INVARIANT DISTRIBUTIONS SUPPORTED ON THE NILPOTENT CONE OF A SEMISIMPLE LIE ALGEBRA

THIERRY LEVASSEUR

ABSTRACT. Let \mathfrak{g} be a semisimple complex Lie algebra with adjoint group G and $\mathcal{D}(\mathfrak{g})$ be the algebra of differential operators with polynomial coefficients on \mathfrak{g} . If \mathfrak{g}_0 is a real form of \mathfrak{g} , we give the decomposition of the semisimple $\mathcal{D}(\mathfrak{g})^G$ -module of invariant distributions on \mathfrak{g}_0 supported on the nilpotent cone.

0. INTRODUCTION

Let \mathfrak{g} be a semisimple complex Lie algebra with adjoint group G. Choose a Cartan subalgebra \mathfrak{h} of \mathfrak{g} and let W be the associated Weyl group. Denote by W^{\uparrow} the set of isomorphism classes of irreducible W-modules and by $\mathcal{H}(\mathfrak{h}^*)$ the graded vector space of W-harmonic polynomials on \mathfrak{h} . For $\chi \in W^{\uparrow}$, set

$$b(\chi) = \inf\{j \in \mathbb{N} : [\mathcal{H}^{j}(\mathfrak{h}^{*}) : \chi] \neq 0\}$$

and choose a W-submodule $V_{\chi} \subset \mathcal{H}^{b(\chi)}(\mathfrak{h}^*)$ in the class of χ . Denote by $d(\chi)$ the dimension of V_{χ} .

Let $S(\mathfrak{g}^*)$ be the algebra of polynomial functions on \mathfrak{g} and $\mathcal{D}(\mathfrak{g})$ be the algebra of differential operators on \mathfrak{g} , with coefficients in $S(\mathfrak{g}^*)$. The group G acts on \mathfrak{g} , via the adjoint action, and hence has an induced action on $S(\mathfrak{g}^*)$, $S(\mathfrak{g})$ and $\mathcal{D}(\mathfrak{g})$. Denote the differential of this action by $\tau : \mathfrak{g} \to \mathcal{D}(\mathfrak{g})$. Let $S_+(\mathfrak{g})^G$ and $S_+(\mathfrak{g}^*)^G$ be the set of invariant elements without constant term. Recall that $\mathbf{N}(\mathfrak{g})$, the nilpotent cone of \mathfrak{g} , is the variety of zeroes of the ideal $S_+(\mathfrak{g}^*)^G S(\mathfrak{g}^*)$.

Let \mathfrak{g}_0 be a real form of \mathfrak{g} with adjoint group $G_0 \subset G$. Denote by $\mathsf{Db}(\mathfrak{g}_0)$ the $\mathcal{D}(\mathfrak{g})$ -module of distributions on \mathfrak{g}_0 . Then, the subspace of invariant distributions $\mathsf{Db}(\mathfrak{g}_0)^{G_0} = \{T \in \mathsf{Db}(\mathfrak{g}_0) : \tau(\mathfrak{g}) : T = 0\}$ is a $\mathcal{D}(\mathfrak{g})^G$ -module, containing the submodule of invariant distributions supported on the nilpotent cone

$$\mathsf{Db}(\mathfrak{g}_0)_{nil}^{G_0} = \left\{ \Theta \in \mathsf{Db}(\mathfrak{g}_0)^{G_0} : \operatorname{Supp} \Theta \subset \mathbf{N}(\mathfrak{g}_0) \right\}$$

where $\mathbf{N}(\mathfrak{g}_0) = \mathbf{N}(\mathfrak{g}) \cap \mathfrak{g}_0$ is the nilpotent cone of \mathfrak{g}_0 . The structure of $\mathsf{Db}(\mathfrak{g}_0)_{nil}^{G_0}$ as a vector space is well understood, see, for example, [1, 5]. Let $[\mathfrak{h}_1], \ldots, [\mathfrak{h}_r]$ be the conjugacy classes of Cartan subalgebras of \mathfrak{g}_0 . For each j, let $\varepsilon_{I,j} : W(\mathfrak{h}_j) \to \{\pm 1\}$ be the imaginary signature of the real Weyl group $W(\mathfrak{h}_j)$. Then [5, Proposition 6.1.1] there exists a vector space isomorphism

(*)
$$\bigoplus_{j=1}^{r} S(\mathfrak{h}_{j,\mathbb{C}})^{\varepsilon_{I,j}} \xrightarrow{\sim} \mathsf{Db}(\mathfrak{g}_{0})_{nil}^{G_{0}}$$

¹⁹⁹¹ Mathematics Subject Classification. 14L30, 16S32, 17B20, 22E46.

 $Key\ words\ and\ phrases.$ semisimple Lie algebra, invariant distribution, nilpotent orbit, Weyl group representation.

Research partially supported by EC TMR network "Algebraic Lie Representations", Grant No. ERB FMRX-CT97-0100.

where $S(\mathfrak{h}_{j,\mathbb{C}})^{\varepsilon_{I,j}}$ is the isotypic component of type $\varepsilon_{I,j}$ in the $W(\mathfrak{h}_j)$ -module $S(\mathfrak{h}_{j,\mathbb{C}}).$

One aim of this note is to give a complete description of the $\mathcal{D}(\mathfrak{g})^G$ -module $\mathsf{Db}(\mathfrak{g}_0)_{nil}^{G_0}$. This description is given in terms of the simple summands of the equivariant holonomic $\mathcal{D}(\mathfrak{g})$ -module

$$\mathcal{M} = \mathcal{D}(\mathfrak{g}) / (\mathcal{D}(\mathfrak{g})\tau(\mathfrak{g}) + \mathcal{D}(\mathfrak{g})S_{+}(\mathfrak{g}^{*})^{G}).$$

By [9], [18] or [13], it is known that we have a decomposition

$$\mathcal{M} = \bigoplus_{\chi \in W^{\widehat{}}} d(\chi) \, \mathcal{M}_{\chi}$$

where the \mathcal{M}_{χ} are pairwise non-isomorphic simple $\mathcal{D}(\mathfrak{g})$ -modules. Moreover, the support (in \mathfrak{g}) of \mathcal{M}_{χ} is the closure of a nilpotent orbit and \mathcal{M}_{χ}^{G} is a simple $\mathcal{D}(\mathfrak{g})^{G}$ module. Then we have, see Corollary 3.6:

Theorem A. The $\mathcal{D}(\mathfrak{g})^G$ -module $\mathsf{Db}(\mathfrak{g}_0)_{nil}^{G_0}$ decomposes as

$$\mathsf{Db}(\mathfrak{g}_0)_{nil}^{G_0} \cong \bigoplus_{\chi \in W^{\widehat{}}} m_\chi \mathfrak{M}_\chi^G$$

where $m_{\chi} = \sum_{j=1}^{r} \dim V_{\chi}^{\varepsilon_{I,j}}$.

This theorem is proved by combining the isomorphism (*) and the properties, established in [18, 11, 12, 13], of the Harish-Chandra homomorphism

$$\delta: \mathcal{D}(\mathfrak{g})^G \longrightarrow \mathcal{D}(\mathfrak{h})^W$$

In the particular case where \mathfrak{g}_0 is a complex Lie algebra \mathfrak{g}_1 (viewed as a real Lie algebra), Theorem A was proved by N. Wallach [18]. In this case, $\mathfrak{g} \simeq \mathfrak{g}_1 \times \mathfrak{g}_1$, $W \simeq W_1 \times W_1$ where W_1 is the Weyl group of \mathfrak{g}_1 . Then, each \mathfrak{M}_{χ} occuring in the decomposition of $\mathsf{Db}(\mathfrak{g}_0)_{nil}^{G_0}$ is of the form $\mathcal{M}_{\phi} \boxtimes \mathcal{M}_{\phi}$ with $\chi = \phi \boxtimes \phi, \phi \in W_1^{\widehat{}}$, and one has $m_{\chi} = 1$. Hence $\mathsf{Db}(\mathfrak{g}_0)_{nil}^{G_0} \cong \bigoplus_{\phi \in W_1^{\widehat{}}} \mathcal{M}_{\phi}^{G_1} \boxtimes \mathcal{M}_{\phi}^{G_1}$ as a $\mathcal{D}(\mathfrak{g})^G$ -module. The next corollary is an easy consequence of Theorem A.

Corollary B. Let $\chi \in W^{\widehat{}}$. Then, $\mathfrak{M}_{\chi} \cong \mathcal{D}(\mathfrak{g}).\Theta$ for some $\Theta \in \mathsf{Db}(\mathfrak{g}_0)$ if, and only if, $V_{\chi}^{\varepsilon_{I,j}} \neq 0$ for some $j \in \{1, \ldots, r\}$.

In Remark 3.7, we apply this result to give examples of modules \mathcal{M}_{χ} which cannot be generated by a distribution on any real form of \mathfrak{g} .

1. Preliminary results

We retain the notation of the introduction. Denote by Δ the root system of \mathfrak{h} in \mathfrak{g} and fix a system Δ^+ of positive roots. Set $n = \dim \mathfrak{g}, \ell = \dim \mathfrak{h}$ and $\nu = \# \Delta^+$, hence $n = 2\nu + \ell$. Let π be the product of positive roots and recall that $x \in \mathfrak{g}$ is called generic if $\pi(x) \neq 0$. If $\mathfrak{a} \subset \mathfrak{g}$, we denote by \mathfrak{a}' the set of generic elements in \mathfrak{a} .

For $q \in S(\mathfrak{g})$, let $\partial(q) \in \mathcal{D}(\mathfrak{g})$ be the corresponding differential operator with constant coefficients. Let $\{e_i\}_{1 \leq i \leq n}$ be an orthonormal basis of \mathfrak{g} with respect to the Killing form κ such that $\{e_i\}_{1 \leq i \leq \ell}$ is a basis of \mathfrak{h} . Denote by $x_i \in S(\mathfrak{g}^*)$, $1 \leq i \leq n$, the associated coordinate functions; thus $\partial(e_i)$ identifies with the partial derivative $\partial_i = \frac{\partial}{\partial x_i}$. Denote the Euler vector fields on \mathfrak{g} and \mathfrak{h} by $\mathbf{E}_{\mathfrak{g}} = \sum_{i=1}^n x_i \partial_i$ and $\mathbf{E}_{\mathfrak{h}} = \sum_{i=1}^{\ell} x_i \partial_i$.

We now give some notation and results from [11, 12, 13, 18]. Recall first that the algebra homomorphism, defined by Harish-Chandra,

$$\delta: \mathcal{D}(\mathfrak{g})^G \longrightarrow \mathcal{D}(\mathfrak{h})^W$$

 $\mathbf{2}$

extends the Chevalley isomorphisms $S(\mathfrak{g})^G \xrightarrow{\sim} S(\mathfrak{h})^W$ and $S(\mathfrak{g}^*)^G \xrightarrow{\sim} S(\mathfrak{h}^*)^W$. The map δ is surjective and its kernel is $\mathcal{I} = (\mathcal{D}(\mathfrak{g})\tau(\mathfrak{g}))^G$. This enables one to identify, through δ , modules over $A(\mathfrak{g}) := \mathcal{D}(\mathfrak{g})^G / \mathcal{I}$ with $\mathcal{D}(\mathfrak{h})^W$ -modules.

Lemma 1.1. Let $D \in \mathcal{D}(\mathfrak{g})^G$. Then D = P + Q with $P \in \mathbb{C}\langle S(\mathfrak{g})^G, S(\mathfrak{g}^*)^G \rangle$ and $Q \in \mathcal{I}$.

Proof. By [11], we know that $\mathcal{D}(\mathfrak{h})^W = \mathbb{C}\langle S(\mathfrak{h})^W, S(\mathfrak{h}^*)^W \rangle$. The lemma is therefore consequence of the properties of δ previously recalled. \Box

Recall that the $(\mathcal{D}(\mathfrak{h})^W, W)$ -module $S(\mathfrak{h}^*)$ decomposes as

(1.1)
$$S(\mathfrak{h}^*) \cong \bigoplus_{\chi \in W^{\widehat{}}} V^{\chi} \otimes_{\mathbb{C}} V_{\chi}$$

where $V^{\chi} = \operatorname{Hom}_W(V_{\chi}, S(\mathfrak{h}^*))$ is a simple $\mathcal{D}(\mathfrak{h})^W$ -module. Let $\{v_{\chi}^1, \ldots, v_{\chi}^{d(\chi)}\}$ be a basis of V_{χ} , then $V^{\chi} \cong \mathcal{D}(\mathfrak{h})^W \cdot v_{\chi}^j$ for all j and (1.1) implies that

$$S(\mathfrak{h}^*) = \bigoplus_{\chi \in W^{\widehat{}}} \bigoplus_{j=1}^{d(\chi)} \mathcal{D}(\mathfrak{h})^W . v_{\chi}^j.$$

Now, set $\mathcal{N} = \mathcal{D}(\mathfrak{g}) / \mathcal{D}(\mathfrak{g}) \tau(\mathfrak{g}) \otimes_{A(\mathfrak{g})} S(\mathfrak{h}^*)$ and $\mathcal{N}_{\chi} = \mathcal{D}(\mathfrak{g}) / \mathcal{D}(\mathfrak{g}) \tau(\mathfrak{g}) \otimes_{A(\mathfrak{g})} V^{\chi}$. We have

(1.2) $\mathcal{N} = \mathcal{D}(\mathfrak{g}) / \left(\mathcal{D}(\mathfrak{g}) \tau(\mathfrak{g}) + \mathcal{D}(\mathfrak{g}) S_{+}(\mathfrak{g})^{G} \right)$

and, using (1.1),

(1.3)
$$\mathcal{N} = \bigoplus_{\chi \in W^{\wedge}} \mathcal{N}_{\chi} \otimes_{\mathbb{C}} V_{\chi}.$$

Then each \mathcal{N}_{χ} is a simple (holonomic) $\mathcal{D}(\mathfrak{g})$ -module [13] and, therefore, \mathcal{N} is a semisimple $\mathcal{D}(\mathfrak{g})$ -module (see also [9]). Let $\mathsf{C}(\mathcal{N})$ be the full subcategory of finitely generated $\mathcal{D}(\mathfrak{g})$ -modules of the form $\bigoplus_{\chi \in W^{\wedge}} m_{\chi} \mathcal{N}_{\chi}, m_{\chi} \in \mathbb{N}$. From [13] we know that the category $\mathsf{C}(\mathcal{N})$ is equivalent to the category W-mod (of finite dimensional W-modules) via the functor

$$\operatorname{Sol}: \mathsf{C}(\mathfrak{N}) \longrightarrow W \operatorname{-mod}, \quad \operatorname{Sol}(N) = \operatorname{Hom}_{\mathcal{D}(\mathfrak{h})^W}(N^G, S(\mathfrak{h}^*))$$

where W acts on Sol(N) through its natural action on $S(\mathfrak{h}^*)$.

The Killing form κ induces a *G*-isomorphism $\mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^*$ and an algebra automorphism \varkappa of $\mathcal{D}(\mathfrak{g})$, defined by $\varkappa(\partial(v)) = \kappa(v, \ldots), \varkappa(\kappa(v, \ldots)) = -\partial(v)$, for all $v \in \mathfrak{g}$. Hence, in coordinates, $\varkappa(\partial_j) = x_j, \varkappa(x_j) = -\partial_j$. Set $i = \sqrt{-1} \in \mathbb{C}$ and denote by \mathbf{i} the automorphism of $\mathcal{D}(\mathfrak{g})$ given by $\mathbf{i}(\partial_j) = -i\partial_j$, $\mathbf{i}(x_j) = ix_j$. Define then the "Fourier transformation" $F_{\mathfrak{g}} \in \operatorname{Aut} \mathcal{D}(\mathfrak{g})$ by $F_{\mathfrak{g}} = \mathbf{i} \circ \varkappa = \varkappa \circ \mathbf{i}^{-1}$; thus $F_{\mathfrak{g}}(x_j) = i\partial_j, \ F_{\mathfrak{g}}(\partial_j) = ix_j$. One easily checks that $\varkappa(\tau(x)) = F_{\mathfrak{g}}(\tau(x)) = \tau(x)$ for all $x \in \mathfrak{g}$; moreover, \varkappa and $F_{\mathfrak{g}}$ are *G*-equivariant. Similarly, since κ is non degenerate and *W*-invariant on \mathfrak{h} , one can define *W*-equivariant automorphisms \varkappa and $F_{\mathfrak{h}} = \mathbf{i} \circ \varkappa$ in Aut $\mathcal{D}(\mathfrak{h})$.

Lemma 1.2. One has $\delta \circ F_{\mathfrak{g}} = F_{\mathfrak{h}} \circ \delta$.

Proof. A direct computation shows that $\delta(F_{\mathfrak{g}}(P)) = F_{\mathfrak{h}}(\delta(P))$ when P belongs to $S(\mathfrak{g})^G$ or $S(\mathfrak{g}^*)^G$. Since δ is a homomorphism, it follows that $\delta(F_{\mathfrak{g}}(P)) = F_{\mathfrak{h}}(\delta(P))$ for all $P \in \mathbb{C}\langle S(\mathfrak{g})^G, S(\mathfrak{g}^*)^G \rangle$. Now, let $D \in \mathcal{D}(\mathfrak{g})^G$ and write D = P + Q as in Lemma 1.1. Then, since $F_{\mathfrak{g}}(\mathcal{I}) = \mathcal{I}$, we have $\delta(F_{\mathfrak{g}}(D)) = \delta(F_{\mathfrak{g}}(P)) = F_{\mathfrak{h}}(\delta(P)) = F_{\mathfrak{h}}(\delta(P))$.

Recall that $\mathcal{H}(\mathfrak{h}^*)$ is the vector space of W-harmonic polynomials on \mathfrak{h} . Hence

$$\mathcal{H}(\mathfrak{h}^*) = \{ f \in S(\mathfrak{h}^*) : \partial(q) : f = 0 \text{ for all } q \in S_+(\mathfrak{h})^W \}$$

and, as *W*-module, $\mathcal{H}(\mathfrak{h}^*)$ identifies with the regular representation of *W*. The vector space $\mathcal{H}(\mathfrak{h}^*)$ is a graded subspace of $S(\mathfrak{h}^*)$ and we set $\mathcal{H}^j(\mathfrak{h}^*) = S^j(\mathfrak{h}^*) \cap \mathcal{H}(\mathfrak{h}^*), 0 \leq j \leq \nu$. Define the harmonic elements of $S(\mathfrak{h})$ by $\mathcal{H}(\mathfrak{h}) = F_{\mathfrak{h}}(\mathcal{H}(\mathfrak{h}^*)) = \bigoplus_{j=0}^{\nu} \mathcal{H}^j(\mathfrak{h})$. (We could as well have set $\mathcal{H}(\mathfrak{h}) = \varkappa(\mathcal{H}(\mathfrak{h}^*))$, since $\mathcal{H}^j(\mathfrak{h}^*)$ is stable under i.)

Since $V_{\chi} \subset \mathcal{H}^{b(\chi)}(\mathfrak{h}^*)$, we have $(\mathbf{E}_{\mathfrak{h}} - b(\chi)).v_{\chi}^j = 0$. For all $d \in L := \operatorname{ann}_{\mathcal{D}(\mathfrak{h})^W}(v_{\chi}^j)$, we have $[\mathbf{E}_{\mathfrak{h}} - b(\chi), d] = [\mathbf{E}_{\mathfrak{h}}, d] \in L$. It follows that $L = \bigoplus_{k \in \mathbb{Z}} L \cap \mathcal{D}^k(\mathfrak{h})^W$, where $\mathcal{D}^k(\mathfrak{h}) = \{d \in \mathcal{D}(\mathfrak{h}) : [\mathbf{E}_{\mathfrak{h}}, d] = kd\}$. Equivalently, L is stable under the \mathbb{C}^* -action on $\mathcal{D}(\mathfrak{h})$ given by $f \mapsto \lambda f$, $\partial(v) \mapsto \lambda^{-1}\partial(v)$, $f \in \mathfrak{h}^*$, $v \in \mathfrak{h}$. In particular, we see that $F_{\mathfrak{h}}(L) = \varkappa(L)$.

Let R be a ring and $\alpha \in \operatorname{Aut}(R)$. If M is an R-module, we define the R-module M^{α} to be the abelian group M with action of $a \in R$ on $x \in M$ given by $a \cdot x = \alpha(a)x$. This applies to the modules $\mathcal{N}, \mathcal{N}_{\chi}$ and the automorphism $\alpha = F_{\mathfrak{g}}^{-1}$. Define

$$\mathcal{M} = \mathcal{N}^{F_{\mathfrak{g}}^{-1}}, \qquad \mathcal{M}_{\chi} = \mathcal{N}_{\chi}^{F_{\mathfrak{g}}^{-1}}.$$

Thus, from (1.2) and (1.3), we obtain

$$\mathcal{M} = \mathcal{D}(\mathfrak{g}) / (\mathcal{D}(\mathfrak{g})\tau(\mathfrak{g}) + \mathcal{D}(\mathfrak{g})S_+(\mathfrak{g}^*)^G) \cong \bigoplus_{\chi \in W^{\wedge}} \mathcal{M}_{\chi} \otimes_{\mathbb{C}} V_{\chi}.$$

Remark. In [13] one defines \mathcal{M}_{χ} to be $\mathcal{N}_{\chi}^{\varkappa^{-1}}$, but the two definitions agree. Indeed, let $V^{\chi} \cong \mathcal{D}(\mathfrak{h})^{W} . v_{\chi}^{j} = \mathcal{D}(\mathfrak{h})^{W} / L$ be as above. Then,

$$\mathbb{N}_{\chi} \cong \mathcal{D}(\mathfrak{g})/J, \quad J = \mathcal{D}(\mathfrak{g})\tau(\mathfrak{g}) + \mathcal{D}(\mathfrak{g})S_{+}(\mathfrak{g})^{G} + \mathcal{D}(\mathfrak{g})\delta^{-1}(L).$$

Write $\mathcal{N}_{\chi} = \mathcal{D}(\mathfrak{g}).(\bar{1} \otimes_{A(\mathfrak{g})} v_{\chi}^{j})$, where $\bar{1}$ is the canonical generator of $\mathcal{D}(\mathfrak{g})/\mathcal{D}(\mathfrak{g})\tau(\mathfrak{g})$. From $\delta(\mathsf{E}_{\mathfrak{g}}) = \mathsf{E}_{\mathfrak{h}} - \nu$, we get that $(\mathsf{E}_{\mathfrak{g}} - (b(\chi) - \nu)).(\bar{1} \otimes_{A(\mathfrak{g})} v_{\chi}^{j}) = 0$. It follows (as above) that J is stable under the natural \mathbb{C}^{*} -action on $\mathcal{D}(\mathfrak{g})$. Hence, $F_{\mathfrak{g}}(J) = \varkappa(J)$ and we have $\mathcal{N}_{\chi}^{\varkappa^{-1}} = \mathcal{N}_{\chi}^{F_{\mathfrak{g}}^{-1}}$.

We can define the category $C(\mathcal{M})$ similar to $C(\mathcal{N})$. We clearly have $M \in C(\mathcal{M})$ if, and only if, $N = M^{F_{\mathfrak{g}}} \in C(\mathcal{N})$. Moreover, by [13], this is equivalent to saying that M is a G-equivariant finitely generated $\mathcal{D}(\mathfrak{g})$ -module such that $M = \mathcal{D}(\mathfrak{g})M^G$ and $\operatorname{Supp} M \subset \mathbf{N}(\mathfrak{g})$. This is also equivalent to: N is a G-equivariant finitely generated $\mathcal{D}(\mathfrak{g})$ -module such that $N = \mathcal{D}(\mathfrak{g})N^G$ and N is S_+ -finite (meaning that each $v \in N$ is killed by a power of $S_+(\mathfrak{g})^G$).

Recall that $\mathcal{N}^G_{\chi} \xrightarrow{\sim} V^{\chi}$ through the identification of $A(\mathfrak{g})$ with $\mathcal{D}(\mathfrak{h})^W$.

Lemma 1.3. One has: $\mathfrak{M}^G_{\chi} \xrightarrow{\sim} (V^{\chi})^{F_{\mathfrak{h}}^{-1}}$.

Proof. Write $\mathcal{N}_{\chi} = \mathcal{D}(\mathfrak{g})/J$. Then, $\mathcal{M}_{\chi} = \mathcal{D}(\mathfrak{g})/F_{\mathfrak{g}}(J)$ and $\mathcal{M}_{\chi}^{G} = \mathcal{D}(\mathfrak{g})^{G}/F_{\mathfrak{g}}(J^{G})$. By Lemma 1.2, $\delta(F_{\mathfrak{g}}(J^{G})) = F_{\mathfrak{h}}(\delta(J^{G}))$, therefore $\mathcal{M}_{\chi}^{G} \xrightarrow{\sim} \mathcal{D}(\mathfrak{h})^{W}/F_{\mathfrak{h}}(\delta(J^{G}))$. Since $V^{\chi} \cong \mathcal{D}(\mathfrak{h})^{W}/\delta(J^{G})$, the lemma follows.

Let \mathfrak{g}_0 be a real form of \mathfrak{g} with adjoint group $G_0 \subset G$. There exists a natural action of $\mathcal{D}(\mathfrak{g})$ on $\mathsf{Db}(\mathfrak{g}_0)$ defined by

$$\langle \partial(v).T, f \rangle = \langle T, -\partial(v).f \rangle, \quad \langle \xi.T, f \rangle = \langle T, \xi f \rangle$$

for all $T \in \mathsf{Db}(\mathfrak{g}_0)$, $f \in \mathcal{C}^{\infty}_c(\mathfrak{g}_0)$, $v \in \mathfrak{g}$, $\xi \in \mathfrak{g}^*$. This induces a structure of $\mathcal{D}(\mathfrak{g})^{G_0}$ module on $\mathsf{Db}(\mathfrak{g}_0)^{G_0}$. From $\mathcal{I}. \mathsf{Db}(\mathfrak{g}_0)^{G_0} = 0$, we obtain a natural $A(\mathfrak{g})$ -module structure on $\mathsf{Db}(\mathfrak{g}_0)^{G_0}$.

Fix a basis $\{u_1, \ldots, u_n\}$ of \mathfrak{g}_0 such that $\kappa(u_j, u_k) = \pm \delta_{jk}$ and denote by dy be the Lebesgue measure associated to this choice. Let $\mathcal{S}(\mathfrak{g}_0)$ be the Schwartz space on \mathfrak{g}_0 . Define, as in [18, Appendix 1], the Fourier transform of $f \in \mathcal{S}(\mathfrak{g}_0)$ by

$$\hat{f}(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathfrak{g}_0} f(y) e^{-i\kappa(y,x)} dy$$

Let T be a tempered distribution on \mathfrak{g}_0 . The Fourier transform of T is defined by $\langle \hat{T}, f \rangle = \langle T, \hat{f} \rangle$ for $f \in \mathcal{C}^{\infty}_c(\mathfrak{g}_0)$. Then we have

(1.4)
$$\forall D \in \mathcal{D}(\mathfrak{g}), \ \forall T \in \mathsf{Db}(\mathfrak{g}_0), \ \widehat{D.T} = F_{\mathfrak{g}}(D).\widehat{T}.$$

Recall [2] that $T \in \mathsf{Db}(\mathfrak{g}_0)$ is said to be homogeneous of degree d if, for all $f \in \mathcal{C}^{\infty}_{c}(\mathfrak{g}_0), t \in \mathbb{R}^*, \langle T, f_t \rangle = t^d \langle T, f \rangle$, where $f_t(v) = t^{-n} f(t^{-1}v)$. Then, a homogeneous distribution of degree d is tempered and satisfies $\mathsf{E}_{\mathfrak{g}}.T = dT$. We will need the following well known result:

Lemma 1.4. Let $T \in \mathsf{Db}(\mathfrak{g}_0)$ be tempered and set $M = \mathcal{D}(\mathfrak{g}).T$. Then $M^{F_\mathfrak{g}} \cong \mathcal{D}(\mathfrak{g}).\widehat{T}$.

Proof. By (1.4) we have $\operatorname{ann}_{\mathcal{D}(\mathfrak{g})}(\widehat{T}) = F_{\mathfrak{g}}^{-1}(\operatorname{ann}_{\mathcal{D}(\mathfrak{g})}(T))$. Hence the result. \Box

Let $\mathbf{N}(\mathfrak{g}_0)$ be the set of nilpotent elements of \mathfrak{g}_0 . Define $\mathcal{D}(\mathfrak{g})$ -submodules of $\mathsf{Db}(\mathfrak{g}_0)$ by

$$\mathsf{Db}(\mathfrak{g}_0)_{nil} = \{ \Theta \in \mathsf{Db}(\mathfrak{g}_0) : \operatorname{Supp} \Theta \subset \mathbf{N}(\mathfrak{g}_0) \}$$
$$\mathsf{Db}(\mathfrak{g}_0)_{S_+} = \{ T \in \mathsf{Db}(\mathfrak{g}_0) : \exists k \in \mathbb{N}, \ (S_+(\mathfrak{g})^G)^k . T = 0 \}$$

The elements of $\mathsf{Db}(\mathfrak{g}_0)_{S_+}$ are called S_+ -finite. Observe that $\mathsf{Db}(\mathfrak{g}_0)_{nil}^{G_0}$ and $\mathsf{Db}(\mathfrak{g}_0)_{S_+}^{G_0}$ are $\mathcal{D}(\mathfrak{g})^G$ -modules. The next theorem is consequence of the results proved in [18].

Theorem 1.5. (1)
$$\mathsf{Db}(\mathfrak{g}_0)_{nil}^{G_0} = \{\Theta \in \mathsf{Db}(\mathfrak{g}_0)^{G_0} : \mathcal{D}(\mathfrak{g}).\Theta \in \mathsf{C}(\mathcal{M})\}.$$

(2) $\mathsf{Db}(\mathfrak{g}_0)_{S_+}^{G_0} = \{T \in \mathsf{Db}(\mathfrak{g}_0)^{G_0} : \mathcal{D}(\mathfrak{g}).T \in \mathsf{C}(\mathcal{N})\}.$
(3) $\Theta \in \mathsf{Db}(\mathfrak{g}_0)_{nil}^{G_0} \iff \widehat{\Theta} \in \mathsf{Db}(\mathfrak{g}_0)_{S_+}^{G_0}.$

Proof. (1) follows from [18, Theorem 6.1], since $\mathcal{D}(\mathfrak{g}).\Theta \in \mathsf{C}(\mathcal{M})$ is equivalent to $\mathcal{D}(\mathfrak{g})^G.\Theta \cong \bigoplus_{\chi \in W^{\wedge}} m_{\chi}\mathcal{M}^G_{\chi}.$

(2) and (3) are consequences of (1) and Lemma 1.4.

Remark 1.6. Let $T \in \mathsf{Db}(\mathfrak{g}_0)_{S_+}^{G_0}$. Recall that by the Harish-Chandra regularity theorem, T is given by

$$\langle T, f \rangle = \int_{\mathfrak{g}_0'} F_T(y) f(y) dy$$

for some analytic function F_T on \mathfrak{g}'_0 , locally integrable on \mathfrak{g}_0 .

2. The distributions $\Theta_{u,\Gamma}$ and $T_{p,\Gamma}$

Let \mathfrak{g}_0 be a real form of \mathfrak{g} , with adjoint group G_0 , \mathfrak{h}_0 a Cartan subalgebra and let H_0 be the associated Cartan subgroup. Set $\mathfrak{h} = \mathbb{C} \otimes_{\mathbb{R}} \mathfrak{h}_0$ and adopt the notation of §1. Denote by $W(\mathfrak{h}_0)$ the real Weyl group, i.e. $W(\mathfrak{h}_0) = N_{G_0}(\mathfrak{h}_0)/Z_{G_0}(\mathfrak{h}_0)$. Define

$$\Delta_R = \{ \alpha \in \Delta : \alpha(\mathfrak{h}_0) \subset \mathbb{R} \} \quad \text{(the real roots)} \\ \Delta_I = \{ \alpha \in \Delta : \alpha(\mathfrak{h}_0) \subset i\mathbb{R} \} \quad \text{(the imaginary roots).} \end{cases}$$

A root which is neither real nor imaginary is called complex. Let Δ_I^+ be a positive system of roots in Δ_I and set $\pi_I = \prod_{\alpha \in \Delta_I^+} \alpha$. Then each $w \in W(\mathfrak{h}_0)$ permutes the imaginary roots and one can define a character of $W(\mathfrak{h}_0)$, the imaginary signature, by

$$\varepsilon_I: W(\mathfrak{h}_0) \to \{\pm 1\}, \quad w.\pi_I = \varepsilon_I(w)\pi_I.$$

If V is a $W(\mathfrak{h}_0)$ -module we denote by V^{ε_I} the isotypic component of type ε_I in V. In the sequel, we adopt the notation of [5] with the minor difference that we use

 $e^{-i\kappa(x,y)}$ in the definition of the Fourier transform.

Let $h \in \mathfrak{h}'_0$ and $f \in \mathcal{C}^{\infty}_c(\mathfrak{g}_0)$. Define [5, §3.1] the distribution $\mu_{G_0,h}$ by

$$\langle \mu_{G_0.h}, f \rangle = |\det \operatorname{ad}_{\mathfrak{g}_0/\mathfrak{h}_0}(h)|^{\frac{1}{2}} \int_{G_0/H_0} f(\dot{g}.h) d\dot{g}$$

Then one defines the function $J_{\mathfrak{g}_0}(f)$, or simply J(f), on \mathfrak{h}'_0 by

$$J_{\mathfrak{g}_0}(f) = \{h \mapsto \langle \mu_{G_0.h}, f \rangle \}.$$

Set $\mathfrak{h}_0^{\text{reg}} = \{h \in \mathfrak{h}_0 : \pi_I(h) \neq 0\}$ and fix a connected component Γ of $\mathfrak{h}_0^{\text{reg}}$. Let $u \in S(\mathfrak{h})$; Harish-Chandra has shown, see [17, §8.1, p. 123], that one can define a tempered G_0 -invariant distribution on \mathfrak{g}_0 by

(2.1)
$$\forall f \in \mathcal{C}_c^{\infty}(\mathfrak{g}_0), \quad \langle \Theta_{u,\Gamma}, f \rangle = \lim_{\substack{h \to 0 \\ h \in \Gamma}} [\partial(u).J(f)](h).$$

Furthermore $\Theta_{u,\Gamma} \in \mathsf{Db}(\mathfrak{g}_0)_{nil}^{G_0}$ and, when $u \in S^b(\mathfrak{h})$, $\Theta_{u,\Gamma}$ is homogeneous of degree $-b - \nu - \ell$.

Now let $p \in S(\mathfrak{h}^*)$ and define $T \in \mathsf{Db}(\mathfrak{g}_0)_{S_+}^{G_0}$ by

(2.2)
$$T_{p,\Gamma} = \widehat{\Theta}_{F_{\mathfrak{h}}(p),\Gamma} = \Big\{ f \mapsto \lim_{\substack{h \to 0 \\ h \in \Gamma}} [\partial(F_{\mathfrak{h}}(p)).J(\hat{f})](h) \Big\}.$$

Then, $T_{p,\Gamma}$ is tempered and is homogeneous of degree $b - \nu$ when $p \in S^b(\mathfrak{h}^*)$.

Lemma 2.1. (1) Let $\varphi \in S(\mathfrak{g}^*)^G$. Then, $\varphi T_{p,\Gamma} = T_{\delta(\varphi)p,\Gamma}$. (2) Let $q \in S(\mathfrak{g})^G$. Then, $\partial(q).T_{p,\Gamma} = T_{\partial(\delta(q)).p,\Gamma}$.

Proof. Set $u = F_{\mathfrak{h}}(p), \phi = \delta(\varphi) \in S(\mathfrak{h}^*)^W$ and $s = \delta(q) \in S(\mathfrak{h})^W$. Let $f \in \mathcal{C}^{\infty}_c(\mathfrak{g}_0)$. (1) By definition, see (2.2), $\langle \varphi T_{p,\Gamma}, f \rangle = \lim_{\substack{h \to 0 \\ h \in \Gamma}} [\partial(u).J(\widehat{\varphi f})](h)$. But, [17,

Lemma 3.2.7, p. 38], (1.4) and Lemma 1.2 imply that $J(\widehat{\varphi f}) = \partial(F_{\mathfrak{h}}(\phi)).J(\widehat{f})$. Hence,

$$\begin{split} \langle \varphi T_{p,\Gamma}, f \rangle &= \lim_{\substack{h \to 0 \\ h \in \Gamma}} [\partial(u)\partial(F_{\mathfrak{h}}(\phi)).J(\hat{f})](h) = \lim_{\substack{h \to 0 \\ h \in \Gamma}} [\partial(F_{\mathfrak{h}}(\phi p)).J(\hat{f})](h) \\ &= \langle T_{\phi p,\Gamma}, f \rangle, \end{split}$$

as desired.

(2) By (1.4),
$$\partial(q).T_{p,\Gamma}$$
 is the Fourier transform of $F_{\mathfrak{g}}^{-1}(q)\Theta_{u,\Gamma}$, hence
 $\langle \partial(q).T_{p,\Gamma}, f \rangle = \lim_{\substack{h \to 0 \\ h \in \Gamma}} [\partial(u).J(F_{\mathfrak{g}}^{-1}(q)\hat{f})](h).$

Set $g = J(\hat{f})$. From [17, Lemma 3.2.7, p. 38] and Lemma 1.2 we obtain that $J(F_{\mathfrak{g}}^{-1}(q)\hat{f}) = F_{\mathfrak{h}}^{-1}(s)g$. Therefore

$$\langle \partial(q).T_{p,\Gamma}, f \rangle = \lim_{\substack{h \to 0 \\ h \in \Gamma}} [\partial(u).(F_{\mathfrak{h}}^{-1}(s)g)](h).$$

Recall (see §1) that we have chosen a coordinate system $\{x_j; e_j\}_{1 \leq j \leq \ell}$. With standard notation, we write $x^{\alpha} = \prod_{k=1}^{\ell} x_k^{\alpha_k}$, $e^{\mu} = \prod_{k=1}^{\ell} e_k^{\mu_k}$ and

$$p = \sum_{\alpha \in \mathbb{N}^{\ell}} p_{\alpha} x^{\alpha}, \quad s = \sum_{\mu \in \mathbb{N}^{\ell}} s_{\mu} e^{\mu}.$$

Set $\partial^{\mu} = \prod_{j} \partial(e_{j})^{\mu_{j}}$; thus $\partial(s) = \sum_{\mu \in \mathbb{N}^{\ell}} s_{\mu} \partial^{\mu}$. Order \mathbb{N}^{ℓ} by saying that $\mu \leq \alpha$ if $\mu_{j} \leq \alpha_{j}$ for all j. Set $\alpha! = \prod_{j} \alpha_{j}!$ and $\binom{\alpha}{\mu} = \prod_{j} \binom{\alpha_{j}}{\mu_{j}}$, when $\mu \leq \alpha$. Then:

$$\partial^{\mu}(x^{\alpha}) = \begin{cases} 0 & \text{if } \mu \nleq \alpha, \\ \frac{\alpha!}{(\alpha-\mu)!} x^{\alpha-\mu} & \text{if } \mu \le \alpha. \end{cases}$$

Now we have $u = F_{\mathfrak{h}}(p) = \sum_{\alpha} p_{\alpha} i^{|\alpha|} \partial^{\alpha}$ and $F_{\mathfrak{h}}^{-1}(s) = \sum_{\mu} q_{\mu} i^{-|\mu|} x^{\mu}$. Therefore, using the Leibniz formula, we get that

$$\begin{aligned} \partial(u).(F_{\mathfrak{h}}^{-1}(s)g) &= \sum_{\alpha} p_{\alpha} i^{|\alpha|} \partial^{\alpha} (F_{\mathfrak{h}}^{-1}(s)g) \\ &= \sum_{\alpha} \sum_{\mu} \sum_{\beta \leq \alpha} p_{\alpha} s_{\mu} i^{|\alpha| - |\mu|} {\alpha \choose \beta} \partial^{\beta} (x^{\mu}) \partial^{\alpha - \beta} (g). \end{aligned}$$

But $\lim_{h\to 0} \partial^{\beta}(x^{\mu})(h) = 0$ unless $\beta = \mu$, hence

$$\lim_{\substack{h \to 0\\h \in \Gamma}} [\partial(u).(F_{\mathfrak{h}}^{-1}(s)g)](h) = \sum_{\alpha} \sum_{\mu \le \alpha} p_{\alpha} s_{\mu} i^{|\alpha| - |\mu|} \binom{\alpha}{\mu} \mu! \lim_{\substack{h \to 0\\h \in \Gamma}} [\partial^{\alpha - \mu}(g)](h).$$

On the other hand, we have

$$\langle T_{\partial(s).p,\Gamma}, f \rangle = \lim_{\substack{h \to 0 \\ h \in \Gamma}} [\partial(F_{\mathfrak{h}}(\partial(s).p)).g](h).$$

Since $\partial(s).p = \sum_{\alpha} \sum_{\mu \leq \alpha} \frac{\alpha!}{(\alpha - \mu)!} s_{\mu} p_{\alpha} x^{\alpha - \mu}$, we obtain that

$$\langle T_{\partial(s).p,\Gamma}, f \rangle = \sum_{\alpha} \sum_{\mu \le \alpha} \frac{\alpha!}{(\alpha - \mu)!} s_{\mu} p_{\alpha} i^{|\alpha| - |\mu|} \lim_{\substack{h \to 0 \\ h \in \Gamma}} [\partial^{\alpha - \mu}(g)](h).$$

This proves the desired equality.

Theorem 2.2. Let $p \in S(\mathfrak{h}^*)$ and $D \in \mathcal{D}(\mathfrak{g})^G$. Then, $D.T_{p,\Gamma} = T_{\delta(D).p,\Gamma}$.

Proof. Since $T_{p,\Gamma}$ is G_0 -invariant, we have $\mathcal{I}.T_{p,\Gamma} = 0$. Let $P \in \mathbb{C}\langle S(\mathfrak{g})^G, S(\mathfrak{g}^*)^G \rangle$; by Lemma 2.1 and an obvious induction, we obtain that $P.T_{p,\Gamma} = T_{\delta(P).p,\Gamma}$. The theorem then follows from Lemma 1.1.

Recall, see Remark 1.6, that $\widehat{\Theta}_{u,\Gamma} \in \mathsf{Db}(\mathfrak{g}_0)_{S_+}^{G_0}$ is determined by a locally integrable function on \mathfrak{g}_0 . We still denote this function by $\widehat{\Theta}_{u,\Gamma}$.

Lemma 2.3. ([5, Lemme 6.1.2]) There exists $c_{\Gamma} \in \mathbb{C}^*$, such that

$$a_{\Delta^+}(h) |\det \operatorname{ad}_{\mathfrak{g}_0/\mathfrak{h}_0}(h)|^{\frac{1}{2}} \widehat{\Theta}_{F_{\mathfrak{h}}(p),\Gamma}(h) = c_{\Gamma} p(h)$$

for all $p \in S(\mathfrak{h}^*)^{\varepsilon_I}$ and $h \in \mathfrak{h}_0^{\operatorname{reg}}$.

Remark. In the notation of the lemma, if $u = F_{\mathfrak{h}}(p)$, the function $\tilde{u}(ih)$ of [5] is replaced here by p(h) since we are using $e^{-i\kappa(x,y)}$ in the definition of the Fourier transform.

Theorem 2.4. Let $p \in S(\mathfrak{h}^*)^{\varepsilon_I}$. There exists a bijective map

 $\rho: \mathcal{D}(\mathfrak{g})^G.T_{p,\Gamma} \longrightarrow \mathcal{D}(\mathfrak{h})^W.p, \quad \rho(D.T_{p,\Gamma}) = \delta(D).p$

which, through δ , yields an isomorphism

$$\rho: A(\mathfrak{g}).T_{p,\Gamma} \xrightarrow{\sim} \mathcal{D}(\mathfrak{h})^W.p$$

Proof. We first need to show that ρ is well defined. Let $D \in \mathcal{D}(\mathfrak{g})^G$; by Theorem 2.2 we have

(†)
$$D.T_{p,\Gamma} = T_{\delta(D),p,\Gamma} = \widehat{\Theta}_{F_{\mathfrak{h}}(\delta(D),p),\Gamma}$$

Suppose that $D.T_{p,\Gamma} = 0$. Then, the analytic function associated to $T_{\delta(D).p,\Gamma} \in \mathsf{Db}(\mathfrak{g}_0)_{S_+}^{G_0}$ vanishes on $\mathfrak{h}_0^{\mathrm{reg}}$. Notice that, since $\delta(D)$ is *W*-invariant, $\delta(D).p \in S(\mathfrak{h}^*)^{\varepsilon_I}$. Therefore Lemma 2.3 gives $\delta(D).p = 0$ on $\mathfrak{h}_0^{\mathrm{reg}}$. Thus $\delta(D).p = 0$ on \mathfrak{h} and ρ is well defined.

Now, it follows easily from (†) that ρ is a linear bijection. Since $\mathcal{I}.T_{p,\Gamma} = 0$, the last assertion is clear.

Recall that we denote by $V_{\chi} \subset \mathcal{H}^{b(\chi)}(\mathfrak{h}^*)$ a simple W-module in the class of $\chi \in W^{\widehat{}}$.

Corollary 2.5. Let $p \in S(\mathfrak{h}^*)^{\varepsilon_I}$ such that $\mathbb{C}W.p$ is simple. Then there exists $\chi \in W^{\uparrow}$ such that $V_{\chi}^{\varepsilon_I} \neq 0$. We have:

(1) $\mathcal{D}(\mathfrak{g}).T_{p,\Gamma} \xrightarrow{\sim} \mathcal{N}_{\chi} \text{ and } \mathcal{D}(\mathfrak{g})^{G}.T_{p,\Gamma} \xrightarrow{\sim} V^{\chi};$ (2) $\mathcal{D}(\mathfrak{g}).\Theta_{F_{\mathfrak{h}}(p),\Gamma} \xrightarrow{\sim} \mathcal{M}_{\chi} \text{ and } \mathcal{D}(\mathfrak{g})^{G}.\Theta_{F_{\mathfrak{h}}(p),\Gamma} \xrightarrow{\sim} (V^{\chi})^{F_{\mathfrak{h}}^{-1}}.$

Proof. The first assertion follows from $\mathcal{H}(\mathfrak{h}^*) \cong \mathbb{C}W$. Then, 1 and 2 are consequences of $V^{\chi} \cong \mathcal{D}(\mathfrak{h})^W . p$, Lemma 1.3 and Theorem 2.4.

Remark 2.6. Let $\chi \in W^{\frown}$ be such that $V_{\chi}^{\varepsilon_I} \neq 0$. It follows obviously from the previous corollary that

$$\mathcal{N}_{\chi} \cong \mathcal{D}(\mathfrak{g}).T_{p,\Gamma}, \qquad \mathcal{M}_{\chi} \cong \mathcal{D}(\mathfrak{g}).\Theta_{u,\Gamma}$$

where $0 \neq p \in V_{\chi}^{\varepsilon_I} \subset \mathcal{H}^{b(\chi)}(\mathfrak{h}^*)^{\varepsilon_I}$ and $u = F_{\mathfrak{h}}(p) \in \mathcal{H}^{b(\chi)}(\mathfrak{h})^{\varepsilon_I}$.

3. The decomposition of
$$\mathsf{Db}(\mathfrak{g}_0)_{S_1}^{G_0}$$
 and $\mathsf{Db}(\mathfrak{g}_0)_{nil}^{G_0}$

Fix a real form \mathfrak{g}_0 of \mathfrak{g} and let $[\mathfrak{h}_1], \ldots, [\mathfrak{h}_r]$ be the conjugacy classes of Cartan subalgebras in \mathfrak{g}_0 . For each $j = 1, \ldots, r$ we denote by

$$\mathfrak{h}_{j,\mathbb{C}} = \mathfrak{h}_j \otimes_{\mathbb{R}} \mathbb{C}, \quad W_j = W(\mathfrak{g}, \mathfrak{h}_{j,\mathbb{C}}), \quad \Delta^+_{I,j} \text{ a set of positive imaginary roots,}$$

 $\varepsilon_{I,j} : W(\mathfrak{h}_j) = W(G_0, \mathfrak{h}_j) \to \{\pm 1\}$ the imaginary signature associated to \mathfrak{h}_j .

For each j we fix a connected component Γ_j of $\mathfrak{h}_j^{\text{reg}}$. The results of §2 then apply to $\mathfrak{h}_0 = \mathfrak{h}_j$, $\Gamma = \Gamma_j$ etc.

Remark 3.1. Recall that the $\mathfrak{h}_{j,\mathbb{C}}$ are *G*-conjugate. Therefore, if $1 \leq j,k \leq r$, the algebras $\mathcal{D}(\mathfrak{h}_{j,\mathbb{C}})^{W_j}$ and $\mathcal{D}(\mathfrak{h}_{k,\mathbb{C}})^{W_k}$ are naturally isomorphic. Denote this isomorphism by γ_{jk} and let δ_j be the Harish-Chandra isomorphism from $A(\mathfrak{g})$ onto $\mathcal{D}(\mathfrak{h}_{j,\mathbb{C}})^{W_j}$. One can check that $\delta_k = \gamma_{jk} \circ \delta_j$. Therefore, we can choose an "abstract" Cartan subalgebra \mathfrak{h} and identify δ_j with the homomorphism $\delta : \mathcal{D}(\mathfrak{g})^G \to \mathcal{D}(\mathfrak{h})^W$, where $W = W(G, \mathfrak{h})$. Then, if $\chi \in W$, we have an irreducible W-module $V_{\chi} \subset \mathcal{H}^{b(\chi)}(\mathfrak{h}^*)$ and a simple $\mathcal{D}(\mathfrak{h})^W$ -module V^{χ} .

For each $\chi \in W$, choose a simple W-module $V_{\chi,j} \subset \mathcal{H}^{b(\chi)}(\mathfrak{h}_{j,\mathbb{C}}^*), V_{\chi,j} \cong V_{\chi}$. Write $V_{\chi,j} = V_{\chi,j}^{\varepsilon_{I,j}} \oplus E_{\chi,j}$ with $E_{\chi,j}$ stable under $W(\mathfrak{h}_j)$. Let $\{v_{\chi,j}^k\}_{1 \leq k \leq d(\chi)}$ be a basis of $V_{\chi,j}$ such that

$$V_{\chi,j}^{\varepsilon_{I,j}} = \bigoplus_{k=1}^{n_j(\chi)} \mathbb{C}v_{\chi,j}^k, \quad E_{\chi,j} = \bigoplus_{k=n_j(\chi)+1}^{d(\chi)} \mathbb{C}v_{\chi,j}^k$$

(hence $n_j(\chi) = \dim V_{\chi}^{\varepsilon_{I,j}}$).

Lemma 3.2. The $\mathcal{D}(\mathfrak{h}_{j,\mathbb{C}})^{W_j}$ -module $S(\mathfrak{h}_{j,\mathbb{C}}^*)^{\varepsilon_{I,j}}$ decomposes as

$$S(\mathfrak{h}_{j,\mathbb{C}}^*)^{\varepsilon_{I,j}} = \bigoplus_{\chi \in W^{\wedge}} \bigoplus_{k=1}^{n_j(\chi)} \mathcal{D}(\mathfrak{h}_{j,\mathbb{C}})^{W_j} . v_{\chi,j}^k$$

with $\mathcal{D}(\mathfrak{h}_{j,\mathbb{C}})^{W_j}.v_{\chi,j}^k \cong V^{\chi}.$

Proof. Clearly, we can drop the index j and write $\mathfrak{h}_0 = \mathfrak{h}_j$, $\mathfrak{h} = \mathfrak{h}_{j,\mathbb{C}}$, $v_{\chi}^k = v_{\chi,j}^k$ etc. Since $\mathcal{D}(\mathfrak{h})^W \cdot v_{\chi}^k \subset S(\mathfrak{h}^*)^{\varepsilon_I}$ for $1 \leq k \leq n(\chi) = \dim V_{\chi}^{\varepsilon_I}$, one has

$$S(\mathfrak{h}^*)^{\varepsilon_I} \supset \bigoplus_{\chi \in W^{\wedge}} \bigoplus_{k=1}^{n(\chi)} \mathcal{D}(\mathfrak{h})^W . v_{\chi}^k$$

Recall from §1 that $S(\mathfrak{h}^*) = \bigoplus_{\chi} S(\mathfrak{h}^*)[\chi]$ with $S(\mathfrak{h}^*)[\chi] = \bigoplus_{k=1}^{d(\chi)} \mathcal{D}(\mathfrak{h})^W . v_{\chi}^k$. Write $S(\mathfrak{h}^*)[\chi] = E_1 \oplus E_2$, where $E_1 = \bigoplus_{k=1}^{n(\chi)} \mathcal{D}(\mathfrak{h})^W . v_{\chi}^k$ and $E_2 = \bigoplus_{k=n(\chi)+1}^{d(\chi)} \mathcal{D}(\mathfrak{h})^W . v_{\chi}^k$. Notice that E_1, E_2 are stable under $W(\mathfrak{h}_0)$ and that we have $S(\mathfrak{h}^*)[\chi]^{\varepsilon_I} = E_1 \oplus E_2^{\varepsilon_I}$. We now show that $E_2^{\varepsilon_I} = 0$. This will prove that

Now show that $E_2 = 0$. This will prove that

$$S(\mathfrak{h}^*)^{\varepsilon_I} = \bigoplus_{\chi \in W} \bigoplus_{k=1}^{n(\chi)} \mathcal{D}(\mathfrak{h})^W . v_{\chi}^k$$

Let $D \in \mathcal{D}(\mathfrak{h})^W$ and $v \in V_{\chi}$. Notice first that if $D.v \neq 0$, the operator D yields an isomorphism of W-modules $V_{\chi} \xrightarrow{\sim} D.V_{\chi}$. Therefore, if $V_{\chi} = \bigoplus_k S_k$ with S_k irreducible $W(\mathfrak{h}_0)$ -module, we get that $D.V_{\chi} = \bigoplus_k D.S_k$, $D.S_k \cong S_k$. It follows that if $v \in E_{\chi}$ (the $W(\mathfrak{h}_0)$ -stable complement of $V_{\chi}^{\varepsilon_I}$) then $D.v \in D.E_{\chi}$ with $D.E_{\chi} \cap S(\mathfrak{h}^*)^{\varepsilon_I} = 0$. Let $p = \sum_{k=n(\chi)+1}^{d(\chi)} D_k v_{\chi}^k \in E_2$. Then, $\mathbb{C}W(\mathfrak{h}_0).p \subset$ $\sum_{k>n(\chi)} \mathbb{C}W(\mathfrak{h}_0).(D_k.v_{\chi}^k)$ and, by the previous remarks, $(\mathbb{C}W(\mathfrak{h}_0).(D_k.v_{\chi}^k))^{\varepsilon_I} = 0$. Thus $(\mathbb{C}W(\mathfrak{h}_0).p)^{\varepsilon_I} = 0$, which shows that $E_2^{\varepsilon_I} = 0$.

Recall the following result:

Proposition 3.3. ([5, Proposition 6.1.1]) (1) The linear map

$$\mathbf{T}: \bigoplus_{j=1}^r S(\mathfrak{h}_{j,\mathbb{C}}^*)^{\varepsilon_{I,j}} \longrightarrow \mathsf{Db}(\mathfrak{g}_0)_{S_+}^{G_0}, \quad \mathbf{T}(p_1,\ldots,p_r) = \sum_{j=1}^r T_{p_j,\Gamma_2}$$

is an isomorphism of vector spaces.

(2) The map \mathbf{T} induces an isomorphism:

$$\bigoplus_{j=1}^{r} \mathcal{H}(\mathfrak{h}_{j,\mathbb{C}}^{*})^{\varepsilon_{I,j}} \xrightarrow{\sim} \{T \in \mathsf{Db}(\mathfrak{g}_{0})_{S_{+}}^{G_{0}} : S_{+}(\mathfrak{g})^{G}.T = 0\}.$$

Proof. (2) follows from the proof of [5, Proposition 6.1.1].

Theorem 3.4. Set $\mathbf{T}(\mathfrak{h}_j) = \sum_{p \in S(\mathfrak{h}_{i,c}^*)^{\varepsilon_{I,j}}} \mathbb{C}T_{p,\Gamma_j}$. Then we have the following decomposition of $\mathcal{D}(\mathfrak{g})^G$ -modules:

$$\mathsf{Db}(\mathfrak{g}_0)_{S_+}^{G_0} = \bigoplus_{j=1}^r \mathbf{T}(\mathfrak{h}_j)$$

with

with

$$\mathbf{T}(\mathfrak{h}_j) = \bigoplus_{\chi \in W^{\wedge}} \bigoplus_{k=1}^{n_j(\chi)} \mathcal{D}(\mathfrak{g})^G . T_{v_{\chi,j}^k, \Gamma_j}$$

and $\mathcal{D}(\mathfrak{g})^G . T_{v_{\chi_j}^k, \Gamma_j} \cong \mathfrak{N}_{\chi}^G$.

Proof. The decomposition of $\mathbf{T}(\mathfrak{h}_i)$, as a $\mathcal{D}(\mathfrak{g})^G$ -module, is consequence of Theorem 2.4, Lemma 3.2 (using the isomorphism $\delta_j : A(\mathfrak{g}) \xrightarrow{\sim} \mathcal{D}(\mathfrak{h}_{j,\mathbb{C}})^{W_j}$) and Proposition 3.3. The decomposition of $\mathsf{Db}(\mathfrak{g}_0)_{S_+}^{G_0}$ follows from Proposition 3.3.

Using the Fourier transform, we obtain the following:

Corollary 3.5. The $\mathcal{D}(\mathfrak{g})^G$ -module $\mathsf{Db}(\mathfrak{g}_0)_{nil}^{G_0}$ decomposes as

$$\mathsf{Db}(\mathfrak{g}_0)_{nil}^{G_0} = \bigoplus_{j=1}^r \bigoplus_{\chi \in W^{\wedge}} \bigoplus_{k=1}^{n_j(\chi)} \mathcal{D}(\mathfrak{g})^G \cdot \Theta_{F\mathfrak{h}^{-1}(v_{\chi,j}^k), \Gamma_j}$$
$$\mathcal{D}(\mathfrak{g})^G \cdot \Theta_{F\mathfrak{h}^{-1}(v_{\chi,j}^k), \Gamma_j} \cong \mathfrak{M}_{\chi}^G.$$

The next corollary follows from Theorem 3.4 and Corollary 3.5.

Corollary 3.6. We have:

$$\mathsf{Db}(\mathfrak{g}_0)_{S_+}^{G_0} \cong \bigoplus_{\chi \in W^{\widehat{}}} m_{\chi} \mathfrak{N}_{\chi}^G, \qquad \mathsf{Db}(\mathfrak{g}_0)_{nil}^{G_0} \cong \bigoplus_{\chi \in W^{\widehat{}}} m_{\chi} \mathfrak{M}_{\chi}^G$$

where $m_{\chi} = \sum_{j=1}^r \dim V_{\chi}^{\varepsilon_{I,j}}.$

Remark 3.7. Let $\chi \in W$. It is not always possible to "realize" the modules \mathcal{N}_{χ} and \mathcal{M}_{χ} as $\mathcal{D}(\mathfrak{g}).T$ for some $T \in \mathsf{Db}(\mathfrak{g}_0)$, where \mathfrak{g}_0 is a real form of \mathfrak{g} . By the previous results, this statement is equivalent to the existence of a Cartan subalgebra $\mathfrak{h}_i \subset \mathfrak{g}_0$ such that $V_{\chi}^{\varepsilon_{I,j}} \neq 0$. D. Renard has observed that, using the results of W. Rossmann [15], this can be translated to a question about centralizers of nilpotent elements. Fix a real form $\mathfrak{g}_{\mathbb{R}}$ of \mathfrak{g} with adjoint group $G_{\mathbb{R}}$. If $x \in \mathfrak{g}_{\mathbb{R}}$ is nilpotent one defines a subgroup of the component group A(G.x) (see §4 for notation) by

$$A(G_{\mathbb{R}}.x) = G_{\mathbb{R}}^x / G_{\mathbb{R}}^x \cap (G^x)^0.$$

Recall that $\chi \in W$ can be written $\sigma(\mathbf{O}, \psi)$ via the Springer correspondence, where $\mathbf{O} \subset \mathfrak{g}$ is a nilpotent orbit and $\psi: A(\mathbf{O}) \to \operatorname{GL}(E)$ is an irreducible representation. Then, by [15, Corollary 3.2 & Theorem 3.3], there exists a Cartan subalgebra $\mathfrak{h}_0 \subset \mathfrak{g}_{\mathbb{R}}$ such that $V_{\chi}^{\varepsilon_I} \neq 0$ if, and only if, there exists a nilpotent element $x \in \mathfrak{g}_{\mathbb{R}}$ such that $\mathbf{O} = G.x$ and $E^{A(G_{\mathbb{R}}.x)} \neq 0$.

Let $\mathfrak{g} = \mathfrak{sp}(\ell, \mathbb{C})$ and let $\phi \in W^{\widehat{}}$ be the long sign character, i.e. $V_{\phi} = \mathbb{C}\pi_{l}$ where π_l is the product of the long roots. Then, see [6, §13.3], $\phi = \sigma(\mathbf{O}, \psi)$ where $\mathbf{O} = G.x$ is the subregular nilpotent orbit with partition $[2\ell - 2, 2]$ and ψ is the non trivial character of $A(\mathbf{O}) \cong \{\pm 1\}$. The real forms of \mathfrak{g} are $\mathfrak{sp}(\ell, \mathbb{R})$ and the $\mathfrak{sp}(p, q)$, $p+q = \ell$. Assume now that $\ell \ge 3$. By the classification of nilpotent orbits in $\mathfrak{sp}(p,q)$, see [7, Theorem 9.2.5], we know that $\mathbf{O} \cap \mathfrak{sp}(p,q) = \emptyset$. Hence, by Rossmann's results, $V_{\phi}^{\varepsilon_{l,j}} = 0$ for each Cartan subalgebra $\mathfrak{h}_j \subset \mathfrak{sp}(p,q)$. On the other hand, if $G_{\mathbb{R}}$ is the adjoint group of $\mathfrak{sp}(\ell, \mathbb{R})$, one can show that $A(G_{\mathbb{R}}.x) = A(G.x)$. Thus, with the above notation, $E^{A(G_{\mathbb{R}}.x)} = 0$ and it follows that $V_{\phi}^{\varepsilon_{I,j}} = 0$ for each Cartan subalgebra $\mathfrak{h}_i \subset \mathfrak{sp}(\ell, \mathbb{R})$. For instance, when $\mathfrak{g} = \mathfrak{sp}(3, \mathbb{R})$ there are six conjugacy

10

classes of Cartan subalgebras and one can directly verify (without using [15]) that $V_{\phi}^{\varepsilon_{I,j}} = 0$ for $j = 1, \ldots, 6$. We thank D. Renard for showing this computation to us.

Let $x \in \mathbf{N}(\mathfrak{g}_0)$ and denote by β_x the Liouville (Kostant-Kirillov) measure on $G_0.x$. By [14] one can define $\Theta_x \in \mathsf{Db}(\mathfrak{g}_0)_{nil}^{G_0}$ by $\langle \Theta_x, f \rangle = \int_{G_0.x} f d\beta_x$ for all $f \in \mathcal{C}^{\infty}_c(\mathfrak{g}_0)$. Set $\mathbf{O} = G.x$. Then, see [9], [10] or [18], Θ_x is homogeneous of degree $\lambda_{\mathbf{O}} = \frac{1}{2} \dim \mathbf{O} - \dim \mathfrak{g}$ and satisfies

$$(3.1) \qquad \qquad \mathcal{D}(\mathfrak{g}).\Theta_x \cong \mathcal{M}_{\chi_{\mathbf{O}}}$$

for some $\chi_{\mathbf{O}} \in W$ such that $\lambda_{\mathbf{O}} = \nu - n - b(\chi_{\mathbf{O}})$.

Corollary 3.8. There exists
$$j \in \{1, ..., r\}$$
 and $u \in F_{\mathfrak{h}}^{-1}(V_{\chi_{\mathbf{O}}, j})^{\varepsilon_{I, j}}$ such that $\mathcal{D}(\mathfrak{g})^{G} . \Theta_{x} \cong \mathcal{D}(\mathfrak{g})^{G} . \Theta_{u, \Gamma_{j}}.$

Proof. Since $\mathcal{D}(\mathfrak{g})^G \cdot \Theta_x \cong \mathcal{M}^G_{\chi_{\mathbf{O}}}$ is a simple submodule of $\mathsf{Db}(\mathfrak{g}_0)^{G_0}_{nil}$, the claim follows from Corollary 3.5.

Remark 3.9. It is proved in [1], see also [5], that Θ_x can be written as $\sum_{j=1}^r \Theta_{a_j,\Gamma_j}$ with $a_j \in \mathcal{H}^{b(\chi_{\mathbf{O}})}(\mathfrak{h}_{j,\mathbb{C}})^{\varepsilon_{I,j}}$. It is easily seen that we may assume $\mathbb{C}W.a_j \cong V_{\chi_{\mathbf{O}}}$ for all j such that $a_j \neq 0$. W. Rossmann [15] has given conditions to ensure that $\Theta_x = \Theta_{a_j,\Gamma_j}$ for some j.

4. Example: The complex case

We assume in this section that $\mathfrak{g}_0 = \mathfrak{g}_1^{\mathbb{R}}$ is a complex semisimple Lie algebra, \mathfrak{g}_1 , viewed as a real Lie algebra. Then, \mathfrak{g} can be identified with $\mathfrak{g}_1 \times \mathfrak{g}_1$ and \mathfrak{g}_0 with the diagonal $\{(a, a) \in \mathfrak{g}_1 \times \mathfrak{g}_1\}$. Let \mathfrak{h}_1 be a Cartan subalgebra of \mathfrak{g}_1 . Recall the following well known facts, see [17] or [18]:

- h₀ = {(a, a) : a ∈ h₁} is a Cartan subalgebra of h₀ and h = h₀⊗_ℝC = h₁×h₁;
 W(g, h) = W₁ × W₁, where W₁ = W(g₁, h₁), and W(h₀) = {(w, w) ∈ W}
 - is isomorphic to W_1 ;
- . there is a unique conjugacy class $[\mathfrak{h}_0]$ of Cartan subalgebras and \mathfrak{h}_0' is connected;
- the roots in $\Delta(\mathfrak{g}, \mathfrak{h})$ are complex and, therefore, $\varepsilon_I = 1$;
- the irreducible representations of W are of the form $\chi = \phi \boxtimes \mu, \phi, \mu \in W_1^{\widehat{}}$; • one has $\phi = \phi^*$ for all $\phi \in W_1^{\widehat{}}$, where ϕ^* is the dual representation.
- Observe that $\mathcal{D}(\mathfrak{g}) = \mathcal{D}(\mathfrak{g}_1) \boxtimes \mathcal{D}(\mathfrak{g}_1)$ and $\mathcal{D}(\mathfrak{g})^G = \mathcal{D}(\mathfrak{g}_1)^{G_1} \boxtimes \mathcal{D}(\mathfrak{g}_1)^{G_1}$.

Lemma 4.1. Let $\chi \in W^{\widehat{}}$. Then, the simple $\mathcal{D}(\mathfrak{g})$ -module \mathfrak{M}_{χ} is of the form $\mathfrak{M}_{\phi} \boxtimes \mathfrak{M}_{\mu}$ for some $\phi, \mu \in W_{1}^{\widehat{}}$.

Proof. The claim follows easily from the definition of the category $C(\mathcal{M})$ and the decomposition of the *W*-module $S(\mathfrak{h}^*) = S(\mathfrak{h}^*_1) \boxtimes S(\mathfrak{h}^*_1)$.

Corollary 4.2. ([18, Theorem 6.11]) We have

$$\mathsf{Db}(\mathfrak{g}_0)^{G_0}_{nil} \cong \bigoplus_{\phi \in W_1^{\widehat{}}} \mathfrak{M}_{\phi}^{G_1} \boxtimes \mathfrak{M}_{\phi}^{G_1}$$

as a $\mathcal{D}(\mathfrak{g})^G$ -module.

Proof. Let $\chi = \phi \boxtimes \mu \in W$. Then, $V_{\chi}^{\varepsilon_I} = (V_{\phi} \boxtimes V_{\mu})^{W_1} \neq 0$ if, and only if, $\phi = \mu$ and therefore $n(\chi) = 1$. The assertion now follows from Corollary 3.5.

Recall the following general results from [13]. Since the module \mathcal{M}_{χ} is irreducible and *G*-equivariant, its support is the closure of a nilpotent orbit $\mathbf{O} = G.x$. Furthermore, if $i: \mathbf{O} \hookrightarrow \mathfrak{g}$ is the inclusion, \mathcal{M}_{χ} is uniquely determined by its (*D*-module) inverse image $\mathcal{L}_{\chi} := i^! \mathcal{M}_{\chi}$. The $\mathcal{D}_{\mathbf{O}}$ -module \mathcal{L}_{χ} is an irreducible integrable connection associated to an irreducible representation ψ of the component group $A(\mathbf{O}) := G^x/(G^x)^0$ (where $(G^x)^0$ is the connected component of the centralizer G^x). Therefore, since χ is uniquely determined by \mathbf{O} and ψ , we set $\chi = \sigma(\mathbf{O}, \psi)$.

In our situation, i.e. in the complex case, we have $\mathbf{O} = \mathbf{O}_1^1 \times \mathbf{O}_1^2$ with \mathbf{O}_1^j nilpotent orbits in \mathfrak{g}_1 for j = 1, 2. Then, $\chi = \sigma(\mathbf{O}, \psi) = \phi_1 \boxtimes \phi_2$, $\mathcal{L}_{\chi} = \mathcal{L}_{\phi_1} \boxtimes \mathcal{L}_{\phi_2}$, $\phi_j = \sigma(\mathbf{O}_1^j, \psi_j), \ \psi = \psi_1 \boxtimes \psi_2$. Note that $b(\chi) = b(\phi_1) + b(\phi_2)$ and $\lambda_{\mathbf{O}} = \lambda_{\mathbf{O}_1^1} + \lambda_{\mathbf{O}_1^2}$.

Let $x \in \mathbf{N}(\mathfrak{g}_0)$; set $x = (x_1, x_1), x_1 \in \mathbf{N}(\mathfrak{g}_1), \mathbf{O}_1 = G_1.x_1, \mathbf{O} = G.x = \mathbf{O}_1 \times \mathbf{O}_1^{\uparrow}$. The inclusion $i : \mathbf{O} \hookrightarrow \mathfrak{g}$ is equal to $i_1 \times i_1$, where $i_1 : \mathbf{O}_1 \hookrightarrow \mathfrak{g}_1$. By (3.1) and Corollary 4.2 there exist $\chi \in W^{\uparrow}, \chi_1 \in W_1^{\uparrow}$ such that $\chi = \chi_1 \boxtimes \chi_1$ and $\mathcal{D}(\mathfrak{g}).\Theta_x \cong \mathcal{M}_{\chi_1} \boxtimes \mathcal{M}_{\chi_1}$.

It is known (Harish-Chandra) that $\Theta_x = \Theta_{u,\mathfrak{h}'_0}$ for some $u \in S(\mathfrak{h}_1) \boxtimes S(\mathfrak{h}_1)$. The following result has been proved by various authors; see [2, 3] (when \mathbf{O}_1 is "special"), [8], [9], [16].

Theorem 4.3. One has $\chi_1 = \sigma(\mathbf{O}_1, \operatorname{triv})$, and there exists $p \in (V_{\chi_1} \boxtimes V_{\chi_1})^{W_1}$ such that $\Theta_x = \Theta_{F_{\mathfrak{h}}(p), \mathfrak{h}'_0}$.

Proof. Recall from [9] or [10] that $\chi = \chi_1 \boxtimes \chi_1 = \sigma(\mathbf{O}, \text{triv})$. This means that

$$\mathcal{L}_{\chi} = \mathcal{L}_{\chi_1} \boxtimes \mathcal{L}_{\chi_1} = \mathcal{O}_{\mathbf{O}} = \mathcal{O}_{\mathbf{O}_1} \boxtimes \mathcal{O}_{\mathbf{O}_1}$$

(where we denote by \mathcal{O}_X the structural sheaf of an algebraic variety X). This yields $\mathcal{L}_{\chi_1} = \mathcal{O}_{\mathbf{O}_1}$ and $\chi_1 = \sigma(\mathbf{O}_1, \operatorname{triv})$.

Set $T_x = \widehat{\Theta}_x$; then $\mathcal{D}(\mathfrak{g}).T_x = \mathcal{N}_{\chi_1} \boxtimes \mathcal{N}_{\chi_1}$ (see Lemma 1.4). Since $S_+(\mathfrak{g}^*)^G.\Theta_x = 0$ we have $S_+(\mathfrak{g})^G.T_x = 0$. It follows from Proposition 3.3(2) that we can write $T_x = T_{p,\mathfrak{h}'_0}$ for some $p \in (\mathcal{H}(\mathfrak{h}_1^*) \boxtimes \mathcal{H}(\mathfrak{h}_1^*))^{W_1}$ or, equivalently, $\Theta_x = \Theta_{F_{\mathfrak{h}}(p),\mathfrak{h}'_0}$. Now, by Theorem 2.4, $\mathcal{D}(\mathfrak{h})^W.p = V^{\chi_1} \boxtimes V^{\chi_1}$ and therefore $\mathbb{C}W.p \cong V_{\chi_1} \boxtimes V_{\chi_1}$. Moreover, $T_x = T_{p,\mathfrak{h}'_0}$ is homogeneous of degree $b(\chi_{\mathbf{O}}) - 2\nu = 2b(\chi_1) - 2\nu = \deg p - 2\nu$. Thus $\deg p = 2b(\chi_1)$ and, by definition of $V_{\chi_1}, p \in (V_{\chi_1} \boxtimes V_{\chi_1})^{W_1}$.

Acknowledgment

This work was partially completed while the author was visiting the Weizmann Institute of Science. He thanks this institution, and A. Joseph, for their hospitality.

References

- [1] J. Arthur, The L²-Lefschetz numbers of Hecke operators, Invent. Math., 97 (1989), 257-290.
- [2] D. Barbasch and D. Vogan, The local structure of characters, J. Funct. Anal., 37 (1980), 27-55.
- [3] _____, Primitive ideals and orbital integrals in complex classical groups, Math. Ann., 259 (1982), 153-199.
- [4] ______, Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra, 80 (1983), 350-382.
- [5] A. Bouaziz, Intégrales orbitales sur les algèbres de Lie réductives, Invent. Math., 115 (1994), 163-207.
- [6] R. W. Carter, Finite Groups of Lie Type, Conjugacy Classes and Complex Characters, John Wiley & Sons, Chichester, 1985.
- [7] D. H. Collingwood and W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand, New York, 1993.

INVARIANT DISTRIBUTIONS

- [8] V. Ginzburg, Intégrales sur les orbites nilpotentes et représentations des groupes de Weyl, C. R. Acad. Sci. Paris, 296 (1983), 249-252.
- [9] R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Invent. Math., 75 (1984), 327-358.
- [10] T. Levasseur, Equivariant D-modules attached to nilpotent orbits in a semisimple Lie algebra, to appear in *Transformation Groups*, (1998).
- [11] T. Levasseur and J. T. Stafford, Invariant differential operators and an homomorphism of Harish-Chandra, J. Amer. Math. Soc., 8 (1995), 365-372.
- [12] _____, The kernel of an homomorphism of Harish-Chandra, Ann. Sci. Éc. Normale Sup., 29 (1996), 385-397.
- [13] _____, Semi-simplicity of invariant holonomic systems on a reductive Lie algebra, Amer. J. Math., 119 (1997), 1095-1117.
- [14] R. Rao, Orbital integrals on reductive groups, Ann. Math., 96 (1972), 505-510.
- [15] W. Rossmann, Nilpotent Orbital Integrals in a Real Semisimple Lie Algebra and Representations of Weyl Groups, in Actes du colloque en l'honneur de Jacques Dixmier, Progress in Math. 92, Birkhäuser, Boston, 1990, 333-397.
- [16] _____, Invariant Eigendistributions on a Semisimple Lie Algebra and Homology Classes on the Conormal Variety. II. Representations of Weyl Groups, J. Funct. Anal., 96 (1991), 155-193.
- [17] V. S. Varadarajan, Harmonic Analysis on Real Reductive Groups, Part I, Lecture Notes in Mathematics 576, Springer-Verlag, Berlin/New York, 1977.
- [18] N. Wallach, Invariant differential operators on a reductive Lie algebra and Weyl group representations, J. Amer. Math. Soc., 6 (1993), 779-816.

Département de Mathématiques, Université de Brest, 29285 Brest, France. *E-mail address*: Thierry.Levasseur@univ-brest.fr