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Abstract. Let g be a reductive, complex Lie algebra, with adjoint group G,

let G act on the ring of differential operators D(g) via the adjoint action and

write τ : g→ D(g) for the differential of this action. Fix λ ∈ h∗. Generalizing
work of Hotta and Kashiwara, we prove that the invariant holonomic system

Nλ = D(g)
/(
D(g)τ(g) +

∑
p∈S(g)GD(g)(p− p(λ))

)
is semisimple. The simple summands of Nλ are parametrized by the irreducible
representations of Wλ, the stabilizer of λ in the Weyl group. Consequently, the

subcategory generated by Nλ is equivalent to the category of finite dimensional

representations of Wλ.

1. Introduction

Let G be a complex connected reductive algebraic group with g = Lie(G). Let
O(g) = S(g∗) be the algebra of polynomial functions on g, and denote by D(g)
the algebra of differential operators on g, with coefficients in O(g). We identify
S(g) ⊂ D(g) with the algebra of differential operators with constant coefficients.
The group G acts on g, via the adjoint action, and hence has an induced action on
S(g∗), S(g) and D(g). Denote the differential of this action by τ : g → D(g). Fix
a Cartan subalgebra h of g with associated Weyl group W .

Suppose that g0 is a real form of g, with adjoint group G0, and recall that a
distribution Θ ∈ Dist(g0) is a G0-invariant eigendistribution if there exists λ ∈ h∗

such that τ(g) ·Θ = 0, and p ·Θ = p(λ)Θ for all p ∈ S(g)G. As in [10], one defines a
system of linear differential equations for invariant eigendistributions or invariant
holonomic system on g by

Nλ = D(g)
/(
D(g)τ(g) +

∑
p∈S(g)GD(g)(p− p(λ))

)
for λ ∈ h∗.

This module is important, in part, because the invariant eigendistributions can
be identified with HomD(g)(Nλ,Dist(g0)). Its study is also of central importance
in the representation theory of g and Hotta and Kashiwara have obtained deep
results on the system Nλ, and its Fourier transform, by means of the Riemann-
Hilbert correspondence [10]. They showed, among other things, that the module
N0 decomposes as

(1.1) N0 =
⊕
χ∈Wˆ

N0,χ ⊗C V
∗
χ
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(see [10, Theorem 5.3]). Here, Ŵdenotes the set of isomorphism classes of irre-
ducible W -modules and Vχ is a representation in the class of χ. The modules N0,χ

are pairwise non-isomorphic, simple D(g)-modules.
On the other hand, Wallach [19] has shown that the decomposition of the D(h)W -

module S(h∗) is closely related to the study of invariant eigendistributions on g0,
and to the Springer correspondence. This connection is made possible by the exis-

tence of a homomorphism δ : D(g)
G → D(h)W defined by Harish-Chandra [7]. The

homomorphism δ is surjective with kernel (D(g)τ(g))G, see [13, 14].
The aim of this paper is to prove the following theorems, which generalize (and

provide different proofs of) the aforementioned results from [10] and [19]. The first
theorem answers a question of M. Duflo, who asked for the decomposition of the
D(h)W -module S(h∗)eλ.

Theorem A. Fix λ ∈ h∗ and let Wλ denote the stabilizer of λ in W .
(i) S(h∗)eλ is a semisimple (D(h)W ,Wλ)-module. Indeed:

S(h∗)eλ =
⊕
χ∈Wλ̂

V χ ⊗ V ∗χ ,

where the V χ are simple, pairwise non-isomorphic D(h)W -modules and V ∗χ is the
dual of the simple W -module Vχ in the class of χ.

(ii) In particular, if χ = triv is the trivial character, then V triv = D(h)W eλ =
S(h∗)Wλeλ is a simple D(h)W -module.

(iii) Set pλ =
∑
p∈S(h)W S(h)W (p − p(λ)). Then, S(h∗)eλ ∼= D(h)W /D(h)Wpλ

as D(h)W -modules.

This theorem follows from Theorem 3.4 and Theorem 4.4, which give analogous
results in more general circumstances. The main result of the paper, see Theo-
rem 6.9, is the following:

Theorem B. Fix λ ∈ h∗. As either a (D(g),Wλ)-module or a D(g)-module, Nλ is
semisimple. Indeed:

(1.2) Nλ ∼=
⊕
χ∈Wλ̂

Nλ,χ ⊗C V
∗
χ , where Nλ,χ = (D(g)/D(g)τ(g))⊗D(g)G V

χ.

Moreover, the Nλ,χ, for χ ∈Wλ̂, are simple, pairwise nonisomorphic D(g)-modules.

When λ = 0 this reduces to (1.1). Hotta and Kashiwara also prove the result
in the case when λ is regular [10, Lemma 4.6.1]. The analog of Theorem B for
differential operators over G has been raised as a conjecture in [9, Hypothesis 4.1].

The results and proofs in [10] rely on the fact that the modules Nλ, and their
Fourier transforms, can be obtained via D-module constructions from Og̃, where
g̃ → g is the Grothendieck-Springer resolution. Our approach to Theorem B is
less geometric, but in a sense more elementary. The idea is as follows: Since Nλ ∼=
(D(g)/D(g)τ(g))⊗D(h)W S(h∗)eλ, the decomposition (1.2) follows from Theorem A.
Thus, the hard part of the proof is to show that the Nλ,χ are simple. To prove this,
one first shows that Nλ,χ is torsion-free as an O(g)-module (see Corollary 6.6). It
follows that Nλ,χ is simple if and only if its restriction to the set of generic elements
is also simple. As this second module is an integrable connection, it is easy to
analyse and this enables one to prove the theorem.

One consequence of this argument is that:
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every subfactor of Nλ is torsion-free as an O(g)-module.

This generalizes work of Harish-Chandra in the sense that the essence of his result
on the regularity of invariant eigendistributions [7, 8] is the assertion that Nλ has
no factor that is {dn}-torsion, where d ∈ O(g) denotes the discriminant (see the
discussion in [10, p.352]).

Let Rλ denote the full subcategory of finitely generated D(g)-modules generated
by Nλ. Then Theorem B has the following easy consequence:

Corollary C. The category Rλ is equivalent to Wλ-mod, through the functor

M → HomD(h)W (MG, S(h∗)eλ).

As a consequence of these results, one obtains a “Springer correspondence” be-
tween representations of Wλ, local systems on G-orbits in N(λ) = {x ∈ g : f(x) =
f(λ) for all f ∈ S(g∗)G} and Wλ-harmonics in S(h∗). The details can be found in
Sections 6 and 7.

2. The structure of the D(V ) ∗W -module generated by eλ.

For the next four sections, we fix an algebraically closed field k of characteristic
zero and a k-vector space V of dimension `. Set: R = O(V ) = S(V ∗), the algebra of

functions on V ; R̂ the algebra of formal power series on V ; S = S(V ), the symmetric
algebra on V , which will be identified with the algebra of constant coefficients
differential operators on V ; A = D(V ), the algebra of differential operators on V .

The action of d ∈ A on f ∈ R̂ will be denoted by d · f ∈ R̂.
Fix a finite subgroup W of GL(V ). Then W and its subgroups have natural

induced actions on the algebras R, R̂, S and A. Given λ ∈ V ∗, we regard λ as a
character λ : S(V ) → k and set mλ = Kerλ and nλ = mλ ∩ S(V )Wλ , where Wλ

is the stabilizer of λ. An element g ∈ W acts on λ by (g.λ)(v) = λ(g−1.v), v ∈ V .

The element eλ can be viewed as an element of R̂ and the A-submodule it generates
is the simple A-module A · eλ = Reλ ∼= A/Amλ.

The aim of the first three sections is to describe the structure of Reλ as a module
over AW , the subring of W-invariant elements in A. The description is given in
Theorem 3.4. When W is generated by pseudo-reflections a further description is
given in Theorem 4.4.

The way we prove these results is to use the Morita equivalence (see §3) between
AW and the skew group ring A ∗W . This ring is defined as follows: If d ∈ A and
w ∈ W the (left) action of w on d is denoted by w.d and we set dw = w−1.d. The
skew group ring A ∗W is the free (left and right) A-module with basis {w}w∈W
and multiplication defined by dw = wdw for d ∈ A and w ∈W . We always identify
A with the subring Aε of A ∗W , where ε is the identity element of W .

Notice that R̂ is in a natural way a left A ∗W -module. Moreover, if g ∈ W ,

then g.eλ = eg.λ and so Reλ is a A ∗Wλ-submodule of R̂. To analyze this module
we need to introduce the categories of modules on which mλ or nλ acts locally
nilpotently. Let B-mod denote the category of finitely generated left B-modules
over a ring B and set

Sλ = {M ∈ A ∗Wλ-mod | ∀x ∈M, ∃ k ∈ N, such that mk
λx = 0}

Cλ = {M ∈ AWλ -mod | ∀x ∈M, ∃ k ∈ N, such that nkλx = 0}.
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Observe that Reλ ∈ Sλ as an A ∗Wλ-module, while, as an AWλ -module, Reλ ∈
Cλ. The next two lemmas give some elementary properties of Reλ and (A∗Wλ)⊗A
Reλ. The first is standard.

Lemma 2.1. (i) Let N be a finitely generated left A-module that is locally finite
as a left S(V )-module. Then N is a finite direct sum of simple A-modules of the
form Reµ, for µ ∈ V ∗.

(ii) If Γ is a finite group of automorphisms of A and N is a semi-simple left
A-module, then (A ∗ Γ)⊗A N is a semi-simple left A ∗ Γ-module.

Proof. (i) The hypothesis ensures that N is a D(V ∗)-module supported on a finite
number of points in V ∗. The claim therefore follows from Kashiwara’s equivalence
[2, Theorem 7.11, p.264].

(ii) This is [16, Theorem 7.6(iv)]. �

Now we introduce a functor from the category of left A-modules, to the category
of k-vector spaces by setting

Φ(M) = {x ∈M | mλx = 0}.
Note that Φ(Reλ) = keλ. Furthermore, Φ(M) identifies with HomA(Reλ,M) under
the map f 7→ f(eλ), for f ∈ HomA(Reλ,M). Moreover, if M is an A ∗Wλ-module,
then Φ(M) is a Wλ-module. Denote by Wλ-mod the category of finite dimensional
representations of Wλ.

Proposition 2.2. Define kλ = S/mλ. Then Φ induces an equivalence of categories

Sλ ≈Wλ-mod

whose inverse functor is Ψ : E → Reλ⊗kλ E. Here, E is considered as a trivial left
kλ-module and Wλ acts on Reλ⊗E via its diagonal action: w.(d⊗x) = w.d⊗w.x.

Proof. Clearly, E ∼= ΦΨ(E), for any Wλ-module E. Let M be in Sλ. By Lem-
ma 2.1(i), M ∼= (Reλ)(m) as a left A-module and so, if E = Φ(M), then M =
AE = RE. Thus, there is a surjection of A-modules ψ : Ψ(E) � M given by
reλ ⊗ ε 7→ rε for r ∈ R and ε ∈ E. Using the fact that w.eλ = eλ, for w ∈ Wλ,
it is easily checked that ψ is actually an A ∗ Wλ-module map. Since Ψ(E) is a
semisimple right A-module, Φ(Kerψ) = 0 and so ψ is an isomorphism. The rest of
the proof is an easy verification. �

Let Wλ̂ denote the set of isomorphism classes of irreducible representations of
Wλ. For χ ∈Wλ̂, fix a module Vχ in the class of χ and set mχ = dimVχ.

Lemma 2.3. Let χ ∈Wλ̂.
(i) As an A-module, (A∗Wλ)⊗AReλ is a direct sum of |Wλ| copies of the simple

module Reλ. Moreover, Reλ ∼= R as Wλ-modules.
(ii) Fix a left transversal {h1 = ε, h2, . . . , hs} of Wλ in W . Then Rehi.λ ∼= Rehj .λ

as A-modules if and only if hi = hj .

Proof. (i) As left A-modules, (A∗Wλ)⊗AReλ = ⊕g∈Wλ
A(g⊗ eλ). If v ∈ V ⊂ S =

S(V ) and g ∈Wλ, then λ(vg) = (g.λ)(v) = λ(v). Thus,

v(g ⊗ eλ) = g ⊗ vg · eλ = g ⊗ λ(vg)eλ = g ⊗ v · eλ.
Therefore, A(g ⊗ eλ) ∼= Aeλ = Reλ. The final assertion follows immediately from
the fact that Wλ acts trivially on eλ.
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(ii) It suffices to recall that every element of Rehi.λ is killed by a power of the
maximal ideal mhi.λ. �

By combining the previous results we obtain the following minor generalization
of [19, Theorem 2.7].

Proposition 2.4. As a left A ∗Wλ-module,

(A ∗Wλ)⊗A Reλ ∼=
⊕
χ∈Wλ̂

(
Reλ ⊗kλ Vχ

)(mχ)
.

Moreover, the modules Reλ ⊗kλ Vχ are simple and pairwise non-isomorphic.

Proof. Let k[Wλ] denote the group ring of Wλ. Under the natural embedding, we
have k[Wλ]⊗k Re

λ = (A ∗Wλ)⊗A Reλ. Hence,

Φ
(
(A ∗Wλ)⊗A Reλ

)
= k[Wλ]⊗ eλ ∼= k[Wλ],

thought of as a Wλ-module under the left regular representation. Since k[Wλ] ∼=⊕
V

(mχ)
χ , the result follows from the equivalence of categories given by Proposi-

tion 2.2. �

We can now state the main result of this section.

Theorem 2.5. Let λ ∈ V ∗ and set Zχ = (A ∗W )⊗A∗Wλ
(Reλ ⊗kλ Vχ). Then, as

an A ∗W -module,

(A ∗W )⊗A Reλ ∼=
⊕
χ∈Wλ̂

Z(mχ)
χ .

The Zχ, for χ ∈Wλ̂, are simple, non-isomorphic A ∗W -modules.

Proof. Note that (A ∗W )⊗AReλ ∼= (A ∗W )⊗A∗Wλ
(A ∗Wλ)⊗AReλ as an A ∗W -

module. Thus, the displayed equation is an immediate consequence of Proposi-
tion 2.4.

Let {h1 = ε, h2, . . . , hs} be a left transversal to Wλ in W and set Yχ = Reλ ⊗kλ
Vχ. As A-modules, Zχ ∼=

⊕s
j=1 hjYχ, and hiYχ ∼= (Rehi.λ)(mχ) (use Lemma 2.3).

Moreover, the A-modules Rehi.λ and Rehj .λ are simple and non-isomorphic for
i 6= j. Hence any simple A-submodule of Zχ is contained in some hjYχ.

We next show that Zχ is a simple A ∗W -module. Since Zχ is a direct summand
of (A ∗ W ) ⊗A Reλ, it is semi-simple, by Lemma 2.1(iii). Thus, we may pick a
simple A ∗W -summand M such that the projection from M to h1Yχ is non-zero.
It follows from the last paragraph that, as an A-module, M =

⊕
i(M ∩ hiYχ).

Thus M ∩ h1Yχ 6= (0). But, Proposition 2.4 implies that Yχ = h1Yχ is a simple
A ∗Wλ-submodule of Zχ, whence h1Yχ ⊆M . Therefore

M = (A ∗W )M ⊇ (A ∗W )Yχ =
⊕
i

hiYχ = Zχ.

Thus, Zχ is indeed simple.
Finally, suppose that there exists an isomorphism θ : Zχ → Zψ for some χ 6=

ψ ∈ Wλ̂. If we regard θ as a homomorphism of A-modules then, as in the second
paragraph, Lemma 2.3(ii) implies that θ maps hiYχ to hiYψ. In particular, for i = 1,
we find that θ restricts to a non-zero A ∗Wλ-module homomorphism θ′ : Yχ → Yψ.
Since Yχ is a simple A ∗Wλ-module, θ′ is an isomorphism and, by Proposition 2.4,
χ = ψ. �
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3. The structure of O(V )eλ as a D(V )W -module

As in the last section, we fix an `-dimensional k-vector space V and set R = O(V )
and A = D(V ), etc. In this section, we use the results of the last section, together
with the Morita equivalence between A ∗W and AW to give a precise description
of the structure of Reλ as an AW -module. In particular, in Theorem 3.4 we prove
parts (i) and (ii) of Theorem A of the introduction.

We begin with some simple observations. Regard A as an (A∗W,AW )-bimodule
in the natural way: (

∑
wi∈W aiwi) ◦ r ◦ b =

∑
ai(wi.r)b, for

∑
aiwi ∈ A ∗W , r ∈ A

and b ∈ AW . Call this module Al. We may also regard A as an (AW , A ∗W )-
bimodule by a ◦ r ◦

∑
wi∈W wibi =

∑
a(rwi)bi, for a ∈ AW , r ∈ A and

∑
wibi ∈

A ∗W , in which case we write the module as Ar. Of course, it will usually be clear
which bimodule structure is intended, in which case the superscript will be ignored.

The basic facts that we need about the Morita equivalence are collected in the
next lemma.

Lemma 3.1. (i) AW and A ∗W are simple, Morita equivalent rings. The equiva-
lence is obtained by the functors:

I(N) = Al ⊗AW N and F (M) = Ar ⊗A∗W (M),

for N ∈ AW -mod, respectively M ∈ A ∗W -mod.
(ii) If M ∈ A ∗W -mod, then F (M) ∼= HomA∗W (Al,M) ∼= MW .
(iii) As A ∗W -bimodules, A⊗AW A ∼= A ∗W .

Proof. (i) Note that HomA∗W (Ar, A ∗W ) ∼= Al, as (A ∗W,AW )-bimodules, and
similarly for Al (see [15, Proposition 7.8.5]). Thus, the result follows from [16,
Theorem 2.5 and Corollary 2.6].

(ii) The first isomorphism is standard, while the second isomorphism, follows
from the fact that each f ∈ HomA∗W (A,M) is determined by f(1) ∈MW .

(iii) This is just the assertion that IF (A ∗W ) ∼= A ∗W . �

Remark 3.2. The above results still apply if one replaces W by Wλ. In this
situation we denote the equivalences by

Fλ = A⊗A∗Wλ
and Iλ = A⊗AWλ .

Note that for all a ∈ A and j ∈ N, there exists k ∈ N such that mk
λa ⊂ Amj

λ.
Similarly, there exists i ∈ N such that mi

λ ⊆ nλS. It follows easily that, if M ∈ Cλ
then Iλ(M) ∈ Sλ, using the notation of Remark 3.2. Conversely if N ∈ Sλ then
Fλ(N) is obviously in Cλ. Combined with Proposition 2.2 this implies:

Lemma 3.3. The categories Sλ and Cλ are equivalent via the Morita equivalence
of Lemma 3.1. Moreover Cλ ≈Wλ-mod via the functor ΦIλ.

Recall that Vχ is defined to be a simple Wλ-module of type χ. Define

(3.1) V χ = HomWλ
(V ∗χ , Re

λ).

Thus, V χ ∼=
(
Reλ ⊗kλ Vχ

)Wλ . Since the AWλ - and Wλ-module structures on Reλ

commute, the action of AWλ on Reλ induces a left AWλ -module structure on V χ.
Note that V χ ⊗ V ∗χ is isomorphic with the isotypic component of type χ∗ in the

Wλ-module Reλ.
We can now complete the description of Reλ as an AW -module.
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Theorem 3.4. (i) The (AW ,Wλ)-module Reλ decomposes as:

(3.2) Reλ ∼=
⊕
χ∈Wλ̂

V χ ⊗ V ∗χ .

The AW -modules V χ, for χ ∈Wλ̂, are simple and pairwise non-isomorphic.
(ii) If χ = triv is the trivial character, then V triv = AW · eλ = RWλeλ is a simple

AW -module.

Remark 3.5. (1) By their construction, the V χ are AWλ -modules. Therefore, the
decomposition of part (i) of the theorem is also a decomposition of Reλ into a direct
sum of simple AWλ -modules.

(2) When λ = 0, one has Wλ = W and C0 ≈ W -mod. When λ is regular, that
is, Wλ = {1}, Reλ is a simple AW -module (compare with [4, Lemmes 9 & 11]).

Proof. Note that one has a natural isomorphism of (AWλ ,Wλ)-modules⊕
χ∈Wλ̂

V χ ⊗ V ∗χ ∼−→Reλ

given by f ⊗ v 7→ f(v), for f ∈ V χ and v ∈ V ∗χ . Thus (3.2) holds. In order
to prove the rest of the theorem, we wish to reduce the result to that given by
Theorem 2.5. As in §2, set Yχ = Reλ ⊗kλ Vχ and Zχ = (A ∗W )⊗A∗Wλ

Yχ. Write
Uχ = A⊗A∗Wλ

Yχ, regarded as an AW -module and note that Uχ = F (Zχ) = Fλ(Yχ).
Clearly, A ∼= A ⊗A∗W (A ∗W ), as an (AW , A)-bimodule. Thus, by Theorem 2.5,
one obtains the following isomorphism of AW -modules:

Reλ ∼= A⊗A∗W (A ∗W )⊗A Reλ ∼=
⊕
χ

(A⊗A∗W Zχ)
(mχ) =

⊕
χ

U (mχ)
χ .

By Morita equivalence and Theorem 2.5, again, the AW -modules Uχ are simple and
pairwise non-isomorphic. Thus, in order to prove the theorem, it suffices to show
that Uχ ∼= V χ for each χ and that V triv = RWλeλ.

Since Uχ = Fλ(Yχ), it follows from Lemma 3.1(ii) that Uχ ∼= (Yχ)Wλ as AWλ -
modules and therefore as AW -modules. Thus,

Uχ = (Reλ ⊗kλ Vχ)Wλ = HomWλ
(Vtriv, Re

λ ⊗kλ Vχ) = HomWλ
(V ∗χ , Re

λ) = V χ.

Finally, when χ = triv, we have V triv = HomWλ
(Vtriv, Re

λ) = RWλeλ. Since this
AW -module is simple and contains AW · eλ, part (ii) follows. �

Corollary 3.6. Let λ, µ ∈ V ∗. Then the following are equivalent:
(i) Reλ ∼= Reµ as AW -modules
(ii) Reλ and Reµ have a simple AW -submodule in common
(iii) µ ∈W.λ

Proof. (iii) ⇒ (i) Assume that µ = w.λ for some w ∈ W . We obviously have an
isomorphism of vector spaces w̃ : Reλ → Reµ, given by feλ 7→ w.(feλ) = (w.f)ew.λ.
By definition w.(d · feλ) = (w.d) · (w.(feλ)) for all d ∈ A. Hence the map w̃ is an
isomorphism of AW -modules.

(i) ⇒ (ii) is trivial.
(ii) ⇒ (iii) Generalizing the previous notation we set W =

⊔
i hi(λ)Wλ with

h1(λ) = ε and write

(A ∗W )⊗A∗Wλ
Reλ =

⊕
χ∈Wλ̂

(A ∗W )⊗A∗Wλ
Zχ(λ),
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etc. Assume that the AW -modules Reλ and Reµ have a simple AW -module in
common. Then there there is an A ∗W -isomorphism

σ : (A ∗W )⊗A∗Wλ
Zχ(λ)→ (A ∗W )⊗A∗Wµ

Zψ(µ)

for some χ ∈ Wλ̂ and ψ ∈ Wµ̂. As in the proof of Theorem 2.5, any simple A-

submodule of (A ∗W ) ⊗A∗Wλ
Zχ(λ) is of the form Rehi(λ).λ, for some i. Thus,

there exist hi(λ), hj(µ) such that Rehi(λ).λ ∼= Rehj(µ).µ as A-modules; this implies
that hi(λ).λ = hj(µ).µ. Thus, µ ∈W.λ. �

4. The case of a group generated by pseudo-reflections

We continue with the notation of the last two sections. The AW -module Reλ

clearly has finite length and so, by [1, Theorem 1.8.18] it is cyclic. In this section we
will give a presentation Reλ ∼= AW /L in the case when W is generated by pseudo-
reflections. It is this presentation that will allow us to relate Reλ to invariant
holonomic systems, as described in the introduction to the paper.

We begin with some general results.

Lemma 4.1. Let C be a subalgebra of the k-algebra B. Let B/J =
⊕t

i=1 S
ni
i be

a cyclic, semi-simple B-module. Assume that the C-modules Si are simple and
non-isomorphic, and that EndC(Si) = EndB(Si) = k. Then B/J = (C + J)/J .

Proof. The hypotheses imply that EndC(B/J) = EndB(B/J) and so any decompo-
sition of B/J as a C-module is also a B-module decomposition. But, as a C-module,
B/J = N⊕(C + J)/J , for some module N . Therefore, this is a B-module decom-
position with its generator [1+J ] in the second factor. Thus B/J = (C+J)/J . �

Lemma 4.2. Let E be a finite dimensional S ∗Wλ-module such that mj
λE = (0)

for some j ∈ N. Then HomA(Reλ, A⊗S E) ∼= E, as Wλ-modules.

Proof. Set Ei = mi
λE/m

i+1
λ E, and note that each Ei is a subfactor of E as an

S ∗Wλ-module and a summand of E as a Wλ-module. Since the elements of S act
ad-nilpotently on A, clearly A ⊗S E ∈ Sλ. Therefore, by Lemma 2.1, A ⊗S E is
semi-simple and hence A⊗S E =

⊕
iA⊗S Ei. Thus, it suffices to prove the result

with E replaced by some Ei. In this case, A ⊗S Ei ∼= A ⊗kλ Ei and the lemma
follows from Proposition 2.2 and the definition of Φ. �

For the rest of this section we will be concerned with the case when the group
W ⊂ GL(V ) is generated by pseudo-reflections. Recall that this has the following
consequences, see [3, Chapitre V §5]: S is a free SW -module of rank |W | and the
subgroup Wλ is also generated by pseudo-reflections. Also, there exists a Wλ-stable
subspace K ⊂ S such that S = K⊗kS

Wλ . As a Wλ-module, K ∼= k[Wλ], the regular
representation.

Corollary 4.3. Assume that W is generated by pseudo-reflections. Then, Reλ ∼=
AWλ/AWλnλ, as AWλ-modules.

Proof. We first note that ΦIλ(Reλ) = k[Wλ] under the left regular representation
of Wλ. Indeed, by definition and Lemma 3.1(iii), Iλ(Reλ) = (A ∗ Wλ) ⊗A Reλ,
while, by the proof of Proposition 2.4, Φ(A ∗Wλ ⊗A Reλ) = k[Wλ], as required.
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Note that M = AWλ/AWλnλ ∈ Cλ. Therefore by the last paragraph and
Lemma 3.3, it is enough to show that ΦIλ(M) = k[Wλ]. However, as Wλ-modules,

ΦIλ(M) = HomA(Reλ, A⊗AWλ M) = HomA(Reλ, A/Anλ)

= HomA(Reλ, A⊗S S/Snλ) = S/Snλ,

where the final equality follows from Lemma 4.2. Since Wλ is generated by pseudo-
reflections,

S/Snλ = K⊗k (SWλ/nλ) ∼= k[Wλ]

as Wλ-modules. Hence the result. �

Theorem 4.4. Assume that W is generated by pseudo-reflections and set pλ =
SW ∩mλ. Then Reλ ∼= AW /AWpλ as AW -modules.

Proof. By Theorem 3.4, the hypotheses of Lemma 4.1 are satisfied by C = AW ⊆
B = AWλ and B/J = Reλ. Thus, Corollary 4.3 and Lemma 4.1 imply that
Reλ ∼= AW /(AW ∩ AWλnλ). Consequently, there exists a surjective morphism of
AW -modules φ : AW /AWpλ � Reλ.

Using Lemma 3.1(iii), this induces a surjection of A ∗W -modules

φ′ : A⊗AW (AW /AWpλ) � A⊗AW Reλ ∼= (A ∗W )⊗A Reλ.
Thus, by Morita equivalence, it suffices to prove that φ′ is an isomorphism and, to
do so, we need only to consider the A-module structure. By Lemma 2.3, (A ∗W )⊗A
Reλ has length |W |. On the other hand A ⊗AW (AW /AWpλ) ∼= A ⊗S (S/Spλ).
Since W is generated by pseudo-reflections, S/Spλ is a k-vector space of dimension
|W | and hence is an S-module of length |W |, with each simple factor isomorphic
to kλ. Thus, the A-module A⊗AW (AW /AWpλ) has length |W |, with each factor
isomorphic to Reλ. Therefore both φ′ and φ are isomorphisms. �

5. On the equivalence Cλ ≈Wλ-mod

By Lemma 3.3 the category Cλ is equivalent to Wλ-mod via the functor ΦIλ =
HomA(Reλ, A⊗AWλ ), with inverse functor FλΨ. We study these functors in more
depth in this section. Note that, by Remark 3.5, Cλ is also the full subcategory of
AW -modules generated by Reλ and it makes little difference in this section whether
we work with AW -modules or AWλ -modules.

Note that ΦIλ satisfies (and hence is defined by) ΦIλ(V χ) = Vχ for all χ. This
permits one to give an alternative interpretation of this functor. Define functors
from Cλ to Wλ-mod by

Sol(M) = HomAWλ (M,Reλ) = HomAW (M,Reλ),

and

DR(M) = HomAWλ (Reλ,M) = HomAW (Reλ,M),

By analogy with [2, VIII.13] we call these functors the solution functor, respectively
the de Rham functor. Since Reλ is an (AWλ ,Wλ)-module, their images do indeed
lie in Wλ-mod.

Proposition 5.1. (i) DR = ΦIλ provides an equivalence of categories from Cλ
to Wλ-mod. Similarly, Sol gives an equivalence of categories between Cλ and
(Wλ-mod)op.

(ii) Sol(Reλ) = DR(Reλ) = k[Wλ] as (Wλ ×Wλ)-module.
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Proof. (i) It follows from Theorem 3.4 that DR(V χ) = Vχ and that Sol(V χ) =
(Vχ)∗. Thus, the result follows from the earlier observations.

(ii) By Theorem 3.4, there is a natural isomorphism:

EndAWλ (Reλ) ∼=
⊕

ψ,χ∈Wλ̂

HomAWλ (V ψ, V χ)⊗ (Vψ ⊗ V ∗χ ) =
⊕
ψ∈Wλ̂

Vψ ⊗ V ∗ψ ∼= k[Wλ].

Since the AWλ and Wλ actions on Reλ commute, this is an isomorphism of (Wλ ×
Wλ)-modules. �

Now, assume that W is generated by pseudo-reflections and adopt the notation
of §4. By Theorem 4.4, Sol(Reλ) = HomAW (AW /AWpλ, Re

λ) and so it can be
identified with:

Hλ = {f ∈ Reλ : pλ · f = 0} =
{
f ∈ Reλ : p · f = p(λ)f, for all p ∈ SW

}
.

By Proposition 5.1, Hλ
∼= k[Wλ] as a Wλ-module. If M ∈ Cλ is a quotient of Reλ,

then Sol(M) is a submodule of Sol(Reλ) and can therefore be identified with a
Wλ-submodule of Hλ.

We want to relate the subspace Hλ with a subspace of Wλ-harmonic elements
in R. Let V (λ) ⊂ Kerλ be the unique Wλ-stable complement of the subspace of
invariants VWλ ⊆ V . We will identify V (λ)∗ with the Wλ-submodule

(
V/VWλ

)∗
of V ∗. Note that S(V (λ)∗)eλ ∼= S(V (λ)∗) as Wλ-modules. Define

H(λ) =
{
f ∈ S(V (λ)∗) : p · f = p(0)f, for all p ∈ S(V (λ))Wλ

}
⊆ S(V (λ)∗).

Replacing V by V (λ) in the earlier argument, it follows that H(λ) ∼= k[Wλ], as a
Wλ-module.

Lemma 5.2. If W is generated by pseudo-reflections, then Hλ = H(λ)eλ.

Proof. Since H(λ)eλ and Hλ are subspaces of Reλ of the same dimension, |Wλ|, it
suffices to show that Hλ ⊆ H(λ)eλ. Note that that q · (ϕeλ) = (q · ϕ)eλ, for all
q ∈ S(V (λ)) and ϕ ∈ R. Similarly, r · (feλ) = r(λ)feλ, for all r ∈ S(VWλ) and
f ∈ S(V (λ)∗). Let f ∈ H(λ) and p ∈ SW . Write p =

∑
j rjqj , for rj ∈ S(VWλ),

and qj ∈ S(V (λ))Wλ . Observe that p(λ) =
∑
j rj(λ)qj(0).

Now, if p ∈ pλ, equivalently p(λ) = 0, then these observations show that

p · (feλ) =
∑
j

rj · (qj · (feλ)) =
∑
j

rj · ((qj · f)eλ)

=
∑
j

rj · (qj(0)feλ) (since f ∈ H(λ))

=
∑
j

qj(0)rj(λ)feλ = p(λ)feλ = 0.

Thus feλ ∈ Hλ. �

This lemma gives us another way of defining the equivalence Cλ ≈Wλ-mod:

Corollary 5.3. Assume that W is generated by pseudo-reflections If M is a quo-
tient of Reλ, define

Sol(M)e−λ = {f ∈ H(λ) : feλ ∈ Sol(M)}.
Then the functor M → Sol(M)e−λ induces an equivalence of categories between Cλ
and (Wλ-mod)op.
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6. Invariant holonomic systems

Let G be a connected reductive complex algebraic group with Lie algebra g.
Fix a Cartan subalgebra h of g and denote by W the associated Weyl group. Let
τ : g → D(g) be the differential of the adjoint action. Set ` = rk g and n = dim g.
Throughout the section, we fix λ ∈ h∗. Following [10] we define the system of lin-
ear differential equations for invariant eigendistributions, also called the “invariant
holonomic system on g”, by

(6.1) Nλ = D(g)
/(
D(g)τ(g) +

∑
p∈S(g)GD(g)(p− p(λ))

)
.

It is not difficult to see that Nλ is an holonomic D(g)-module, and therefore has
finite length. The aim of this section is to give a complete description of the struc-
ture of Nλ (see Theorem 6.9), thereby proving Theorem B from the introduction.
This generalizes the results of [10] which did this in the cases when λ = 0 and when
λ is regular. The results of the previous sections apply here with V = h. We first
need to relate Nλ to the D(h)W -module O(h)eλ.

In [6], Harish-Chandra defines a homomorphism δ : D(g)G → D(h)W such that
the restriction of δ to O(g)G and to S(g)G are just the Chevalley isomorphisms
δ : O(g)G → O(h)W and δ : S(g)G → S(h)W . Moreover, by [13] and [14], δ induces
an isomorphism D(h)W ∼= D(g)G/I, where I = D(g)G ∩ D(g)τ(g). In particular,
since τ(g) commutes element-wise with D(g)G, we obtain a natural right D(h)W -
module structure on N = D(g)/D(g)τ(g).

Recall the following definition from [20, §5]. Denote by Ad the adjoint action of
G on g or D(g). A D(g)-module M is said to be a compatible (D(g), G)-module (or
G-equivariant Dg-module as in [2, 12.10]) if there is an action of G on M such that

(i) If p ∈ D(g), g ∈ G, then g.(px) = (Ad g(p)) g.x for all x ∈M ;
(ii) As a G-module, M is locally finite;

(iii) The differential of the G-action on M is given via τ : g→ D(g).

Lemma 6.1. Any subquotient of N is a compatible (D(g), G)-module.

Proof. Let P ⊆ L be left ideals of D(g) such that D(g)τ(g) ⊆ P . Observe that, for
all x ∈ L and ξ ∈ g, τ(ξ)x ≡ ad ◦τ(ξ)(x) = [τ(ξ), x] modulo D(g)τ(g). Recall that
the differential of the G-action on D(g) is given by ad ◦τ ; it follows that L/P is a
locally finite g-module via ad ◦τ . Therefore, since G is connected, L/P is a locally
finite G-module. It is then clear that L/P is a compatible (D(g), G)-module. �

Set mλ = Kerλ ⊂ S(h) and pλ = mλ ∩ S(h)W . By Theorem 4.4, O(h)eλ is a
(D(h)W ,Wλ)-module isomorphic, as a D(h)W -module, to D(h)W /D(h)Wpλ. Since
δ : S(g)G → S(h)W is the Chevalley isomorphism,

δ
(∑

p∈S(g)GS(g)G(p− p(λ))
)

= pλ.

Thus, we have proved the first assertion of:

Lemma 6.2. (i) As left D(g)-modules, Nλ ∼= N ⊗D(h)W O(h)eλ.

(ii) Let {V χ = HomWλ
(V ∗χ , O(h)eλ)} be the D(h)W -modules defined in (3.1).

Then, there is a decomposition of (D(g),Wλ)-modules:

Nλ =
⊕
χ∈Wλ̂

Nλ,χ ⊗C V
∗
χ , where Nλ,χ = N ⊗D(h)W V χ.

Here, D(g) acts on Nλ,χ while Wλ acts on V ∗χ . Finally, (Nλ,χ)G = V χ, for each χ.
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Proof. (ii) The decomposition of Nλ follows from Theorem 3.4. The final assertion
of the lemma is an immediate consequence of the fact that, as a left or right D(g)G-
module, N ∼= D(g)G/I ⊕

(
⊕06=ν∈Ĝ N[ν]

)
, where N[ν] denotes the sum of finite

dimensional irreducible G-modules of type ν in N. �

This result raises the question of whether the Nλ,χ are simple, pairwise non-
isomorphic D(g)-modules. That this is true will form the main result, Theorem 6.9,
of this section. This will follow easily provided we can prove that each D(g)-
submodule of Nλ contains non-zero G-invariant elements.

In order to simplify the notation, we will write D = D(g), A = D(h) and
B = N⊗AW A, regarded as a (D, A)-bimodule. Let d denote the discriminant of g.
Thus, d ∈ O(g)G and under the Chevalley isomorphism O(g)G → O(h)W , d maps

to d̃ = π2, where π is the product of the positive roots of h in g. Since d ∈ O(g)G,
it acts locally ad-nilpotently on D and so C = {dm : m ∈ N} is an Ore set in both

DG and D. Similarly, C̃ = {d̃m} is an Ore set in both AW and in A. Recall that
g′ = {x ∈ g : d(x) 6= 0} is the set of generic elements. Thus, O(g′) = O(g)C and
D(g′) = DC.

The following identifications will prove useful:

Lemma 6.3. (i) As left D-modules, Nλ ∼= B ⊗A A/Amλ.
(ii) There is a natural isomorphism of localized modules:

DC ⊗D Nλ ∼= B ⊗A
(
A/Amλ

)
C̃

Proof. (i) As remarked in §2, O(h)eλ ∼= A/Amλ as AW -modules, via the natural
AW -module structure on A. Thus, part (i) follows from Lemma 6.2(i).

(ii) Since d acts locally ad-nilpotently on D, given any f ∈ D, there exists m ∈ N
and f1 ∈ D such that fdm = df1. Hence, d−1f = f1d

−m, whenever the terms make
sense. By the usual universality arguments, this implies that there is a natural
isomorphism:

(6.2) DC ⊗D N ∼= N ⊗DG DG
C

Under the identification of DG/I with AW , d identifies with d̃ and so C can be

identified with C̃. Thus, combined with (6.2), part (i) implies that

DC ⊗D Nλ ∼= N ⊗AW AW
C̃
⊗AW A/Amλ

∼= B ⊗A
(
A/Amλ

)
C̃

as desired. �

One consequence of Lemma 6.3 is that localizing with respect to C or C̃ is always

going to have the same result and so, from now on we will identify d̃ with d and

hence identify C̃ with C.
We will need the following general result:

Lemma 6.4. Let C = k[y1, . . . , y`] be a commutative polynomial ring over an
algebraically closed field k of characteristic zero and set A` = D(C) (the `-th Weyl
algebra). Let D be a left Noetherian ring and L be a (D,A`)-bimodule, finitely
generated as a left D-module. Then L is a flat right C-module.

Proof. Use the first two paragraphs of the proof of [14, Theorem 2.4]. �

Proposition 6.5. Let m be a maximal ideal of S(h) and set P = A/Am. Then,

TorA1 (B,PC/P ) = 0.
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Proof. To begin with, let α ∈ h∗ be one positive root. Thus, we may choose a basis
x1 = α, x2, . . . , x` of h∗ and regard O(h) as the polynomial ring in the {xi}. Write
∂i = ∂

∂xi
; thus the {∂i} are generators of S(h) and m =

∑
i S(h)(∂i − λi), for some

scalars λi. Set S = Sα = {xm1 : m ∈ N}.
We first consider the module PS/P = AS

/(
A+

∑
iAS(∂i − λi)

)
. Certainly, this

is generated by the images [x−m1 ] ∈ PS/P of the x−m1 , for m ∈ N. However,

(∂1 − λ1)[x−m1 ] = [x−m1 (∂1 − λ1) + (−m)x−m−11 ] = [(−m)x−m−11 ],

and so, in fact, PS is generated by [x−11 ]. This element is clearly killed by x1 and
by (∂i − λi) for 2 ≤ i ≤ `. Hence, either PS/P = 0 or PS/P is isomorphic to the
simple A-module

(6.3) PS/P ∼= A
/(
Ax1 +

∑`
i=2A(∂i − λi)

)
.

Now, consider PC/P . By [1, Theorem 1.5.5] this is a finitely generated A-module,
generated by the elements [d−q], for q ∈ N. Hence, there exists m ∈ N, such that
PC/P = A[d−m]. Write d−m =

∏
i∈Q α

−2m
i , for distinct positive roots αi. By the

Chinese Remainder Theorem, d−m =
∑
i giα

−j(i)
i for some gi ∈ O(h). Thus, as in

the last paragraph,

A[d−m] = A
∑
i gi[α

−j(i)
i ] ⊆

∑
iA[α

−j(i)
i ] =

∑
iA[α−1i ].

Therefore, for some subset Q′ of Q (in fact, one can prove that Q′ = Q),

PC/P = A[d−m] =
⊕
i∈Q′

A[α−1i ] =
⊕
i∈Q′

PSαi
/P.

Thus, in order to prove the proposition, it suffices to prove that

TorA1
(
B,PSαi

/P
)

= 0 for each i.

We may assume that αi = α1 and revert to the notation of the first two paragraphs.

By (6.3), we may write PS/P = A/
∑`
i=1Ayi, where y1 = x1 and yi = ∂i − λi for

i > 1. Moreover, the ring C = C[y1, . . . , y`] is a polynomial ring in the {yj} and
A ∼= D(C). Then, by Lemma 6.4, B is a flat right C-module. Thus,

TorA1
(
B,A

/∑
iAyi

) ∼= TorA1
(
B,A⊗C C

/∑
iCyi

) ∼= TorC1
(
B,C

/∑
iCyi

)
= 0,

where the second isomorphism comes from [17, Theorem 11.53]. This completes
the proof of the proposition. �

The significance of this result is that it implies:

Corollary 6.6. The module Nλ is torsion-free as a left O(g)-module.

Proof. By Proposition 6.5, TorA1 (B,PC/P ) = 0, where P = A/Amλ. It follows
then from Lemma 6.3 that the natural map Nλ → (Nλ)C is injective.

By [14, Lemma 3.1], the characteristic variety Ch (Nλ)C of the D(g′)-module
(Nλ)C is contained in C(g) ∩ (g′ ×N), where C(g) denotes the commuting variety
{(x, y) ∈ g × g : [x, y] = 0} and N is the cone of nilpotent elements of g. Now,
for any element x ∈ g′, the commutant gx of x is a Cartan subalgebra of g, and so
gx ∩N = 0. Hence, Ch (Nλ)C ⊆ (g′ × {0}).

This implies that (Nλ)C is an integrable connection on g′, see [2, VI.1.7 and
VII.10.4]. In particular, (Nλ)C is a finitely generated, locally free O(g′)-module.
Consequently, Nλ ↪→ (Nλ)C is a torsion-free O(g)-module. �
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The fact that Nλ has no C-torsion also follows from the proof of [10, Theorem 6.1].
The corollary provides a nice analogue of a deep result of Harish-Chandra [7, 8]
that proves that Nλ has no factor that is O(g)-torsion.

Let κ be a G-invariant nondegenerate symmetric bilinear form on g. If u ∈
O(g), denote by grad(u) ∈ DerO(g) the vector field defined by κ(grad(u)x, y) =
d
dt |t=0

u(x+ ty), for x, y ∈ g.

Lemma 6.7. Let {u1, . . . , u`} be algebraically independent generators of O(g)G and
set θi = grad(ui). Then, each θi is G-invariant and

DerO(g′) = O(g′) τ(g) ⊕
(
⊕`
i=1O(g′) θi

)
.

Consequently, NC = D(g′)/D(g′)τ(g) is a free left O(g′)-module with basis{
Θi = θi11 · · · θ

i`
` : i = (i1, . . . , i`) ∈ N`

}
.

Proof. It follows from the definition that, if u ∈ O(g)G, then the vector field grad(u)
is G-invariant. Furthermore, it is easily seen that grad(u)x ∈ gx, for all x ∈ g. Let
(Ox,mx) be the local ring of g at x. Identify the tangent space Txg ≡ g with
DerOx/mx DerOx, and Tx(G.x) with [x, g] = {τ(ξ)x : ξ ∈ g}.

Define a submodule of DerO(g) by setting L =
∑`
i=1O(g) θi. We first want to

show that L = ⊕iO(g) θi is a free O(g)-module of rank `, and that L∩O(g)τ(g) = 0.

Thus, suppose that
∑`
i=1 aiθi ∈ O(g)τ(g), for some ai ∈ O(g). Let x ∈ g′. By the

identifications of the last paragraph,
∑
i ai(x) grad(ui)x ∈ τ(g)x = [x, g]. Therefore,∑

i ai(x) grad(ui)x ∈ gx ∩ [x, g] = 0. Recall [12, Theorem 0.1] that the {grad(ui)x}
are linearly independent. Hence, for all i and x ∈ g′, ai(x) = 0. Since g′ is dense
in g, it follows that ai = 0, for all i. Thus, L is free and DerO(g) ⊃ L⊕O(g)τ(g),
as desired.

Let x ∈ g′. Since g = gx⊕[x, g], we know that DerOx/mx DerOx is spanned by
the {grad(ui)x} and τ(g)x. Thus, by Nakayama’s Lemma, DerOx = Lx⊕Oxτ(g).
This proves the second assertion of the lemma, from which the final assertion follows
easily. �

Recall the following well known result:

Lemma 6.8. Let I be a non-zero G-stable ideal in O(g). Then, IG 6= 0.

Proof. Since I contains a product of prime ideals, we may assume that I is prime.
If d ∈ I there is nothing to prove. If d /∈ I, there exists a generic point in the
variety of zeroes of I and, by [12, Theorem 0.5], I is generated by I ∩ O(g)G. �

We can now prove the main result of this section:

Theorem 6.9. Fix λ ∈ h∗ and let

Nλ = D(g)
/(
D(g)τ(g) +

∑
p∈S(g)GD(g)(p− p(λ))

)
.

Then, as (D(g),Wλ)-modules:

Nλ =
⊕
χ∈Wλ̂

Nλ,χ ⊗C V
∗
χ ,

where each Nλ,χ = N⊗D(g)G V
χ is a simple D(g)-module. Moreover, if χ 6= ψ, then

Nλ,χ 6∼= Nλ,ψ.
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Proof. The main aim of the proof is to show that

(6.4) If L is a non-zero submodule of Nλ, then LG 6= 0.

Indeed, suppose that (6.4) holds. By Lemma 6.2, it remains to prove that the
Nλ,χ are simple and non-isomorphic. Suppose that Nλ,χ has a non-zero submodule
L. Since L ⊆ Nλ,χ ⊆ Nλ, (6.4) implies that LG 6= 0. By Theorem 3.4, LG is
then a non-zero submodule of the simple D(h)W -module (Nλ,χ)G = V χ. Thus,
LG = V χ and hence L ⊇ D(g)V χ = Nλ,χ. Thus, Nλ,χ is simple. Lemma 6.1
implies that (Nλ,χ)G = {θ ∈ Nλ,χ : τ(g) θ = 0}. Hence, if Nλ,χ ∼= Nλ,ψ, then

(Nλ,χ)G ∼= (Nλ,ψ)G, as D(g)
G

-modules. Thus, χ = ψ, by Theorem 3.4(i) and
Lemma 6.2(ii).

Thus, it remains to prove (6.4). By Corollary 6.6, L ⊆ LC. Moreover, since
d ∈ O(g)G, the action of G on D extends to an action on DC and hence to LC. If
0 6= f ∈ LGC , then some dmf ∈ LG and hence LG 6= 0 (Corollary 6.6). Thus, it
suffices to prove:

(6.5) If L is a non-zero submodule of Nλ, then LGC 6= 0.

We next need to study NC = DC/DCτ(g), for which we use the notation of
Lemma 6.7. Fix a lexicographic ordering � on N`. Then, by Lemma 6.7, any
element α ∈ NC can be uniquely written α = ajΘj +

∑
i≺j aiΘ

i, for some ai ∈
O(g′). For i ∈ N`, set

FiNC =
∑
j�i

O(g′)Θj ⊂ NC.

Since the {θi} are G-invariant, each FiNC is an (O(g′), G)-module. It follows from
Lemma 6.7 that the {FiNC} form a filtration on NC. Let P be a DC-submodule
of NC and set FiP = P ∩ FiNC. By Lemma 6.1, the {FiP} provide a filtration
of P by (O(g′), G)-modules that are locally finite as G-modules. For j ∈ N`,
set grj P = FjP/

(∑
i≺j FiP

)
. Thus, grj P ⊆ grj NC

∼= O(g′)Θj . Observe that,

since G is reductive, FqP ∼= grq P ⊕
∑

i≺q FiP as G-modules. Thus, (FqP )G 6= 0

whenever (grq P )G 6= 0. Suppose that grq P 6= 0. Then grq P = I Θq for some non-

zero, G-stable ideal I of O(g′). Lemma 6.8 implies that IG 6= 0, and so Lemma 6.7
implies that (grq P )G = IG Θq 6= 0. To summarize, we have proved:

(6.6) grq P 6= 0 =⇒ (FqP )G 6= 0

Let Q  P be submodules of NC and assume that P/Q is a torsion-free O(g′)-
module. Pick q ∈ N` minimal such that FqQ  FqP . We claim that FqQ = 0. If
not, we may pick b = βΘq + b′ ∈ FqQ and f = αΘq + f ′ ∈ FqP \ FqQ, with 0 6=
β, α ∈ O(g′) and b′, f ′ ∈

∑
i≺q FiN

′. Then, βf −αb = βf ′−αb′ ∈ FjN
′∩P = FjP

for some j ≺ q. Thus, βf ∈ αb + FjQ ⊆ Q. Since P/Q is torsion-free, this forces
β = 0 and a contradiction. Thus, FqQ = 0.

Finally, write N′λ = (Nλ)C = DC/Q, where Q ⊇ DCτ(g) denotes the annihilator
of the natural generator of N′λ. Let LC = P/Q ⊆ N′λ be a non-zero submodule of
N′λ. By Corollary 6.6, LC ⊆ N′λ is a torsion-free O(g′)-module and so the comments
of the last paragraph apply. If q is chosen as there, then FqQ = 0 and grq P 6= 0.

Thus, (6.6) implies that LGC ⊇ (FqP )G 6= 0. By (6.5), this completes the proof of
the theorem. �
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LetRλ denote the full subcategory ofD(g)-mod generated by Nλ or, equivalently,
by the modules Nλ,χ, χ ∈ Wλ̂. We end this section by giving two alternative
descriptions of this category.

Corollary 6.10. Set pλ =
∑
p∈S(g)G S(g)G(p − p(λ)). The category Rλ is the

subcategory of D(g)-modules M such that:

(1) M is a compatible (D(g), G)-module, finitely generated as a D(g)-module;
(2) M = D(g)MG;
(3) For all x ∈M , there exists k ∈ N such that pkλx = 0.

Proof. It is clear that any object in Rλ satisfies these conditions. Conversely, let
M satisfy (1), (2) and (3). Since M is finitely generated we may write M =

D(g)E for some finite dimensional subspace E ⊂ MG. Then, X = D(g)
G
E can

be viewed (through δ) as a finitely generated D(h)W -module. It follows from the
hypotheses thatX ∈ Cλ. Hence, Nλ⊗D(h)WX ∈ Rλ and there is a natural surjection
Nλ ⊗D(h)W X �M . This proves that M ∈ Rλ. �

It is implicit in Theorem 6.9 that the categories Rλ and Wλ-mod are equivalent.
We make this explicit in the next result, in which we freely use the notation of
Section 5 for the case V = h. We state the result using the functor Sol, although
one could as easily use DR.

Corollary 6.11. The category Rλ is equivalent to (Wλ-mod)op, through the functor
M → Sol(MG) = HomD(h)W (MG,O(h)eλ). Moreover, if M ∈ Rλ,

(i) Sol(MG) ∼= HomD(g)(M,Nλ) as Wλ-modules;

(ii) When M is a quotient of Nλ, Sol(MG) identifies naturally with a Wλ-sub-
module of H(λ)eλ;

(iii) EndD(g) Nλ ∼= C[Wλ] as (Wλ ×Wλ)-modules.

Proof. By Theorem 6.9, the functor M →MG provides an equivalence of categories
Rλ ≈ Cλ. Thus, by Proposition 5.1, the map M 7→ Sol(MG) gives an equivalence
Rλ ≈ (Wλ-mod)op. The proof now follows easily from the results of Section 5 and
the details are left to the interested reader. �

7. Fourier transforms and the Springer correspondence

As has been remarked in the introduction, the module Nλ was defined and
intensively studied in [10]. In that paper, Nλ is constructed as a “Fourier transform”
of a second module

(7.1) Mλ = D(g)
/(
D(g)τ(g) +

∑
q∈S(g∗)GD(g)(q − q(λ))

)
.

(see [10, (6.1.2)]). In this section, we apply our results to give a detailed description
of Mλ and use this to obtain an analogue of Springer correspondence for non-
nilpotent orbits.

The Fourier transformation is defined as follows: Use the G-invariant bilinear
form κ to define an isomorphism κ : g ∼−→ g∗. Since one has a G-module isomorphism
D(g) ∼= S(g∗) ⊗ S(g), κ induces an algebra automorphism F of D(g) by F (f) =
−κ−1(f) and F (x) = κ(x) for f ∈ g∗ and x ∈ g. It is easily checked that F is a
G-automorphism of D(g) such that F (τ(x)) = τ(x) for all x ∈ g. Given a D(g)-
module M , define the Fourier transform MF of M to be the abelian group M
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with multiplication defined by a ◦m = F (a)m, for a ∈ D(g) and m ∈M . Then, as
in [10, Section 6], Nλ is the Fourier transform Nλ = MF

λ .
Using the automorphism F , Theorem 6.9 immediately gives the following gen-

eralization of [10, Theorem 5.3].

Corollary 7.1. For each χ ∈Wλ̂, set Mλ,χ = NF−1

λ,χ . As (D(g),Wλ)-modules:

Mλ =
⊕
χ∈Wλ̂

Mλ,χ ⊗C V
∗
χ ,

where each Mλ,χ is a simple D(g)-module. If χ 6= ψ, then Mλ,χ 6∼= Mλ,ψ. �

This decomposition of Mλ is also related to the G-orbit structure of g, for which
we need some definitions. Let π : g � g/G ∼−→ h/W be the natural projection from g
to the space of W -orbits in h. Set N(λ) = π−1(W.κ−1(λ)) ⊂ g. By [12, Theorem 3],
N(λ) is a finite union of G-orbits:

N(λ) = Or
λ = Or

λ ∪ · · · ∪Os
λ,

where dimOr
λ = n − ` and Os

λ = G.κ−1(λ) is the unique closed orbit in N(λ). In
the sequel, we adopt the notation of [2] for concepts related to algebraic D-modules.
In particular, for any D(g)-module M , one defines the closed subset SuppM ⊆ g
to be the support of the O(g)-module M .

Corollary 7.2. The support of Mλ,χ is the closure of an orbit O(χ) ⊆ N(λ).

Proof. Note first that each Mλ,χ is a compatible (D(g), G)-module (use Lemma 6.1
and the equivariance of F ). It therefore follows from (7.1) that SuppMχ is a closed
G-stable subset of N(λ). But, since Mλ,χ is simple, its support is irreducible, (see
the proof of [1, Lemmas 3.3.16 and 3.3.17]). Therefore, SuppMλ,χ must be the
closure of a single orbit contained in N(λ). �

As in [11], one can relate the simple modules Mλ,χ to connections on the or-
bits contained in N(λ), and interpret the equivalence Rλ ≈ Wλ-mod through a
“Springer correspondence”.

Let M = Mλ,χ be a simple quotient of Mλ and, by Corollary 7.2, write SuppM =

O, for the appropriate orbit O = O(χ). If ı : O ↪→ g is the natural embedding, then
[2, Proposition 10.4] implies that ı!M is a connection, E , on a dense affine Zariski
open subset of O. Note that, since O is a G-space, ı!M is a connection on O.
Moreover, ı!M is regular holonomic, and is uniquely determined by a representation
ψ ∈ A(O) ,̂ [18, Lemma 2.1], where A(O) = Gx/(Gx)0, x ∈ O, is the component
group of O. Then, by [2, Theorem 10.6], M is of the form ı!+E (this is a regular
holonomic module, minimal extension of E in the algebraic category). Thus, we
have proved:

Corollary 7.3. The module Mλ,χ is uniquely determined by the associated datum
(O, ψ), where O an orbit in N(λ) and ψ ∈ A(O) .̂ Consequently, any representation
χ ∈Wλ̂ is also uniquely determined by this datum; written χ = σ(O, ψ). �

When λ = 0, the correspondence (O, ψ) → σ(O, ψ) is closely related to the
Springer correspondence (see [5], [10, Section 8] and [19, Theorem 6.10]).
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