U inherits an L-bigrading and there is a natural isomorphism
of L-bigraded Hopf algebras:

(A on U)p ∼= Ap on Up̆.

Proof. Recall that as a K-vector space A on U identifies with A⊗U . Define an L-bigrading on A on U by

∀α, β ∈ L, (A on U)α,β =
∑

λ−γ̆=α,µ−δ̆=β

Aλ,µ ⊗ Uγ,δ.

To verify that this yields a structure of graded algebra on A on U it suffices to check that the defining
relations of A on U are homogeneous. This is clear for relations of type (a) or (b). Let xλ,µ ∈ Aλ,µ and
yγ,δ ∈ Uγ,δ. Then the corresponding relation of type (c) becomes

(?)
∑
ν,ξ

xλ,νyγ,ξ〈x−ν,µ | y−ξ,δ〉 − 〈xλ,µ | yγ,ξ〉y−ξ,δx−ν,µ.
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When a term of this sum is non-zero we obtain−ν+µ = −ξ̆+δ̆, λ+ν = γ̆+ξ̆.Hence λ−γ̆ = −ν+ξ̆ = −µ+δ̆,
which shows that the relation (?) is homogeneous. It is easy to see that the conditions (2), (3), (4) of 2.1
hold. Hence A on U is an L-bigraded Hopf algebra.

Notice that (Ap)
op ∼= (Aop)p−1 , so that Theorem 2.4 defines a suitable pairing between (Ap)

op and Up̆.
Thus Ap on Up̆ is defined. Let φ be the natural surjective homomorphism from T (A⊗ U) onto Ap on Up̆.
To check that φ induces an isomorphism it again suffices to check that φ vanishes on the defining relations
of (A on U)p. Again, this is easy for relations of type (a) and (b). The relation (?) says that

p(λ, γ̆)p(−ν, ξ̆)〈x−ν,µ | y−ξ,δ〉xλ,ν · yγ,ξ − p(ξ̆, ν)p(δ̆,−µ)〈xλ,µ | yγ,ξ〉y−ξ,δ · x−ν,µ = 0

in (A on U)p. Multiply the left hand side of this equation by p(λ,−γ̆)p(µ,−δ̆) and apply φ. We obtain
the following expression in Ap on Up̆:

p(−ν, ξ̆)p(µ,−δ̆)〈x−ν,µ | y−ξ,δ〉xλ,νyγ,ξ − p(λ,−γ̆)p(ν,−ξ̆)〈xλ,µ | yγ,ξ〉y−ξ,δx−ν,µ
which is equal to

〈x−ν,µ | y−ξ,δ〉pxλ,νyγ,ξ − 〈xλ,µ | yγ,ξ〉py−ξ,δx−ν,µ.
But this is a defining relation of type (c) in Ap on Up̆, hence zero.

It remains to see that φ induces an isomorphism of Hopf algebras, which is a straightforward conse-
quence of the definitions. �

2.4. Cocycles. Let L be, in this section, an arbitrary free abelian group with basis {ω1, . . . , ωn} and
set h∗ = C⊗Z L. We freely use the terminology of [2]. Recall that H2(L,C∗) is in bijection with the set
H of multiplicatively antisymmetric n × n-matrices γ = [γij ]. This bijection maps the class [c] onto the
matrix defined by γij = c(ωi, ωj)/c(ωj , ωi). Furthermore it is an isomorphism of groups with respect to
component-wise multiplication of matrices.

Remark . The notation is as in 2.1. We recalled that the isomorphism class of the algebra Ap depends
only on the cohomology class [p̃] ∈ H2(L × L,K∗). Let γ ∈ H be the matrix associated to p and γ−1

its inverse in H. Notice that the multiplicative matrix associated to [p̃] is then γ̃ =
[ γ 1

1 γ−1

]
in the basis

given by the (ωi, 0), (0, ωi) ∈ L× L. Therefore the isomorphism class of the algebra Ap depends only on
the cohomology class [p] ∈ H2(L,K∗).

Let ~ ∈ C∗. If x ∈ C we set qx = exp(−x~/2). In particular q = exp(−~/2). Let u : L× L→ C be a
complex alternating Z-bilinear form. Define

(2.3) p : L× L→ C∗, p(λ, µ) = exp
(
− ~

4
u(λ, µ)

)
= q

1
2u(λ,µ).

Then it is clear that p is an antisymmetric bicharacter on L.
Observe that, since h∗ = C⊗Z L, there is a natural isomorphism of additive groups between ∧2h and

the group of complex alternating Z-bilinear forms on L, where h is the C-dual of h∗. Set Z~ = {u ∈
∧2h | u(L× L) ⊂ 4iπ

~ Z}.

Theorem 2.7. There are isomorphisms of abelian groups:

H2(L,C∗) ∼= H ∼= ∧2h/Z~.

Proof. The first isomorphism has been described above. Let γ = [γij ] ∈ H and choose uij , 1 ≤ i < j ≤ n
such that γij = exp(−~

2uij). We can define u ∈ ∧2h by setting u(ωi, ωj) = uij , 1 ≤ i < j ≤ n. It is then
easily seen that one can define an injective morphism of abelian groups

ϕ : H2(L,C∗) ∼= H −→ ∧2h/Z~, ϕ(γ) = [u]

where [u] is the class of u. If u ∈ ∧2h, define a 2-cocycle p by the formula (2.3). Then the multiplicative
matrix associated to [p] ∈ H2(L,C∗) is given by

γij = p(ωi, ωj)/p(ωj , ωi) = p(ωi, ωj)
2 = exp(−~

2
u(ωi, ωj)).
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This shows that [u] = ϕ([γij ]); thus ϕ is an isomorphism. �

We list some consequences of Theorem 2.7. We denote by [u] an element of ∧2h/Z~ and we set
[p] = ϕ−1([u]). We have seen that we can define a representative p by the formula (2.3).

1. [p] of finite order in H2(L,C∗)⇔ u(L× L) ⊂ iπ
~ Q, and q root of unity⇔ ~ ∈ iπQ.

2. Notice that u = 0 is algebraic, whether q is a root of unity or not. Assume that q is a root of unity;
then we get from 1 that

[p] of finite order⇔ u is algebraic.

3. Assume that q is not a root of unity and that u 6= 0. Then [p] of finite order implies (0) 6= u(L×L) ⊂
iπ
~ Q. This shows that

0 6= u algebraic⇒ [p] is not of finite order.

Definition . The bicharacter p : (λ, µ) 7→ q
1
2u(λ,µ) is called q-rational if u ∈ ∧2h is algebraic.

The following technical result will be used in the next section. Recall the definition of Φ− = Φ − I
given in the Section 1.

Proposition 2.8. Let K =
{
λ ∈ L : (Φ−λ,L) ⊂ 4iπ

~ Z
}
. If q is not a root of unity, then K = 0.

Proof. Let λ ∈ K. We can define z : h∗Q → Q, by

∀µ ∈ h∗Q, (Φ−λ, µ) =
4iπ

~
z(µ).

The map z is clearly Q-linear. It follows, since ( , ) is non-degenerate on h∗Q, that there exists ν ∈ h∗Q
such that z(µ) = (ν, µ) for all µ ∈ h∗Q. Therefore Φ−λ = 4iπ

~ ν, and so Φλ = λ+ 4iπ
~ ν.

Now, (Φλ, λ) = u(λ, λ) = 0 implies that

4iπ

~
(ν, λ) = −(λ, λ)

If (λ, λ) 6= 0 then ~ ∈ iπQ, contradicting the assumption that q is not a root of unity. Hence (λ, λ) = 0,
which forces λ = 0 since λ ∈ L ⊂ h∗Q. �

3. Multiparameter Quantum Groups

3.1. One-parameter quantized enveloping algebras. The notation is as in sections 1 and 2. In
particular we fix a lattice L such that Q ⊂ L ⊂ P and we denote by G the connected semi-simple
algebraic group with maximal torus H such that Lie(G) = g and X(H) ∼= L.

Let q ∈ C∗ and assume that q is not a root of unity. Let ~ ∈ C \ iπQ such that q = exp(−~/2) as in
2.4. We set

qi = qdi , q̂i = (qi − q−1
i )−1, 1 ≤ i ≤ n.

Denote by U0 the group algebra of X(H), hence

U0 = C[kλ ; λ ∈ L], k0 = 1, kλkµ = kλ+µ.

Set ki = kαi , 1 ≤ i ≤ n. The one parameter quantized enveloping algebra associated to this data, cf.
[33], is the Hopf algebra

Uq(g) = U0[ei, fi ; 1 ≤ i ≤ n]
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with defining relations:

kλejk
−1
λ = q(λ,αj)ej , kλfjk

−1
λ = q−(λ,αj)fj

eifj − fjei = δij q̂i(ki − k−1
i )

1−aij∑
k=0

(−1)k
[

1−aij
k

]
qi
e

1−aij−k
i eje

k
i = 0, if i 6= j

1−aij∑
k=0

(−1)k
[

1−aij
k

]
qi
f

1−aij−k
i fjf

k
i = 0, if i 6= j

where [m]t = (t− t−1) . . . (tm − t−m) and [mk ]t = [m]t
[k]t[m−k]t

. The Hopf algebra structure is given by

∆(kλ) = kλ ⊗ kλ, ε(kλ) = 1, S(kλ) = k−1
λ

∆(ei) = ei ⊗ 1 + ki ⊗ ei, ∆(fi) = fi ⊗ k−1
i + 1⊗ fi

ε(ei) = ε(fi) = 0, S(ei) = −k−1
i ei, S(fi) = −fiki.

We define subalgebras of Uq(g) as follows

Uq(n
+) = C[ei, ; 1 ≤ i ≤ n], Uq(n

−) = C[fi, ; 1 ≤ i ≤ n]

Uq(b
+) = U0[ei, ; 1 ≤ i ≤ n], Uq(b

−) = U0[fi, ; 1 ≤ i ≤ n].

For simplicity we shall set U± = Uq(n
±). Notice that U0 and Uq(b

±) are Hopf subalgebras of Uq(g).
Recall [23] that the multiplication in Uq(g) induces isomorphisms of vector spaces

Uq(g) ∼= U− ⊗ U0 ⊗ U+ ∼= U+ ⊗ U0 ⊗ U−.

Set Q+ = ⊕ni=1Nαi and

∀β ∈ Q+, U±β = {u ∈ U± | ∀λ ∈ L, kλuk
−1
λ = q(λ,±β)u}.

Then one gets: U± = ⊕β∈Q+
U±±β .

3.2. The Rosso-Tanisaki-Killing form. Recall the following result, [28, 33].

Theorem 3.1. 1. There exists a unique non degenerate Hopf pairing

〈 | 〉 : Uq(b
+)op ⊗ Uq(b−) −→ C

satisfying the following conditions:
(i) 〈kλ | kµ〉 = q−(λ,µ);
(ii) ∀λ ∈ L, 1 ≤ i ≤ n, 〈kλ | fi〉 = 〈ei | kλ〉 = 0;
(iii) ∀1 ≤ i, j ≤ n, 〈ei | fj〉 = −δij q̂i.
2. If γ, η ∈ Q+, 〈U+

γ | U−−η〉 6= 0 implies γ = η.

The results of §2.3 then apply and we may define the associated double:

Dq(g) = Uq(b
+) on Uq(b

−).

It is well known, e.g. [10], that

Dq(g) = C[sλ, tλ, ei, fi ; λ ∈ L, 1 ≤ i ≤ n]

where sλ = kλ ⊗ 1, tλ = 1 ⊗ kλ, ei = ei ⊗ 1, fi = 1 ⊗ fi. The defining relations of the double given in
§2.3 imply that

sλtµ = tµsλ, eifj − fjei = δij q̂i(sαi − t−1
αi )

sλejs
−1
λ = q(λ,αj)ej , tλejt

−1
λ = q(λ,αj)ej , sλfjs

−1
λ = q−(λ,αj)fj , tλfjt

−1
λ = q−(λ,αj)fj .
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It follows that

Dq(g)/(sλ − tλ ; λ ∈ L)
∼→ Uq(g), ei 7→ ei, fi 7→ fi, sλ 7→ kλ, tλ 7→ kλ.

Observe that this yields an isomorphism of Hopf algebras. The next proposition collects some well known
elementary facts.

Proposition 3.2. 1. Any finite dimensional simple Uq(b±)-module is one dimensional and R(Uq(b
±))

identifies with H via
∀h ∈ H, h(kλ) = 〈λ, h〉, h(ei) = 0, h(fi) = 0.

2. R(Dq(g)) identifies with H via

∀h ∈ H, h(sλ) = 〈λ, h〉, h(tλ) = 〈λ, h〉−1, h(ei) = h(fi) = 0.

Corollary 3.3. 1. {Uq(b+)op, Uq(b
−)} is an L-bigraded dual pair. We have

kλ ∈ Uq(b±)−λ,λ, ei ∈ Uq(b+)−αi,0, fi ∈ Uq(b−)0,−αi .

2. Dq(g) is an L-bigraded Hopf algebra where

sλ ∈ Dq(g)−λ,λ, tλ ∈ Dq(g)λ,−λ, ei ∈ Dq(g)−αi,0, fi ∈ Dq(g)0,αi .

Proof. 1. Observe that for all h ∈ H,

lh(kλ) = h−1(kλ) = 〈−λ, h〉kλ, rh(kλ) = h(kλ) = 〈λ, h〉kλ,
lh(ei) = h−1(ki)ei = 〈−αi, h〉ei, rh(ei) = ei,

lh(fi) = fi, rh(fi) = h(k−1
i )fi = 〈−αi, h〉fi.

It is then clear that U+
−γ,0 = U+

γ and U−0,−γ = U−−γ for all γ ∈ Q+. The claims then follow from these
formulas, Theorem 2.3, Theorem 3.1, and the definitions.

2. The fact that Dq(g) is an L-bigraded Hopf algebra follows from Theorem 2.3. The assertions about
the L× L degree of the generators is proved by direct computation using Proposition 3.2. �

Remark . We have shown in Theorem 2.6 that, as a double, Dq(g) inherits an L-bigrading given by:

Dq(g)α,β =
∑

λ−γ=α,µ−δ=β

Uq(b
+)λ,µ ⊗ Uq(b−)γ,δ.

It is easily checked that this bigrading coincides with the bigrading obtained in the above corollary by
means of Theorem 2.3.

3.3. One-parameter quantized function algebras. LetM be a left Dq(g)-module. The dualM∗ will
be considered in the usual way as a left Dq(g)-module by the rule: (uf)(x) = f(S(u)x), x ∈M,f ∈M∗,
u ∈ Dq(g). Assume that M is an Uq(g)-module. An element x ∈ M is said to have weight µ ∈ L if
kλx = q(λ,µ)x for all λ ∈ L; we denote by Mµ the subspace of elements of weight µ.

It is known, [13], that the category of finite dimensional (left) Uq(g)-modules is a completely reducible
braided rigid monoidal category. Set L+ = L ∩ P+ and recall that for each Λ ∈ L+ there exists a
finite dimensional simple module of highest weight Λ, denoted by L(Λ), cf. [29] for instance. One has
L(Λ)∗ ∼= L(w0Λ) where w0 is the longest element of W . (Notice that the results quoted usually cover
the case where L = Q. One defines the modules L(λ) in the general case in the following way. Let us
denote temporarily the algebra Uq(g) for a given choice of L by Uq,L(g). Given a module L(λ) defined
on Uq,Q(g) we may define an action of Uq,L(g) by setting kλ.x = q(λ,µ)x for all elements x of weight µ,
where q(λ,µ) is as defined in section 2.4.)

Let Cq be the subcategory of finite dimensional Uq(g)-modules consisting of finite direct sums of L(Λ),
Λ ∈ L+. The category Cq is closed under tensor products and the formation of duals. Notice that Cq can
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be considered as a braided rigid monoidal category of Dq(g)-modules where sλ, tλ act as kλ on an object
of Cq.

Let M ∈ obj(Cq), then M = ⊕µ∈LMµ. For f ∈ M∗, v ∈ M we define the coordinate function
cf,v ∈ Uq(g)∗ by

∀u ∈ Uq(g), cf,v(u) = 〈f, uv〉
where 〈 , 〉 is the duality pairing. Using the standard isomorphism (M ⊗ N)∗ ∼= N∗ ⊗M∗ one has the
following formula for multiplication,

cf,vcf ′,v′ = cf ′⊗f,v⊗v′ .

Definition . The quantized function algebra Cq[G] is the restricted dual of Cq: that is to say

Cq[G] = C[cf,v ; v ∈M,f ∈M∗, M ∈ obj(Cq)].

The algebra Cq[G] is a Hopf algebra; we denote by ∆, ε, S the comultiplication, counit and antipode
on Cq[G]. If {v1, . . . , vs; f1, . . . , fs} is a dual basis for M ∈ obj(Cq) one has

(3.1) ∆(cf,v) =
∑
i

cf,vi ⊗ cfi,v, ε(cf,v) = 〈f, v〉, S(cf,v) = cv,f .

Notice that we may assume that vj ∈Mνj , fj ∈M∗−νj . We set

C(M) = C〈cf,v ; f ∈M∗, v ∈M〉, C(M)λ,µ = C〈cf,v ; f ∈M∗λ , v ∈Mµ〉.

Then C(M) is a subcoalgebra of Cq[G] such that C(M) =
⊕

(λ,µ)∈L×L C(M)λ,µ. When M = L(Λ) we
abbreviate the notation to C(M) = C(Λ). It is then classical that

Cq[G] =
⊕

Λ∈L+

C(Λ).

Since Cq[G] ⊂ Uq(g)∗ we have a duality pairing

〈 , 〉 : Cq[G]×Dq(g) −→ C.

Observe that there is a natural injective morphism of algebraic groups

H −→ R(Cq[G]), h(cf,v) = 〈µ, h〉ε(cf,v) for all v ∈Mµ, M ∈ obj(Cq).

The associated automorphisms rh, lh ∈ Aut(Cq[G]) are then described by

∀cf,v ∈ C(M)λ,µ, rh(cf,v) = 〈µ, h〉cf,v, lh(cf,v) = 〈λ, h〉cf,v.

Define
∀(λ, µ) ∈ L× L, Cq[G]λ,µ = {a ∈ Cq[G] | rh(a) = 〈µ, h〉a, lh(a) = 〈λ, h〉a}.

Theorem 3.4. The pair of Hopf algebras {Cq[G], Dq(g)} is an L-bigraded dual pair.

Proof. It follows from (3.1) that Cq[G] is an L-bigraded Hopf algebra. The axioms (1) to (4) of 2.3 are
satisfied by definition of the Hopf algebra Cq[G]. We take ˘ to be the identity map of L. The condition
(2.2) is consequence of Dq(g)γ,δMµ ⊂Mµ−γ−δ for all M ∈ Cq. To verify this inclusion, notice that

ej ∈ Dq(g)−αj ,0, fj ∈ Dq(g)0,αj , ejMµ ⊂Mµ+αj , fjMµ ⊂Mµ−αj .

The result then follows easily �

Consider the algebras Dq−1(g) and Cq−1 [G] and use ˆ to distinguish elements, subalgebras, etc. of
Dq−1(g) and Cq−1 [G]. It is easily verified that the map σ : Dq(g)→ Dq−1(g) given by

sλ 7→ ŝλ, tλ 7→ t̂λ, ei 7→ q
1/2
i f̂it̂αi , fi 7→ q

1/2
i êiŝ

−1
αi

is an isomorphism of Hopf algebras.
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For each Λ ∈ L+, σ gives a bijection σ : L(−w0Λ) → L̂(Λ) which sends v ∈ L(−w0Λ)µ onto v̂ ∈
L̂(Λ)−µ. Therefore we obtain an isomorphism σ : Cq−1 [G]→ Cq[G] such that

(3.2) ∀ f ∈ L(−w0Λ)∗−λ, v ∈ L(−w0Λ)µ, σ(ĉf̂ ,v̂) = cf,v.

Notice that

(3.3) σ(Dq(g)γ,δ) = Dq−1(g)−γ,−δ and σ(Cq−1 [G]λ,µ) = Cq[G]−λ,−µ.

3.4. Deformation of one-parameter quantum groups. We continue with the same notation. Let
[p] ∈ H2(L,C∗). As seen in §2.4 we can, and we do, choose p to be an antisymmetric bicharacter such
that

∀λ, µ ∈ L, p(λ, µ) = q
1
2u(λ,µ)

for some u ∈ ∧2h. Recall that p̃ ∈ Z2(L× L,C∗), cf. 2.1.
We now apply the results of §2.1 to Dq(g) and Cq[G]. Using Theorem 2.1 we can twist Dq(g) by p̃−1

and Cq[G] by p̃. The resulting L-bigraded Hopf algebras will be denoted by Dq,p−1(g) and Cq,p[G]. The
algebra Cq,p[G] will be referred to as themulti-parameter quantized function algebra. Versions ofDq,p−1(g)
are referred to by some authors as the multi-parameter quantized enveloping algebra. Alternatively, this
name can be applied to the quotient of Dq,p−1(g) by the radical of the pairing with Cq,p[G].

Theorem 3.5. Let Uq,p−1(b+) and Uq,p−1(b−) be the deformations by p−1 of Uq(b+) and Uq(b−) respec-
tively. Then the deformed pairing

〈 | 〉p−1 : Uq,p−1(b+)op ⊗ Uq,p−1(b−)→ C

is a non-degenerate Hopf pairing satisfying:

(3.4) ∀x ∈ U+, y ∈ U−, λ, µ ∈ L, 〈x · kλ | y · kµ〉p−1 = q(Φ−λ,µ)〈x | y〉.
Moreover,

Uq,p−1(b+) on Uq,p−1(b−) ∼= (Uq(b
+) on Uq(b

−))p−1 = Dq,p−1(g).

Proof. By Theorem 2.4 the deformed pairing is given by

〈aλ,µ | uγ,δ〉p−1 = p(λ, γ)p(µ, δ)〈aλ,µ | uγ,δ〉.

To prove (3.4) we can assume that x ∈ U+
−γ,0, y ∈ U

−
0,−ν . Then we obtain

〈x · kλ | y · kµ〉p−1 = p(λ+ γ, µ)p(λ, µ− ν)〈x · kλ | y · kµ〉

= p(λ, 2µ)p(λ− µ, γ − ν)q−(λ,µ)〈x | y〉

by the definition of the product · and [33, 2.1.3]. But 〈x | y〉 = 0 unless γ = ν, hence the result. Observe
in particular that 〈x | y〉p−1 = 〈x | y〉. Therefore [33, 2.1.4] shows that 〈 | 〉p−1 is non-degenerate on
U+
γ ×U−−γ . It then follows from (3.4) and Proposition 2.8 that 〈 | 〉p−1 is non-degenerate. The remaining

isomorphism follows from Theorem 2.6. �

Many authors have defined multi-parameter quantized enveloping algebras. In [14, 25] a definition
is given using explicit generators and relations, and in [1] the construction is made by twisting the
comultiplication, following [26]. It can be easily verified that these algebras and the algebras Dq,p−1(g)
coincide. The construction of a multi-parameter quantized function algebra by twisting the multiplication
was first performed in the GL(n)-case in [2].

The fact that Dq,p−1(g) and Cq,p[G] form a Hopf dual pair has already been observed in particular
cases, see e.g. [14]. We will now deduce from the previous results that this phenomenon holds for an
arbitrary semi-simple group.

Theorem 3.6. {Cq,p[G], Dq,p−1(g)} is an L-bigraded dual pair. The associated pairing is given by

∀a ∈ Cq,p[G]λ,µ, ∀u ∈ Dq,p−1(g)γ,δ, 〈a, u〉p = p(λ, γ)p(µ, δ)〈a, u〉.
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Proof. This follows from Theorem 2.4 applied to the pair {A,U} = {Cq[G], Dq(g)} and the bicharacter
p−1 (recall that the map ˘ is the identity). �

Let M ∈ obj(Cq). The left Dq(g)-module structure on M yields a right Cq[G]-comodule structure in
the usual way. Let {v1, . . . , vs; f1, . . . , fs} be a dual basis for M . The structure map ρ : M →M ⊗Cq[G],
is given by ρ(x) =

∑
j vj ⊗ cfj ,x for x ∈M . Using this comodule structure on M , one can check that

Mµ = {x ∈M | ∀h ∈ H, rh(x) = 〈µ, h〉x}.

Proposition 3.7. Let M ∈ obj(Cq). Then M has a natural structure of left Dq,p−1(g) module. Denote
by M˘ this module and by (u, x) 7→ u · x the action of Dq,p−1(g). Then

∀u ∈ Dq(g)γ,δ, ∀x ∈Mλ, u · x = p(λ, δ − γ)p(δ, γ)ux.

Proof. The proposition is a translation in this particular setting of Corollary 2.5. �

Denote by Cq,p the subcategory of finite dimensional left Dq,p−1(g)-modules whose objects are the M˘,
M ∈ obj(Cq). It follows from Proposition 3.7 that if M ∈ obj(Cq), then M˘ = ⊕µ∈LMµ̆, where

Mµ̆ = {x ∈M | ∀α ∈ L, sα · x = p(µ, 2α)q(µ,α)x, tα · x = p(µ,−2α)q(µ,α)x}.

Notice that p(µ,±2α)q(µ,α) = q±(Φ±µ,α).

Theorem 3.8. 1. The functor M →M˘ from Cq to Cq,p is an equivalence of rigid monoidal categories.
2. The Hopf pairing 〈 , 〉p identifies the Hopf algebra Cq,p[G] with the restricted dual of Cq,p, i.e. the

Hopf algebra of coordinate functions on the objects of Cq,p.

Proof. 1. One needs in particular to prove that, for M,N ∈ obj(Cq), there are natural isomorphisms of
Dq,p−1(g)-modules: ϕM,N : (M⊗N )̆ →M˘⊗N˘. These isomorphisms are given by x⊗y 7→ p(λ, µ)x⊗y
for all x ∈Mλ, y ∈ Nµ. The other verifications are elementary.

2. We have to show that ifM ∈ obj(Cq), f ∈M∗, v ∈M and u ∈ Dq,p−1(g), then 〈cf,v, u〉p = 〈f, u · v〉.
It suffices to prove the result in the case where f ∈M∗λ , v ∈Mµ and u ∈ Dq,p−1(g)γ,δ. Then

〈f, u · v〉 = p(µ, δ − γ)p(δ, γ)〈f, uv〉
= δ−λ+γ+δ,µ p(−λ+ γ + δ, δ − γ)p(δ, γ)〈f, uv〉
= p(λ, γ)p(µ, δ)〈f, uv〉
= 〈cf,v, u〉p

by Theorem 3.6. �

Recall that we introduced in §3.3 isomorphisms σ : Dq(g)→ Dq−1(g) and σ : Cq[G]→ Cq−1 [G]. From
(3.3) it follows that, after twisting by p̃−1 or p̃, σ induces isomorphisms

Dq,p−1(g)
∼→ Dq−1,p−1(g), Cq−1,p[G]

∼→ Cq,p[G]

which satisfy (3.2).

3.5. Braiding isomorphisms. We remarked above that the categories Cq,p are braided. In the one
parameter case this braiding is well-known. Let M and N be objects of Cq. Let E : M ⊗N → M ⊗N
be the operator given by

E(m⊗ n) = q(λ,µ)m⊗ n
for m ∈ Mλ and n ∈ Nµ. Let τ : M ⊗ N → N ⊗M be the usual twist operator. Finally let C be the
operator given by left multiplication by

C =
∑
β∈Q+

Cβ
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where Cβ is the canonical element of Dq(g) associated to the non-degenerate pairing U+
β ⊗ U

−
−β → C

described above. Then one deduces from [33, 4.3] that the operators

θM,N = τ ◦ C ◦ E−1 : M ⊗N → N ⊗M

define the braiding on Cq.
As mentioned above, the category Cq,p inherits a braiding given by

ψM,N = ϕN,M ◦ θM,N ◦ ϕ−1
M,N

where ϕM,N is the isomorphism (M ⊗ N )̆
∼→ M˘ ⊗ N˘ introduced in the proof of Theorem 3.8 (the

same formula can be found in [1, §10] and in a more general situation in [24]). We now note that these
general operators are of the same form as those in the one parameter case. Let M and N be objects of
Cq,p and let E : M ⊗N →M ⊗N be the operator given by

E(m⊗ n) = q(Φ+λ,µ)m⊗ n

form ∈Mλ and n ∈ Nµ. Denote by Cβ the canonical element ofDq,p−1(g) associated to the nondegenerate
pairing Uq,p−1(b+)−β,0⊗Uq,p−1(b−)0,−β → C and let C : M ⊗N →M ⊗N be the operator given by left
multiplication by

C =
∑
β∈Q+

Cβ .

Theorem 3.9. The braiding operators ψM,N are given by

ψM,N = τ ◦ C ◦ E−1.

Moreover (ψM,N )∗ = ψM∗,N∗ .

Proof. The assertions follow easily from the analogous assertions for θM,N . �

The following commutation relations are well known [31], [21, 4.2.2]. We include a proof for complete-
ness.

Corollary 3.10. Let Λ,Λ′ ∈ L+, let g ∈ L(Λ′)∗−η and f ∈ L(Λ)∗−µ and let vΛ ∈ L(Λ)Λ. Then for any
v ∈ L(Λ′)γ ,

cg,v · cf,vΛ = q(Φ+Λ,γ)−(Φ+µ,η)cf,vΛ · cg,v + q(Φ+Λ,γ)−(Φ+µ,η)
∑
ν∈Q+

cfν ,vΛ · cgν ,v

where fν ∈ (Uq,p−1(b+)f)−µ+ν and gν ∈ (Uq,p−1(b−)g)−η−ν are such that
∑
fν⊗gν =

∑
β∈Q+\{0} Cβ(f⊗

g).

Proof. Let ψ = ψL(Λ),L(Λ′). Notice that

cf⊗g,ψ(vΛ⊗v) = cψ∗(f⊗g),vΛ⊗v.

Using the theorem above we obtain

ψ∗(f ⊗ g) = q−(Φ+µ,η)(g ⊗ f +
∑

gν ⊗ fν)

and

(3.5) ψ(vΛ ⊗ v) = q−(Φ+Λ,γ)(v ⊗ vΛ).

Combining these formulae yields the required relations. �
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4. Prime and Primitive Spectrum of Cq,p[G]

In this section we prove our main result on the primitive spectrum of Cq,p[G]; namely that the H
orbits inside Primw Cq,p[G] are parameterized by the double Weyl group. For completeness we have
attempted to make the proof more or less self-contained. The overall structure of the proof is similar
to that used in [16] except that the proof of the key 4.12 (and the lemmas leading up to it) form a
modified and abbreviated version of Joseph’s proof of this result in the one-parameter case [18]. One of
the main differences with the approach of [18] is the use of the Rosso-Tanisaki form introduced in 3.2
which simplifies the analysis of the adjoint action of Cq,p[G]. The ideas behind the first few results of this
section go back to Soibelman’s work in the one-parameter ‘compact’ case [31]. These ideas were adapted
to the multi-parameter case by Levendorskii [20].

4.1. Parameterization of the prime spectrum. Let q, p be as in §3.4. For simplicity we set

A = Cq,p[G]

and the product a · b as defined in (2.1) will be denoted by ab.
For each Λ ∈ L+ choose weight vectors

vΛ ∈ L(Λ)Λ, vw0Λ ∈ L(Λ)w0Λ, f−Λ ∈ L(Λ)∗−Λ, f−w0Λ ∈ L(Λ)∗−w0Λ

such that 〈f−Λ, vΛ〉 = 〈f−w0Λ, vw0Λ〉 = 1. Set

A+ =
∑
µ∈L+

∑
f∈L(µ)∗

Ccf,vµ , A− =
∑
µ∈L+

∑
f∈L(µ)∗

Ccf,vw0µ
.

Recall the following result.

Theorem 4.1. The multiplication map A+ ⊗A− → A is surjective.

Proof. Clearly it is enough to prove the theorem in the one-parameter case. When L = P the result is
proved in [31, 3.1] and [18, Theorem 3.7].

The general case can be deduced from the simply-connected case as follows. One first observes
that Cq[G] ⊂ Cq[G̃] =

⊕
Λ∈P+ C(Λ). Therefore any a ∈ Cq[G] can be written in the form a =∑

Λ′,Λ′′∈P+ cf,vΛ′ cg,v−Λ′′ where Λ′ − Λ′′ ∈ L. Let Λ ∈ P and {vi; fi}i be a dual basis of L(Λ). Then
we have

1 = ε(cvΛ,f−Λ) =
∑
i

cfi,vΛcvi,f−Λ .

Let Λ′ be as above and choose Λ such that Λ + Λ′ ∈ L+. Then, for all i, cf,vΛ′ cfi,vΛ ∈ C(Λ + Λ′) ∩ A+

and cvi,f−Λ
cg,v−Λ′′ ∈ C(−w0(Λ + Λ′′)) ∩ A−. The result then follows by inserting 1 between the terms

cf,vΛ′ and cg,v−Λ′′ . �

Remark . The algebra A is a Noetherian domain (this result will not be used in the sequel). The fact
that A is a domain follows from the same result in [18, Lemma 3.1]. The fact that A is Noetherian is
consequence of [18, Proposition 4.1] and [6, Theorem 3.7].

For each y ∈W define the following ideals of A

I+
y = 〈cf,vΛ | f ∈ (Uq,p−1(b+)L(Λ)yΛ)⊥, Λ ∈ L+〉,

I−y = 〈cf,vw0Λ
| f ∈ (Uq,p−1(b−)L(Λ)yw0Λ)⊥, Λ ∈ L+〉

where ( )⊥ denotes the orthogonal in L(Λ)∗. Notice that I−y = σ(Î+
y ), σ as in §3.4, and that I±y is an

L× L homogeneous ideal of A.

Notation . For w = (w+, w−) ∈ W × W set Iw = I+
w+

+ I−w− . For Λ ∈ L+ set cwΛ = cf−w+Λ,vΛ
∈

C(Λ)−w+Λ,Λ and c̃wΛ = cvw−Λ,f−Λ ∈ C(−w0Λ)w−Λ,−Λ.
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Lemma 4.2. Let Λ ∈ L+ and a ∈ A−η,γ . Then

cwΛa ≡ q(Φ+w+Λ,η)−(Φ+Λ,γ)acwΛ mod I+
w+

c̃wΛa ≡ q(Φ−Λ,γ)−(Φ−w−Λ,η)ac̃wΛ mod I−w− .

Proof. The first identity follows from Corollary 3.10 and the definition of I+
w+

. The second identity can
be deduced from the first one by applying σ. �

We continue to denote by cwΛ and c̃wΛ the images of these elements in A/Iw. It follows from Lemma
4.2 that the sets

Ew+
= {αcwΛ | α ∈ C∗,Λ ∈ L+}, Ew− = {αc̃wΛ | α ∈ C∗,Λ ∈ L+}, Ew = Ew+

Ew−
are multiplicatively closed sets of normal elements in A/Iw. Thus Ew is an Ore set in A/Iw. Define

Aw = (A/Iw)Ew .

Notice that σ extends to an isomorphism σ : Âŵ → Aw, where ŵ = (w−, w+).

Proposition 4.3. For all w ∈W ×W , Aw 6= (0).

Proof. Notice first that since the generators of Aw and the elements of Ew are L × L homogeneous, it
suffices to work in the one-parameter case. The proof is then similar to that of [15, Theorem 2.2.3]
(written in the SL(n)-case). For completeness we recall the steps of this proof. The technical details are
straightforward generalizations to the general case of [15, loc. cit.].

For 1 ≤ i ≤ n denote by Uq(sli(2)) the Hopf subalgebra of Uq(g) generated by ei, fi, k±1
i . The associated

quantized function algebra Ai ∼= Cq[SL(2)] is naturally a quotient of A. Let σi be the reflection associated
to the root αi. It is easily seen that there exist M+

i and M−i , non-zero (Ai)(σi,e) and (Ai)(e,σi) modules
respectively. These modules can then be viewed as non-zero A-modules.

Let w+ = σi1 . . . σik and w− = σj1 . . . σjm be reduced expressions for w±. Then

M+
i1
⊗ · · · ⊗M+

ik
⊗M−j1 ⊗ · · · ⊗M

−
jm

is a non-zero Aw-module. �

In the one-parameter case the proof of the following result was found independently by the authors in
[16, 1.2] and Joseph in [18, 6.2].

Theorem 4.4. Let P ∈ SpecCq,p[G]. There exists a unique w ∈ W × W such that P ⊃ Iw and
(P/Iw) ∩ Ew = ∅.

Proof. Fix a dominant weight Λ. Define an ordering on the weight vectors of L(Λ)∗ by f ≤ f ′ if
f ′ ∈ Uq,p−1(b+)f. This is a preordering which induces a partial ordering on the set of one dimensional
weight spaces. Consider the set:

F(Λ) = {f ∈ L(Λ)∗µ | cf,vΛ /∈ P}.

Let f be an element of F(Λ) which is maximal for the above ordering. Suppose that f ′ has the same
property and that f and f ′ have weights µ and µ′ respectively. By Corollary 3.10 the two elements cf,vΛ

and cf ′,vΛ are normal modulo P . Therefore we have, modulo P ,

cf,vΛcf ′,vΛ = q(Φ+Λ,Λ)−(Φ+µ,µ
′)cf ′,vΛcf,vΛ = q2(Φ+Λ,Λ)−(Φ+µ,µ

′)−(Φ+µ
′,µ)cf,vΛcf ′,vΛ .

But, since u is alternating, 2(Φ+Λ,Λ)− (Φ+µ, µ
′)− (Φ+µ

′, µ) = 2(Λ,Λ)−2(µ, µ′). Since P is prime and q
is not a root of unity we can deduce that (Λ,Λ) = (µ, µ′). This forces µ = µ′ ∈W (−Λ). In conclusion, we
have shown that for all dominant Λ there exists a unique (up to scalar multiplication) maximal element
gΛ ∈ F(Λ) with weight −wΛΛ, wΛ ∈W . Applying the argument above to a pair of such elements, cgΛ,vΛ
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and cgΛ,vΛ′ , yields that (wΛΛ, wΛ′Λ
′) = (Λ,Λ′) for all Λ,Λ′ ∈ L+. Then it is not difficult to show that

this furnishes a unique w+ ∈W such that w+Λ = wΛΛ for all Λ ∈ L+. Thus for each Λ ∈ L+,

cg,vΛ ∈ P ⇐⇒ g � f−w+Λ.

Hence P ⊃ I+
w+

and P ∩ Ew+
= ∅. It is easily checked that such a w+ must be unique. Using σ one

deduces the existence and uniqueness of w−. �

Definition . A prime ideal P such that P ⊃ Iw and P ∩ Ew = ∅ will be called a prime ideal of type w.
We denote by Specw Cq,p[G], resp. Primw Cq,p[G], the subset of SpecCq,p[G] consisting of prime, resp.
primitive, ideals of type w.

Clearly Specw Cq,p[G] ∼= SpecAw and σ(Specŵ Cq−1,p[G]) = Specw Cq,p[G]. The following corollary is
therefore clear.

Corollary 4.5. One has

SpecCq,p[G] = tw∈W×W Specw Cq,p[G], PrimCq,p[G] = tw∈W×W Primw Cq,p[G].

We end this section by a result which is the key idea in [18] for analyzing the adjoint action of A
on Aw. It says that in the one parameter case the quantized function algebra Cq[B−] identifies with
Uq(b

+) through the Rosso-Tanisaki-Killing form, [10, 17, 18]. Evidently this continues to hold in the
multi-parameter case. For completeness we include a proof of that result.

Set Cq,p[B−] = A/I(w0,e). The embedding Uq,p−1(b−) → Dq,p−1(g) induces a Hopf algebra map φ :

A → Uq,p−1(b−)◦, where Uq,p−1(b−)◦ denotes the cofinite dual. On the other hand the non-degenerate
Hopf algebra pairing 〈 | 〉p−1 furnishes an injective morphism θ : Uq,p−1(b+)op → Uq,p−1(b−)∗.

Proposition 4.6. 1. Cq,p[B−] is an L-bigraded Hopf algebra.
2. The map γ = θ−1φ : Cq,p[B−]→ Uq,p−1(b+)op is an isomorphism of Hopf algebras.

Proof. 1. It is easy to check that I(w0,e) is an L× L graded bi-ideal of the bialgebra A. Let µ ∈ L+ and
fix a dual basis {vν ; f−ν}ν of L(µ) (with the usual abuse of notation). Then∑

ν

cvν ,f−ηcf−ν ,vγ =
∑
ν

S(cf−η,vν )cf−ν ,vγ = ε(cf−η,vγ ).

Taking γ = η = µ yields c̃µcµ = 1 modulo I(w0,e). If γ = w0µ and η 6= w0µ, the above relation shows
that S(cf−η,vw0µ

)c̃−w0µ ∈ I(w0,e). Thus I(w0,e) is a Hopf ideal.
2. We first show that

(4.1) ∀Λ ∈ L+, cf,vΛ
∈ C(Λ)−λ,Λ, ∃!xλ ∈ U+

Λ−λ, φ(cf,vΛ
) = θ(xλ · k−Λ).

Set c = cf,vΛ
. Then c(U−−η) = 0 unless η = Λ − λ; denote by c̄ the restriction of c to U−. By the

non-degeneracy of the pairing on U+
Λ−λ ×U

−
λ−Λ we know that there exists a unique xλ ∈ U+

Λ−λ such that
c̄ = θ(xλ). Then, for all y ∈ U−λ−Λ, we have

c(y · kµ) = 〈f, y · kµ · vΛ〉 = q−(Φ−Λ,µ)c̄(y) = q−(Φ−Λ,µ)〈xλ | y〉
= 〈xλ · k−Λ | y · kµ〉p−1

by (3.4). This proves (4.1).
We now show that φ is injective on A+. Suppose that c = cf,vΛ ∈ C(Λ)−λ,Λ ∩ Kerφ, hence c = 0 on

Uq,p−1(b−). Since L(Λ) = Uq,p−1(b−)vΛ = Dq,p−1(g)vΛ it follows that c = 0. An easy weight argument
using (4.1) shows then that φ is injective on A+.

It is clear that Kerφ ⊃ I(w0,e), and that A+A− = A implies φ(A) = φ(A+[c̃µ ; µ ∈ L+]). Since
c̃µ = c−1

µ modulo I(w0,e) by part 1, if a ∈ A there exists ν ∈ L+ such that φ(cν)φ(a) ∈ φ(A+). The
inclusion Kerφ ⊂ I(w0,e) follows easily. Therefore γ is a well defined Hopf algebra morphism.
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If αj ∈ B, there exists Λ ∈ L+ such that L(Λ)Λ−αj 6= (0). Pick 0 6= f ∈ L(Λ)∗−Λ+αj
. Then (4.1)

shows that, up to some scalar, φ(cf,vΛ
) = θ(ej · k−Λ). If λ ∈ L, there exists Λ ∈ Wλ ∩ L+; in particular

L(Λ)λ 6= (0). Let v ∈ L(Λ)λ and f ∈ L(Λ)∗−λ such that 〈f, v〉 = 1. Then it is easily verified that
φ(cf,v) = θ(k−λ). This proves that γ is surjective, and the proposition. �

4.2. The adjoint action. Recall that if M is an arbitrary A-bimodule one defines the adjoint action of
A on M by

∀ a ∈ A, x ∈M, ad(a).x =
∑

a(1)xS(a(2)).

Then it is well known that the subspace of ad-invariant elements Mad = {x ∈ M | ∀a ∈ A, ad(a).x =
ε(a)x} is equal to {x ∈M | ∀a ∈ A, ax = xa}.

Henceforth we fix w ∈W ×W and work inside Aw. For Λ ∈ L+, f ∈ L(Λ)∗ and v ∈ L(Λ) we set

z+
f = c−1

wΛcf,vΛ
, z−v = c̃−1

wΛcv,f−Λ
.

Let {ω1, . . . , ωn} be a basis of L such that ωi ∈ L+ for all i. Observe that cwΛcwΛ′ and cwΛ′cwΛ differ by
a non-zero scalar (similarly for c̃wΛc̃wΛ′). For each λ =

∑
i `iωi ∈ L we define normal elements of Aw by

cwλ =

n∏
i=1

c`iwωi , c̃wλ =

n∏
i=1

c̃`iwωi , dλ = (c̃wλcwλ)−1.

Notice then that, for Λ ∈ L+, the “new” cwΛ belongs to C∗cf−w+Λ,vΛ
(similarly for c̃wΛ). Define subalge-

bras of Aw by

Cw = C[z+
f , z

−
v , cwλ ; f ∈ L(Λ)∗, v ∈ L(Λ), Λ ∈ L+, λ ∈ L]

C+
w = C[z+

f ; f ∈ L(Λ)∗, Λ ∈ L+], C−w = C[z−v ; v ∈ L(Λ), Λ ∈ L+].

Recall that the torus H acts on Aλ,µ by rh(a) = µ(h)a, where µ(h) = 〈µ, h〉. Since the generators of Iw
and the elements of Ew are eigenvectors for H, the action of H extends to an action on Aw. The algebras
Cw and C±w are obviously H-stable.

Theorem 4.7. 1. CHw = C[z+
f , z

−
v ; f ∈ L(Λ)∗, v ∈ L(Λ), Λ ∈ L+].

2. The set D = {dΛ ; Λ ∈ L+} is an Ore subset of CHw . Furthermore Aw = (Cw)D and AHw = (CHw )D.
3. For each λ ∈ L, let (Aw)λ = {a ∈ Aw | rh(a) = λ(h)a}. Then Aw =

⊕
λ∈L(Aw)λ and (Aw)λ =

AHw cwλ . Moreover each (Aw)λ is an ad-invariant subspace.

Proof. Assertion 1 follows from

∀h ∈ H, rh(z±f ) = z±f , rh(cwλ) = λ(h)cwλ, rh(c̃wλ) = λ(h)−1c̃wλ.

Let {vi; fi}i be a dual basis for L(Λ). Then

1 = ε(cf−Λ,vΛ
) =

∑
i

S(cf−Λ,vi)cfi,vΛ
=
∑
i

cvi,f−Λ
cfi,vΛ

.

Multiplying both sides of the equation by dΛ and using the normality of cwΛ and c̃wΛ yields dΛ =∑
i aiz

−
viz

+
fi

for some ai ∈ C. Thus D ⊂ CHw . Now by Theorem 4.1 any element of Aw can be written in
the form cf1,v1cf2,v2d

−1
Λ where v1 = vΛ1 , v2 = v−Λ2 and Λ1,Λ2,Λ ∈ L+. This element lies in (Aw)λ if and

only if Λ1−Λ2 = λ. In this case cf1,v1cf2,v2d
−1
Λ is equal, up to a scalar, to the element z+

f1
z−f2
d−1

Λ+Λ2
cwλ ∈

(CHw )Dcwλ. Since the adjoint action commutes with the right action of H, (Aw)λ is an ad-invariant
subspace. The remaining assertions then follow. �

We now study the adjoint action of Cq,p[G] on Aw. The key result is Theorem 4.12.

Lemma 4.8. Let TΛ = {z+
f | f ∈ L(Λ)∗}. Then C+

w =
⋃

Λ∈L TΛ.
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Proof. It suffices to prove that if Λ,Λ′ ∈ L+ and f ∈ L(Λ)∗, then there exists a g ∈ L(Λ + Λ′)∗ such that
z+
f = z+

g . Clearly we may assume that f is a weight vector. Let ι : L(Λ + Λ′) → L(Λ) ⊗ L(Λ′) be the
canonical map. Then

cf,vΛ
cf−w+Λ′ ,vΛ′ = cf−w+Λ′⊗f,vΛ⊗vΛ′ = cg,vΛ+Λ′

where g = ι∗(f−w+Λ′ ⊗ f). Multiplying the images of these elements in Aw by the inverse of cw(Λ+Λ′) ∈
C∗cwΛcwΛ′ yields the desired result. �

Proposition 4.9. Let E be an object of Cq,p and let Λ ∈ L+. Let σ : L(Λ)→ E ⊗L(Λ)⊗E∗ be the map
(1⊗ ψ−1)(ι⊗ 1) where ι : C→ E ⊗E∗ is the canonical embedding and ψ−1 : E∗ ⊗ L(Λ)→ L(Λ)⊗E∗ is
the inverse of the braiding map described in §3.5. Then for any c = cg,v ∈ C(E)−η,γ and f ∈ L(Λ)∗

ad(c).z+
f = q(Φ+w+Λ,η) z+

σ∗(v⊗f⊗g).

In particular C+
w is a locally finite Cq,p[G]-module for the adjoint action.

Proof. Let {vi; gi}i be a dual basis of E where vi ∈ Eνi , gi ∈ E∗−νi . Then ι(1) =
∑
vi ⊗ gi. By (3.5) we

have
ψ−1(gi ⊗ vΛ) = ai(vΛ ⊗ gi)

where ai = q−(Φ+Λ,νi) = q(Φ−νi,Λ). On the other hand the commutation relations given in Corollary 3.10
imply that cg,vic

−1
wΛ = baic

−1
wΛcg,vi , where b = q(Φ+w+Λ,η). Therefore

ad(c).z+
f =

∑
baic

−1
wΛcg,vicf,vΛ

cv,gi = bc−1
wΛcv⊗f⊗g,

∑
aivi⊗vΛ⊗gi = bc−1

wΛcv⊗f⊗g,σ(vΛ).

Since the map σ is a morphism ofDq,p−1(g)-modules it is easy to see that cv⊗f⊗g,σ(vΛ) = cσ∗(v⊗f⊗g),vΛ
. �

Let γ : Cq,p[G]→ Uq,p−1(b+) be the algebra anti-isomorphism given in Proposition 4.6.

Lemma 4.10. Let c = cg,v ∈ Cq,p[G]−η,γ , f ∈ L(Λ)∗ be as in the previous theorem and x ∈ Uq,p−1(b+)
be such that γ(c) = x. Then

cS−1(x).f,vΛ
= cσ∗(v⊗f⊗g),vΛ

.

Proof. Notice that it suffices to show that

cS−1(x).f,vΛ
(y) = cσ∗(v⊗f⊗g),vΛ

(y)

for all y ∈ Uq,p−1(b−). Denote by 〈 | 〉 the Hopf pairing 〈 | 〉p−1 between Uq,p−1(b+)op and Uq,p−1(b−) as
in §3.4. Let χ be the one dimensional representation of Uq,p−1(b+) associated to vΛ and let χ̃ = χ · γ.
Notice that χ(x) = 〈x | t−Λ〉; so χ̃(c) = c(t−Λ). Recalling that γ is a morphism of coalgebras and using
the relation (cxy) of §2.3 in the double Uq,p−1(b+) on Uq,p−1(b−), we obtain

cS−1(x).f,vΛ
(y) = f(xyvΛ)

=
∑
〈x(1) | y(1)〉〈x(3) | S(y(3))〉 f(y(2)x(2)vΛ)

=
∑
〈x(1) | y(1)〉〈x(3) | S(y(3))〉χ(x(2)) f(y(2)vΛ)

=
∑
〈x(1)χ(x(2)) | y(1)〉〈x(3) | S(y(3)〉 f(y(2)vΛ)

=
∑

(c(1)χ̃(c(2)))(y(1)) c(3)(S(y(3))) f(y(2)vΛ)

=
∑

rχ̃(c(1))(y(1)) cf,vΛ(y(2))S(c(2))(y(3)).

Since rχ̃(cg,vi) = q(Φ−νi,Λ)cg,vi , one shows as in the proof of Proposition 4.9 that

cS−1(x).f,vΛ
(y) =

∑
rχ̃(c(1))(y(1)) cf,vΛ

(y(2))S(c(2))(y(3))

=
∑

q(Φ−νi,Λ) (cg,vicf,vΛcv,gi)(y)

= cσ∗(v⊗f⊗g),vΛ
(y),
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as required. �

Theorem 4.11. Consider C+
w as a Cq,p[G]-module via the adjoint action. Then

(1) SocC+
w = C.

(2) AnnC+
w ⊃ I(w0,e).

(3) The elements cf−µ,vµ , µ ∈ L+, act diagonalizably on C+
w .

(4) SocC+
w = {z ∈ C+

w | Ann z ⊃ I(e,e)}.

Proof. For Λ ∈ L+, define a Uq,p−1(b+)-module by

SΛ = (Uq,p−1(b+)vw+Λ)∗ = L(Λ)∗/(Uq,p−1(b+)vw+Λ)⊥.

It is easily checked that SocSΛ = Cf−w+Λ (see [18, 7.3]). Let δ : SΛ → TΛ be the linear map given
by f̄ 7→ z+

f . Denote by ζ the one-dimensional representation of Cq,p[G] given by ζ(c) = c(t−w+Λ). Let
c = cg,v ∈ C(E)−η,γ . Then lζ(c) = q(Φ−η,w+Λ)c = q−(Φ+w+Λ,η))c. Then, using Proposition 4.9 and
Lemma 4.10 we obtain,

ad(lζ(c)).δ(f̄) = q−(Φ+w+Λ,η) ad(c).z+
f = z+

S−1γ(c).f = δ(S−1(γ(c))f̄).

Hence, ad(lζ(c)).δ(f̄) = δ(S−1(γ(c))f̄) for all c ∈ A. This immediately implies part (2) since Ker γ ⊃
I(w0,e) and lζ(I(w0,e)) = I(w0,e). If SΛ is given the structure of an A-module via S−1γ, then δ is a
homomorphism from SΛ to the module TΛ twisted by the automorphism lζ . Since δ(f−w+Λ) = 1 it
follows that δ is bijective and that SocTΛ = δ(SocSΛ) = C. Part (1) then follows from Lemma 4.8. Part
(3) follows from the above formula and the fact that γ(cf−µ,vµ) = s−µ. Since A/I(e,e) is generated by the
images of the elements cf−µ,vµ , (4) is a consequence of the definitions. �

Theorem 4.12. Consider CHw as a Cq,p[G]-module via the adjoint action. Then

SocCHw = C.

Proof. By Theorem 4.11 we have that SocC+
w = C. Using the map σ, one obtains analogous results for

C−w . The map C+
w ⊗ C−w → CHw is a module map for the adjoint action which is surjective by Theorem

4.1. So it suffices to show that SocC+
w ⊗ C−w = C. The following argument is taken from [18].

By the analog of Theorem 4.11 for C−w we have that the elements cf−Λ,vΛ
act as commuting diagonaliz-

able operators on C−w . Therefore an element of C+
w ⊗C−w may be written as

∑
ai⊗bi where the bi are lin-

early independent weight vectors. Let cf,vΛ
be a generator of I+

e . Suppose that
∑
ai⊗bi ∈ Soc(C+

w⊗C−w ).
Then

0 = ad(cf,vΛ
).(
∑
i

ai ⊗ bi) =
∑
i,j

ad(cf,vj ).ai ⊗ ad(cfj ,vΛ
).bi

=
∑
i

ad(cf,vΛ).ai ⊗ ad(cf−Λ,vΛ).bi

=
∑
i

ad(cf,vΛ
).ai ⊗ αibi

for some αi ∈ C∗. Thus ad(cf,vΛ
).ai = 0 for all i. Thus the ai are annihilated by the left ideal generated

by the cf,vΛ
. But this left ideal is two-sided modulo I(w0,e) and AnnC+

w ⊃ I(w0,e). Thus the ai are
annihilated by I(e,e) and so lie in SocC+

w by Theorem 4.11. Thus
∑
ai ⊗ bi ∈ Soc(C⊗C−w ) = C⊗C. �

Corollary 4.13. The algebra AHw contains no nontrivial ad-invariant ideals. Furthermore, (AHw )ad = C.

Proof. Notice that Theorem 4.12 implies that CHw contains no nontrivial ad-invariant ideals. Since AHw
is a localization of CHw the same must be true for AHw . Let a ∈ (AHw )ad\C. Then a is central and so for
any α ∈ C, (a−α) is a non-zero ad-invariant ideal of AHw . This implies that a−α is invertible in AHw for
any α ∈ C. This contradicts the fact that AHw has countable dimension over C. �
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Theorem 4.14. Let Zw be the center of Aw. Then
(1) Zw = Aadw ;
(2) Zw =

⊕
λ∈L Zλ where Zλ = Zw ∩AHw cwλ;

(3) If Zλ 6= (0), then Zλ = Cuλ for some unit uλ;
(4) The group H acts transitively on the maximal ideals of Zw.

Proof. The proof of (1) is standard. Assertion (2) follows from Theorem 4.7. Let uλ be a non-zero
element of Zλ. Then uλ = acwλ, for some a ∈ AHw . This implies that a is normal and hence a generates
an ad-invariant ideal of AHw . Thus a (and hence also uλ) is a unit by Theorem 4.13. Since Z0 = C,
it follows that Zλ = Cuλ. Since the action of H is given by rh(uλ) = λ(h)uλ, it is clear that H acts
transitively on the maximal ideals of Zw. �

Theorem 4.15. The ideals of Aw are generated by their intersection with the center, Zw.

Proof. Any element f ∈ Aw may be written uniquely in the form f =
∑
aλcwλ where aλ ∈ AHw . Define

π : Aw → AHw to be the projection given by π(
∑
aλcwλ) = a0 and notice that π is a module map for the

adjoint action. Define the support of f to be Supp(f) = {λ ∈ L | aλ 6= 0}. Let I be an ideal of Aw. For
any set Y ⊆ L such that 0 ∈ Y define

IY = {b ∈ AHw | b = π(f) for some f ∈ I such that Supp(f) ⊆ Y }

If I is ad-invariant then IY is an ad-invariant ideal of AHw and hence is either (0) or AHw .
Now let I ′ = (I ∩ Zw)Aw and suppose that I 6= I ′. Choose an element f =

∑
aλcwλ ∈ I\I ′ whose

support S has the smallest cardinality. We may assume without loss of generality that 0 ∈ S. Suppose
that there exists g ∈ I ′ with Supp(g) ⊂ S. Then there exists a g′ ∈ I ′ with Supp(g′) ⊂ S and π(g′) = 1.
But then f − a0g

′ is an element of I ′ with smaller support than F . Thus there can be no elements in
I ′ whose support is contained in S. So we may assume that π(f) = a0 = 1. For any c ∈ Cq,p[G], set
fc = ad(c).f − ε(c)f . Since π(fc) = 0 it follows that |Supp(fc)| < |Supp(f)| and hence that fc = 0. Thus
f ∈ I ∩Aad

w = I ∩ Zw, a contradiction. �

Putting these results together yields the main theorem of this section, which completes Corollary 4.5
by describing the set of primitive ideals of type w.

Theorem 4.16. For w ∈W×W the subsets Primw Cq,p[G] are precisely the H-orbits inside PrimCq,p[G].

Finally we calculate the size of these orbits in the algebraic case. Set Lw = {λ ∈ L | Zλ 6= (0)}.
Recall the definition of s(w) from (1.3) and that p is called q-rational if u is algebraic. In this case we
know by Theorem 1.7 that there exists m ∈ N∗ such that Φ(mL) ⊂ L.

Proposition 4.17. Suppose that p is q-rational. Let λ ∈ L and yλ = cwΦ−mλc̃wΦ+mλ. Then
(1) yλ is ad-semi-invariant. In fact, for any c ∈ A−η,γ ,

ad(c).yλ = q(mσ(w)λ,η)ε(c)yλ.

where σ(w) = Φ−w−Φ+ − Φ+w+Φ−
(2) Lw ∩ 2mL = 2 Kerσ(w) ∩mL
(3) dimZw = n− s(w)

Proof. Using Lemma 4.2, we have that for c ∈ A−η,γ
cyλ = q(Φ+w+Φ−mλ,−η)q(Φ+Φ−mλ,γ)q(Φ−w−Φ+mλ,η)q(Φ−Φ+mλ,−γ)yλc

= q(mσ(w)λ,η)yλc.

From this it follows easily that
ad(c).yλ = q(mσ(w)λ,η)ε(c)yλ.
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Since (up to some scalar) yλ = d−1
Φmλd

−1
mλc

−2
wmλ it follows from Theorem 4.7 that yλ ∈ (Aw)−2mλ.

However, as a Cq,p[G]-module via the adjoint action, AHw yλ ∼= AHw ⊗ Cyλ and hence SocAHw yλ = Cyλ.
Thus Z−2mλ 6= (0) if and only if yλ is ad-invariant; that is, if and only if mσ(w)λ = 0. Hence

dimZw = rkLw = rk(Lw ∩ 2mL) = rk KermL σ(w)

= dim Kerh∗ σ(w) = n− s(w)

as required. �

Finally, we may deduce that in the algebraic case the size of the of the H-orbits SympwG and
Primw Cq,p[G] are the same, cf. Theorem 1.8.

Theorem 4.18. Suppose that p is q-rational and let w ∈W ×W . Then

∀P ∈ Primw Cq,p[G], dim(H/StabH P ) = n− s(w).

Proof. This follows easily from theorems 4.15, 4.16 and Proposition 4.17. �
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