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Abstract. Let g be a semisimple complex Lie algebra with adjoint group G

and D(g) be the algebra of differential operators with polynomial coefficients

on g. If g0 is a real form of g, we give the decomposition of the semisimple

D(g)G-module of invariant distributions on g0 supported on the nilpotent cone.

0. Introduction

Let g be a semisimple complex Lie algebra with adjoint group G. Choose a
Cartan subalgebra h of g and let W be the associated Weyl group. Denote by Ŵ
the set of isomorphism classes of irreducible W -modules and by H(h∗) the graded
vector space of W -harmonic polynomials on h. For χ ∈W ,̂ set

b(χ) = inf{j ∈ N : [Hj(h∗) : χ] 6= 0}

and choose a W -submodule Vχ ⊂ Hb(χ)(h∗) in the class of χ. Denote by d(χ) the
dimension of Vχ.

Let S(g∗) be the algebra of polynomial functions on g and D(g) be the algebra
of differential operators on g, with coefficients in S(g∗). The group G acts on g,
via the adjoint action, and hence has an induced action on S(g∗), S(g) and D(g).
Denote the differential of this action by τ : g→ D(g). Let S+(g)G and S+(g∗)G be
the set of invariant elements without constant term. Recall that N(g), the nilpotent
cone of g, is the variety of zeroes of the ideal S+(g∗)GS(g∗).

Let g0 be a real form of g with adjoint group G0 ⊂ G. Denote by Db(g0) the
D(g)-module of distributions on g0. Then, the subspace of invariant distributions
Db(g0)G0 = {T ∈ Db(g0) : τ(g).T = 0} is a D(g)G-module, containing the submo-
dule of invariant distributions supported on the nilpotent cone

Db(g0)G0

nil =
{

Θ ∈ Db(g0)G0 : Supp Θ ⊂ N(g0)
}

where N(g0) = N(g)∩g0 is the nilpotent cone of g0. The structure of Db(g0)G0

nil as a
vector space is well understood, see, for example, [1, 5]. Let [h1], . . . , [hr] be the con-
jugacy classes of Cartan subalgebras of g0. For each j, let εI,j : W (hj)→ {±1} be
the imaginary signature of the real Weyl group W (hj). Then [5, Proposition 6.1.1]
there exists a vector space isomorphism

(∗)
⊕r

j=1 S(hj,C)εI,j ∼−−→ Db(g0)G0

nil
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2 T. LEVASSEUR

where S(hj,C)εI,j is the isotypic component of type εI,j in the W (hj)-module
S(hj,C).

One aim of this note is to give a complete description of the D(g)
G

-module

Db(g0)G0

nil . This description is given in terms of the simple summands of the equi-
variant holonomic D(g)-module

M = D(g)
/(
D(g)τ(g) +D(g)S+(g∗)G

)
.

By [9], [18] or [13], it is known that we have a decomposition

M =
⊕

χ∈Wˆd(χ)Mχ

where the Mχ are pairwise non-isomorphic simple D(g)-modules. Moreover, the

support (in g) of Mχ is the closure of a nilpotent orbit and MG
χ is a simple D(g)

G
-

module. Then we have, see Corollary 3.6:

Theorem A. The D(g)
G
-module Db(g0)G0

nil decomposes as

Db(g0)G0

nil
∼=
⊕

χ∈WˆmχM
G
χ

where mχ =
∑r
j=1 dimV

εI,j
χ .

This theorem is proved by combining the isomorphism (∗) and the properties,
established in [18, 11, 12, 13], of the Harish-Chandra homomorphism

δ : D(g)
G −→ D(h)W .

In the particular case where g0 is a complex Lie algebra g1 (viewed as a real Lie
algebra), Theorem A was proved by N. Wallach [18]. In this case, g ' g1 × g1,
W ' W1 ×W1 where W1 is the Weyl group of g1. Then, each Mχ occuring in the

decomposition of Db(g0)G0

nil is of the form Mφ �Mφ with χ = φ � φ, φ ∈ W1̂, and

one has mχ = 1. Hence Db(g0)G0

nil
∼= ⊕φ∈W1̂

MG1

φ �MG1

φ as a D(g)
G

-module.

The next corollary is an easy consequence of Theorem A.

Corollary B. Let χ ∈W .̂ Then, Mχ
∼= D(g).Θ for some Θ ∈ Db(g0) if, and only

if, V
εI,j
χ 6= 0 for some j ∈ {1, . . . , r}.

In Remark 3.7, we apply this result to give examples of modules Mχ which
cannot be generated by a distribution on any real form of g.

1. Preliminary results

We retain the notation of the introduction. Denote by ∆ the root system of h in
g and fix a system ∆+ of positive roots. Set n = dim g, ` = dim h and ν = #∆+,
hence n = 2ν + `. Let π be the product of positive roots and recall that x ∈ g is
called generic if π(x) 6= 0. If a ⊂ g, we denote by a′ the set of generic elements in a.

For q ∈ S(g), let ∂(q) ∈ D(g) be the corresponding differential operator with
constant coefficients. Let {ei}16i6n be an orthonormal basis of g with respect to
the Killing form κ such that {ei}16i6` is a basis of h. Denote by xi ∈ S(g∗),
1 6 i 6 n, the associated coordinate functions; thus ∂(ei) identifies with the partial
derivative ∂i = ∂

∂xi
. Denote the Euler vector fields on g and h by Eg =

∑n
i=1 xi∂i

and Eh =
∑`
i=1 xi∂i.

We now give some notation and results from [11, 12, 13, 18]. Recall first that
the algebra homomorphism, defined by Harish-Chandra,

δ : D(g)
G −→ D(h)

W
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extends the Chevalley isomorphisms S(g)G ∼−→S(h)W and S(g∗)G ∼−→S(h∗)W . The

map δ is surjective and its kernel is I = (D(g)τ(g))
G

. This enables one to identify,

through δ, modules over A(g) := D(g)
G
/I with D(h)

W
-modules.

Lemma 1.1. Let D ∈ D(g)
G
. Then D = P + Q with P ∈ C〈S(g)G, S(g∗)G〉 and

Q ∈ I.

Proof. By [11], we know that D(h)
W

= C〈S(h)W , S(h∗)W 〉. The lemma is therefore
consequence of the properties of δ previously recalled. �

Recall that the (D(h)
W
,W )-module S(h∗) decomposes as

(1.1) S(h∗) ∼=
⊕

χ∈WˆV
χ ⊗C Vχ

where V χ = HomW (Vχ, S(h∗)) is a simple D(h)
W

-module. Let
{
v1
χ, . . . , v

d(χ)
χ

}
be

a basis of Vχ, then V χ ∼= D(h)
W
.vjχ for all j and (1.1) implies that

S(h∗) =
⊕

χ∈Wˆ
⊕d(χ)

j=1 D(h)W .vjχ.

Now, set N = D(g)
/
D(g)τ(g)⊗A(g) S(h∗) and Nχ = D(g)

/
D(g)τ(g)⊗A(g) V

χ. We
have

(1.2) N = D(g)
/(
D(g)τ(g) +D(g)S+(g)G

)
and, using (1.1),

(1.3) N =
⊕

χ∈WˆNχ ⊗C Vχ.

Then each Nχ is a simple (holonomic) D(g)-module [13] and, therefore, N is a
semisimple D(g)-module (see also [9]). Let C(N) be the full subcategory of finitely
generated D(g)-modules of the form ⊕χ∈WˆmχNχ, mχ ∈ N. From [13] we know
that the category C(N) is equivalent to the category W -mod (of finite dimensional
W -modules) via the functor

Sol : C(N) −→W -mod, Sol(N) = HomD(h)W (NG, S(h∗))

where W acts on Sol(N) through its natural action on S(h∗).
The Killing form κ induces a G-isomorphism g ∼−→ g∗ and an algebra automor-

phism κ of D(g), defined by κ(∂(v)) = κ(v, ), κ(κ(v, )) = −∂(v), for all v ∈ g.
Hence, in coordinates, κ(∂j) = xj , κ(xj) = −∂j . Set i =

√
−1 ∈ C and de-

note by i the automorphism of D(g) given by i(∂j) = −i∂j , i(xj) = ixj . Define
then the “Fourier transformation” Fg ∈ AutD(g) by Fg = i ◦ κ = κ ◦ i−1; thus
Fg(xj) = i∂j , Fg(∂j) = ixj . One easily checks that κ(τ(x)) = Fg(τ(x)) = τ(x)
for all x ∈ g; moreover, κ and Fg are G-equivariant. Similarly, since κ is non
degenerate and W -invariant on h, one can define W -equivariant automorphisms κ
and Fh = i ◦ κ in AutD(h).

Lemma 1.2. One has δ ◦ Fg = Fh ◦ δ.

Proof. A direct computation shows that δ(Fg(P )) = Fh(δ(P )) when P belongs to
S(g)G or S(g∗)G. Since δ is a homomorphism, it follows that δ(Fg(P )) = Fh(δ(P ))

for all P ∈ C〈S(g)G, S(g∗)G〉. Now, let D ∈ D(g)
G

and write D = P + Q as in
Lemma 1.1. Then, since Fg(I) = I, we have δ(Fg(D)) = δ(Fg(P )) = Fh(δ(P )) =
Fh(δ(D)). �



4 T. LEVASSEUR

Recall that H(h∗) is the vector space of W -harmonic polynomials on h. Hence

H(h∗) = {f ∈ S(h∗) : ∂(q).f = 0 for all q ∈ S+(h)W }

and, as W -module, H(h∗) identifies with the regular representation of W . The
vector space H(h∗) is a graded subspace of S(h∗) and we set Hj(h∗) = Sj(h∗) ∩
H(h∗), 0 6 j 6 ν. Define the harmonic elements of S(h) by H(h) = Fh(H(h∗)) =
⊕ν
j=0Hj(h). (We could as well have set H(h) = κ(H(h∗)), since Hj(h∗) is stable

under i.)
Since Vχ ⊂ Hb(χ)(h∗), we have (Eh−b(χ)).vjχ = 0. For all d ∈ L := annD(h)W (vjχ),

we have [Eh − b(χ), d] = [Eh, d] ∈ L. It follows that L = ⊕k∈ZL ∩ Dk(h)W , where
Dk(h) = {d ∈ D(h) : [Eh, d] = kd}. Equivalently, L is stable under the C∗-action
on D(h) given by f 7→ λf , ∂(v) 7→ λ−1∂(v), f ∈ h∗, v ∈ h. In particular, we see
that Fh(L) = κ(L).

Let R be a ring and α ∈ Aut(R). If M is an R-module, we define the R-module
Mα to be the abelian group M with action of a ∈ R on x ∈M given by a�x = α(a)x.
This applies to the modules N, Nχ and the automorphism α = Fg

−1. Define

M = NFg
−1

, Mχ = NFg
−1

χ .

Thus, from (1.2) and (1.3), we obtain

M = D(g)
/(
D(g)τ(g) +D(g)S+(g∗)G

) ∼= ⊕χ∈WˆMχ ⊗C Vχ.

Remark. In [13] one defines Mχ to be Nκ−1

χ , but the two definitions agree. Indeed,

let V χ ∼= D(h)
W
.vjχ = D(h)

W
/L be as above. Then,

Nχ ∼= D(g)/J, J = D(g)τ(g) +D(g)S+(g)G +D(g)δ−1(L).

Write Nχ = D(g).(1̄⊗A(g)v
j
χ), where 1̄ is the canonical generator of D(g)/D(g)τ(g).

From δ(Eg) = Eh − ν, we get that (Eg − (b(χ)− ν)).(1̄⊗A(g) v
j
χ) = 0. It follows (as

above) that J is stable under the natural C∗-action on D(g). Hence, Fg(J) = κ(J)

and we have Nκ−1

χ = N
Fg
−1

χ .

We can define the category C(M) similar to C(N). We clearly have M ∈ C(M) if,
and only if, N = MFg ∈ C(N). Moreover, by [13], this is equivalent to saying that
M is a G-equivariant finitely generated D(g)-module such that M = D(g)MG and
SuppM ⊂ N(g). This is also equivalent to: N is a G-equivariant finitely generated
D(g)-module such that N = D(g)NG and N is S+-finite (meaning that each v ∈ N
is killed by a power of S+(g)G).

Recall that NG
χ
∼−→V χ through the identification of A(g) with D(h)

W
.

Lemma 1.3. One has: MG
χ
∼−→(V χ)Fh

−1

.

Proof. Write Nχ = D(g)/J . Then, Mχ = D(g)/Fg(J) and MG
χ = D(g)

G
/Fg(JG).

By Lemma 1.2, δ(Fg(JG)) = Fh(δ(JG)), therefore MG
χ
∼−→D(h)

W
/Fh(δ(JG)). Since

V χ ∼= D(h)
W
/δ(JG), the lemma follows. �

Let g0 be a real form of g with adjoint group G0 ⊂ G. There exists a natural
action of D(g) on Db(g0) defined by

〈∂(v).T, f〉 = 〈T,−∂(v).f〉, 〈ξ.T, f〉 = 〈T, ξf〉
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for all T ∈ Db(g0), f ∈ C∞c (g0), v ∈ g, ξ ∈ g∗. This induces a structure of D(g)
G

-
module on Db(g0)G0 . From I.Db(g0)G0 = 0, we obtain a natural A(g)-module
structure on Db(g0)G0 .

Fix a basis {u1, . . . , un} of g0 such that κ(uj , uk) = ±δjk and denote by dy be
the Lebesgue measure associated to this choice. Let S(g0) be the Schwartz space
on g0. Define, as in [18, Appendix 1], the Fourier transform of f ∈ S(g0) by

f̂(x) =
1

(2π)n/2

∫
g0

f(y)e−iκ(y,x)dy

Let T be a tempered distribution on g0. The Fourier transform of T is defined by

〈T̂ , f〉 = 〈T, f̂〉 for f ∈ C∞c (g0). Then we have

(1.4) ∀D ∈ D(g), ∀T ∈ Db(g0), D̂.T = Fg(D).T̂ .

Recall [2] that T ∈ Db(g0) is said to be homogeneous of degree d if, for all f ∈
C∞c (g0), t ∈ R∗, 〈T, ft〉 = td〈T, f〉, where ft(v) = t−nf(t−1v). Then, a homogeneous
distribution of degree d is tempered and satisfies Eg.T = dT . We will need the
following well known result:

Lemma 1.4. Let T ∈ Db(g0) be tempered and set M = D(g).T . Then MFg ∼=
D(g).T̂ .

Proof. By (1.4) we have annD(g)(T̂ ) = Fg
−1(annD(g)(T )). Hence the result. �

Let N(g0) be the set of nilpotent elements of g0. Define D(g)-submodules of
Db(g0) by

Db(g0)nil = {Θ ∈ Db(g0) : Supp Θ ⊂ N(g0)}

Db(g0)S+ = {T ∈ Db(g0) : ∃k ∈ N, (S+(g)G)k.T = 0}.

The elements of Db(g0)S+
are called S+-finite. Observe that Db(g0)G0

nil and Db(g0)G0

S+

are D(g)
G

-modules. The next theorem is consequence of the results proved in [18].

Theorem 1.5. (1) Db(g0)G0

nil = {Θ ∈ Db(g0)G0 : D(g).Θ ∈ C(M)}.
(2) Db(g0)G0

S+
= {T ∈ Db(g0)G0 : D(g).T ∈ C(N)}.

(3) Θ ∈ Db(g0)G0

nil ⇐⇒ Θ̂ ∈ Db(g0)G0

S+
.

Proof. (1) follows from [18, Theorem 6.1], since D(g).Θ ∈ C(M) is equivalent to

D(g)
G
.Θ ∼= ⊕χ∈WˆmχM

G
χ .

(2) and (3) are consequences of (1) and Lemma 1.4. �

Remark 1.6. Let T ∈ Db(g0)G0

S+
. Recall that by the Harish-Chandra regularity

theorem, T is given by

〈T, f〉 =

∫
g′0

FT (y)f(y)dy

for some analytic function FT on g′0, locally integrable on g0.
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2. The distributions Θu,Γ and Tp,Γ

Let g0 be a real form of g, with adjoint group G0, h0 a Cartan subalgebra and let
H0 be the associated Cartan subgroup. Set h = C⊗R h0 and adopt the notation of
§1. Denote by W (h0) the real Weyl group, i.e. W (h0) = NG0(h0)/ZG0(h0). Define

∆R = {α ∈ ∆ : α(h0) ⊂ R} (the real roots)

∆I = {α ∈ ∆ : α(h0) ⊂ iR} (the imaginary roots).

A root which is neither real nor imaginary is called complex. Let ∆+
I be a positive

system of roots in ∆I and set πI =
∏
α∈∆+

I
α. Then each w ∈W (h0) permutes the

imaginary roots and one can define a character of W (h0), the imaginary signature,
by

εI : W (h0)→ {±1}, w.πI = εI(w)πI .

If V is a W (h0)-module we denote by V εI the isotypic component of type εI in V .
In the sequel, we adopt the notation of [5] with the minor difference that we use

e−iκ(x,y) in the definition of the Fourier transform.
Let h ∈ h′0 and f ∈ C∞c (g0). Define [5, §3.1] the distribution µG0.h by

〈µG0.h, f〉 = |det adg0/h0
(h)| 12

∫
G0/H0

f(ġ.h)dġ

Then one defines the function Jg0
(f), or simply J(f), on h′0 by

Jg0(f) = {h 7→ 〈µG0.h, f〉}.
Set hreg

0 = {h ∈ h0 : πI(h) 6= 0} and fix a connected component Γ of hreg
0 . Let

u ∈ S(h); Harish-Chandra has shown, see [17, §8.1, p. 123], that one can define a
tempered G0-invariant distribution on g0 by

(2.1) ∀ f ∈ C∞c (g0), 〈Θu,Γ, f〉 = lim
h→0
h∈Γ

[∂(u).J(f)](h).

Furthermore Θu,Γ ∈ Db(g0)G0

nil and, when u ∈ Sb(h), Θu,Γ is homogeneous of degree
−b− ν − `.

Now let p ∈ S(h∗) and define T ∈ Db(g0)G0

S+
by

(2.2) Tp,Γ = Θ̂Fh(p),Γ =
{
f 7→ lim

h→0
h∈Γ

[∂(Fh(p)).J(f̂)](h)
}
.

Then, Tp,Γ is tempered and is homogeneous of degree b− ν when p ∈ Sb(h∗).

Lemma 2.1. (1) Let ϕ ∈ S(g∗)G. Then, ϕTp,Γ = Tδ(ϕ)p,Γ.

(2) Let q ∈ S(g)G. Then, ∂(q).Tp,Γ = T∂(δ(q)).p,Γ.

Proof. Set u = Fh(p), φ = δ(ϕ) ∈ S(h∗)W and s = δ(q) ∈ S(h)W . Let f ∈ C∞c (g0).

(1) By definition, see (2.2), 〈ϕTp,Γ, f〉 = limh→0
h∈Γ

[∂(u).J(ϕ̂f)](h). But, [17,

Lemma 3.2.7, p. 38], (1.4) and Lemma 1.2 imply that J(ϕ̂f) = ∂(Fh(φ)).J(f̂).
Hence,

〈ϕTp,Γ, f〉 = lim
h→0
h∈Γ

[∂(u)∂(Fh(φ)).J(f̂)](h) = lim
h→0
h∈Γ

[∂(Fh(φp)).J(f̂)](h)

= 〈Tφp,Γ, f〉,
as desired.
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(2) By (1.4), ∂(q).Tp,Γ is the Fourier transform of Fg
−1(q)Θu,Γ, hence

〈∂(q).Tp,Γ, f〉 = lim
h→0
h∈Γ

[∂(u).J(Fg
−1(q)f̂)](h).

Set g = J(f̂). From [17, Lemma 3.2.7, p. 38] and Lemma 1.2 we obtain that

J(Fg
−1(q)f̂) = Fh

−1(s)g. Therefore

〈∂(q).Tp,Γ, f〉 = lim
h→0
h∈Γ

[∂(u).(Fh
−1(s)g)](h).

Recall (see §1) that we have chosen a coordinate system {xj ; ej}16j6`. With stan-

dard notation, we write xα =
∏`
k=1 x

αk
k , eµ =

∏`
k=1 e

µk
k and

p =
∑
α∈N` pαx

α, s =
∑
µ∈N` sµe

µ.

Set ∂µ =
∏
j ∂(ej)

µj ; thus ∂(s) =
∑
µ∈N` sµ∂

µ. Order N` by saying that µ ≤ α if

µj 6 αj for all j. Set α! =
∏
j αj ! and

(
α
µ

)
=
∏
j

(
αj
µj

)
, when µ ≤ α. Then:

∂µ(xα) =

{
0 if µ 6≤ α,
α!

(α−µ)!x
α−µ if µ ≤ α.

Now we have u = Fh(p) =
∑
α pαi

|α|∂α and Fh
−1(s) =

∑
µ qµi

−|µ|xµ. Therefore,
using the Leibniz formula, we get that

∂(u).(Fh
−1(s)g) =

∑
α pαi

|α|∂α(Fh
−1(s)g)

=
∑
α

∑
µ

∑
β≤α pαsµi

|α|−|µ|(α
β

)
∂β(xµ)∂α−β(g).

But limh→0 ∂
β(xµ)(h) = 0 unless β = µ, hence

lim
h→0
h∈Γ

[∂(u).(Fh
−1(s)g)](h) =

∑
α

∑
µ≤α

pαsµi
|α|−|µ|

(
α

µ

)
µ! lim
h→0
h∈Γ

[∂α−µ(g)](h).

On the other hand, we have

〈T∂(s).p,Γ, f〉 = lim
h→0
h∈Γ

[∂(Fh(∂(s).p)).g](h).

Since ∂(s).p =
∑
α

∑
µ≤α

α!
(α−µ)!sµpαx

α−µ, we obtain that

〈T∂(s).p,Γ, f〉 =
∑
α

∑
µ≤α

α!

(α− µ)!
sµpαi

|α|−|µ| lim
h→0
h∈Γ

[∂α−µ(g)](h).

This proves the desired equality. �

Theorem 2.2. Let p ∈ S(h∗) and D ∈ D(g)
G
. Then, D.Tp,Γ = Tδ(D).p,Γ.

Proof. Since Tp,Γ is G0-invariant, we have I.Tp,Γ = 0. Let P ∈ C〈S(g)G, S(g∗)G〉;
by Lemma 2.1 and an obvious induction, we obtain that P.Tp,Γ = Tδ(P ).p,Γ. The
theorem then follows from Lemma 1.1. �

Recall, see Remark 1.6, that Θ̂u,Γ ∈ Db(g0)G0

S+
is determined by a locally inte-

grable function on g0. We still denote this function by Θ̂u,Γ.

Lemma 2.3. ([5, Lemme 6.1.2]) There exists cΓ ∈ C∗, such that

a∆+
I

(h)|det adg0/h0
(h)| 12 Θ̂Fh(p),Γ(h) = cΓp(h)

for all p ∈ S(h∗)εI and h ∈ hreg
0 . �
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Remark. In the notation of the lemma, if u = Fh(p), the function ũ(ih) of [5] is

replaced here by p(h) since we are using e−iκ(x,y) in the definition of the Fourier
transform.

Theorem 2.4. Let p ∈ S(h∗)εI . There exists a bijective map

ρ : D(g)
G
.Tp,Γ −→ D(h)

W
.p, ρ(D.Tp,Γ) = δ(D).p

which, through δ, yields an isomorphism

ρ : A(g).Tp,Γ
∼−−→D(h)

W
.p

Proof. We first need to show that ρ is well defined. Let D ∈ D(g)
G

; by Theorem 2.2
we have

(†) D.Tp,Γ = Tδ(D).p,Γ = Θ̂Fh(δ(D).p),Γ.

Suppose that D.Tp,Γ = 0. Then, the analytic function associated to Tδ(D).p,Γ ∈
Db(g0)G0

S+
vanishes on hreg

0 . Notice that, since δ(D) is W -invariant, δ(D).p ∈
S(h∗)εI . Therefore Lemma 2.3 gives δ(D).p = 0 on hreg

0 . Thus δ(D).p = 0 on
h and ρ is well defined.

Now, it follows easily from (†) that ρ is a linear bijection. Since I.Tp,Γ = 0, the
last assertion is clear. �

Recall that we denote by Vχ ⊂ Hb(χ)(h∗) a simple W -module in the class of
χ ∈W .̂

Corollary 2.5. Let p ∈ S(h∗)εI such that CW.p is simple. Then there exists
χ ∈Ŵ such that V εIχ 6= 0. We have:

(1) D(g).Tp,Γ
∼−→Nχ and D(g)

G
.Tp,Γ

∼−→V χ;

(2) D(g).ΘFh(p),Γ
∼−→Mχ and D(g)

G
.ΘFh(p),Γ

∼−→(V χ)Fh
−1

.

Proof. The first assertion follows from H(h∗) ∼= CW . Then, 1 and 2 are conse-

quences of V χ ∼= D(h)
W
.p, Lemma 1.3 and Theorem 2.4. �

Remark 2.6. Let χ ∈ Ŵ be such that V εIχ 6= 0. It follows obviously from the
previous corollary that

Nχ ∼= D(g).Tp,Γ, Mχ
∼= D(g).Θu,Γ

where 0 6= p ∈ V εIχ ⊂ Hb(χ)(h∗)εI and u = Fh(p) ∈ Hb(χ)(h)εI .

3. The decomposition of Db(g0)G0

S+
and Db(g0)G0

nil

Fix a real form g0 of g and let [h1], . . . , [hr] be the conjugacy classes of Cartan
subalgebras in g0. For each j = 1, . . . , r we denote by

hj,C = hj ⊗R C, Wj = W (g, hj,C), ∆+
I,j a set of positive imaginary roots,

εI,j : W (hj) = W (G0, hj)→ {±1} the imaginary signature associated to hj .

For each j we fix a connected component Γj of hreg
j . The results of §2 then apply

to h0 = hj , Γ = Γj etc.



INVARIANT DISTRIBUTIONS 9

Remark 3.1. Recall that the hj,C are G-conjugate. Therefore, if 1 6 j, k 6 r,
the algebras D(hj,C)Wj and D(hk,C)Wk are naturally isomorphic. Denote this iso-
morphism by γjk and let δj be the Harish-Chandra isomorphism from A(g) onto
D(hj,C)Wj . One can check that δk = γjk ◦ δj . Therefore, we can choose an “ab-

stract” Cartan subalgebra h and identify δj with the homomorphism δ : D(g)
G →

D(h)
W

, where W = W (G, h). Then, if χ ∈ W ,̂ we have an irreducible W -module

Vχ ⊂ Hb(χ)(h∗) and a simple D(h)
W

-module V χ.

For each χ ∈ W ,̂ choose a simple W -module Vχ,j ⊂ Hb(χ)(h∗j,C), Vχ,j ∼= Vχ.

Write Vχ,j = V
εI,j
χ,j ⊕ Eχ,j with Eχ,j stable under W (hj). Let {vkχ,j}16k6d(χ) be a

basis of Vχ,j such that

V
εI,j
χ,j =

⊕nj(χ)
k=1 Cvkχ,j , Eχ,j =

⊕d(χ)
k=nj(χ)+1 Cv

k
χ,j

(hence nj(χ) = dimV
εI,j
χ ).

Lemma 3.2. The D(hj,C)Wj -module S(h∗j,C)εI,j decomposes as

S(h∗j,C)εI,j =
⊕

χ∈Wˆ
⊕nj(χ)

k=1 D(hj,C)Wj .vkχ,j

with D(hj,C)Wj .vkχ,j
∼= V χ.

Proof. Clearly, we can drop the index j and write h0 = hj , h = hj,C, vkχ = vkχ,j etc.

Since D(h)
W
.vkχ ⊂ S(h∗)εI for 1 6 k 6 n(χ) = dimV εIχ , one has

S(h∗)εI ⊃
⊕

χ∈Wˆ
⊕n(χ)

k=1 D(h)
W
.vkχ.

Recall from §1 that S(h∗) = ⊕χS(h∗)[χ] with S(h∗)[χ] = ⊕d(χ)
k=1D(h)

W
.vkχ. Write

S(h∗)[χ] = E1 ⊕ E2, where E1 = ⊕n(χ)
k=1D(h)

W
.vkχ and E2 = ⊕d(χ)

k=n(χ)+1D(h)
W
.vkχ.

Notice that E1, E2 are stable under W (h0) and that we have S(h∗)[χ]εI = E1⊕EεI2 .
We now show that EεI2 = 0. This will prove that

S(h∗)εI =
⊕

χ∈Wˆ
⊕n(χ)

k=1 D(h)
W
.vkχ.

Let D ∈ D(h)
W

and v ∈ Vχ. Notice first that if D.v 6= 0, the operator D yields
an isomorphism of W -modules Vχ

∼−→D.Vχ. Therefore, if Vχ = ⊕kSk with Sk
irreducible W (h0)-module, we get that D.Vχ = ⊕kD.Sk, D.Sk ∼= Sk. It fol-
lows that if v ∈ Eχ (the W (h0)-stable complement of V εIχ ) then D.v ∈ D.Eχ

with D.Eχ ∩ S(h∗)εI = 0. Let p =
∑d(χ)
k=n(χ)+1Dk.v

k
χ ∈ E2. Then, CW (h0).p ⊂∑

k>n(χ) CW (h0).(Dk.v
k
χ) and, by the previous remarks,

(
CW (h0).(Dk.v

k
χ)
)εI

= 0.

Thus (CW (h0).p)εI = 0, which shows that EεI2 = 0. �

Recall the following result:

Proposition 3.3. ([5, Proposition 6.1.1]) (1) The linear map

T :
⊕r

j=1 S(h∗j,C)εI,j −→ Db(g0)G0

S+
, T(p1, . . . , pr) =

∑r
j=1 Tpj ,Γj

is an isomorphism of vector spaces.
(2) The map T induces an isomorphism:⊕r

j=1H(h∗j,C)εI,j ∼−−→{T ∈ Db(g0)G0

S+
: S+(g)G.T = 0}.

Proof. (2) follows from the proof of [5, Proposition 6.1.1]. �
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Theorem 3.4. Set T(hj) =
∑
p∈S(h∗j,C)εI,j CTp,Γj . Then we have the following

decomposition of D(g)
G
-modules:

Db(g0)G0

S+
=
⊕r

j=1 T(hj)

with
T(hj) =

⊕
χ∈Wˆ

⊕nj(χ)
k=1 D(g)

G
.Tvkχ,j ,Γj

and D(g)
G
.Tvkχ,j ,Γj

∼= NG
χ .

Proof. The decomposition of T(hj), as a D(g)
G

-module, is consequence of Theo-
rem 2.4, Lemma 3.2 (using the isomorphism δj : A(g) ∼−→D(hj,C)Wj ) and Proposi-

tion 3.3. The decomposition of Db(g0)G0

S+
follows from Proposition 3.3. �

Using the Fourier transform, we obtain the following:

Corollary 3.5. The D(g)
G
-module Db(g0)G0

nil decomposes as

Db(g0)G0

nil =
⊕r

j=1

⊕
χ∈Wˆ

⊕nj(χ)
k=1 D(g)

G
.ΘFh

−1(vkχ,j),Γj

with D(g)
G
.ΘFh

−1(vkχ,j),Γj
∼= MG

χ . �

The next corollary follows from Theorem 3.4 and Corollary 3.5.

Corollary 3.6. We have:

Db(g0)G0

S+

∼=
⊕

χ∈WˆmχN
G
χ , Db(g0)G0

nil
∼=
⊕

χ∈WˆmχM
G
χ

where mχ =
∑r
j=1 dimV

εI,j
χ . �

Remark 3.7. Let χ ∈W .̂ It is not always possible to “realize” the modules Nχ and
Mχ as D(g).T for some T ∈ Db(g0), where g0 is a real form of g. By the previous
results, this statement is equivalent to the existence of a Cartan subalgebra hj ⊂ g0

such that V
εI,j
χ 6= 0. D. Renard has observed that, using the results of W. Rossmann

[15], this can be translated to a question about centralizers of nilpotent elements.
Fix a real form gR of g with adjoint group GR. If x ∈ gR is nilpotent one defines a
subgroup of the component group A(G.x) (see §4 for notation) by

A(GR.x) = GxR
/
GxR ∩ (Gx)0.

Recall that χ ∈Ŵcan be written σ(O, ψ) via the Springer correspondence, where
O ⊂ g is a nilpotent orbit and ψ : A(O)→ GL(E) is an irreducible representation.
Then, by [15, Corollary 3.2 & Theorem 3.3], there exists a Cartan subalgebra
h0 ⊂ gR such that V εIχ 6= 0 if, and only if, there exists a nilpotent element x ∈ gR
such that O = G.x and EA(GR.x) 6= 0.

Let g = sp(`,C) and let φ ∈ Ŵ be the long sign character, i.e. Vφ = Cπl
where πl is the product of the long roots. Then, see [6, §13.3], φ = σ(O, ψ) where
O = G.x is the subregular nilpotent orbit with partition [2`−2, 2] and ψ is the non
trivial character of A(O) ∼= {±1}. The real forms of g are sp(`,R) and the sp(p, q),
p+q = `. Assume now that ` > 3. By the classification of nilpotent orbits in sp(p, q),
see [7, Theorem 9.2.5], we know that O∩sp(p, q) = ∅. Hence, by Rossmann’s results,
V
εI,j
φ = 0 for each Cartan subalgebra hj ⊂ sp(p, q). On the other hand, if GR is

the adjoint group of sp(`,R), one can show that A(GR.x) = A(G.x). Thus, with
the above notation, EA(GR.x) = 0 and it follows that V

εI,j
φ = 0 for each Cartan

subalgebra hj ⊂ sp(`,R). For instance, when g = sp(3,R) there are six conjugacy
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classes of Cartan subalgebras and one can directly verify (without using [15]) that
V
εI,j
φ = 0 for j = 1, . . . , 6. We thank D. Renard for showing this computation to

us. �

Let x ∈ N(g0) and denote by βx the Liouville (Kostant-Kirillov) measure on

G0.x. By [14] one can define Θx ∈ Db(g0)G0

nil by 〈Θx, f〉 =
∫
G0.x

fdβx for all

f ∈ C∞c (g0). Set O = G.x. Then, see [9], [10] or [18], Θx is homogeneous of degree
λO = 1

2 dimO− dim g and satisfies

(3.1) D(g).Θx
∼= MχO

for some χO ∈Ŵsuch that λO = ν − n− b(χO).

Corollary 3.8. There exists j ∈ {1, . . . , r} and u ∈ Fh
−1(VχO,j)

εI,j such that

D(g)
G
.Θx
∼= D(g)

G
.Θu,Γj .

Proof. Since D(g)
G
.Θx
∼= MG

χO
is a simple submodule of Db(g0)G0

nil , the claim follows
from Corollary 3.5. �

Remark 3.9. It is proved in [1], see also [5], that Θx can be written as
∑r
j=1 Θaj ,Γj

with aj ∈ Hb(χO)(hj,C)εI,j . It is easily seen that we may assume CW.aj ∼= VχO

for all j such that aj 6= 0. W. Rossmann [15] has given conditions to ensure that
Θx = Θaj ,Γj for some j.

4. Example: the complex case

We assume in this section that g0 = gR1 is a complex semisimple Lie algebra, g1,
viewed as a real Lie algebra. Then, g can be identified with g1 × g1 and g0 with
the diagonal {(a, a) ∈ g1 × g1}. Let h1 be a Cartan subalgebra of g1. Recall the
following well known facts, see [17] or [18]:

� h0 = {(a, a) : a ∈ h1} is a Cartan subalgebra of h0 and h = h0⊗RC = h1×h1;
� W (g, h) = W1 ×W1, where W1 = W (g1, h1), and W (h0) = {(w,w) ∈ W}

is isomorphic to W1;
� there is a unique conjugacy class [h0] of Cartan subalgebras and h′0 is con-

nected;
� the roots in ∆(g, h) are complex and, therefore, εI = 1;
� the irreducible representations of W are of the form χ = φ� µ, φ, µ ∈W1̂ ;
� one has φ = φ∗ for all φ ∈W1̂, where φ∗ is the dual representation.

Observe that D(g) = D(g1)�D(g1) and D(g)
G

= D(g1)G1 �D(g1)G1 .

Lemma 4.1. Let χ ∈ W .̂ Then, the simple D(g)-module Mχ is of the form
Mφ � Mµ for some φ, µ ∈W1̂.

Proof. The claim follows easily from the definition of the category C(M) and the
decomposition of the W -module S(h∗) = S(h∗1)� S(h∗1). �

Corollary 4.2. ([18, Theorem 6.11]) We have

Db(g0)G0

nil
∼=
⊕

φ∈W1̂
MG1

φ �MG1

φ

as a D(g)
G
-module.

Proof. Let χ = φ � µ ∈ W .̂ Then, V εIχ = (Vφ � Vµ)W1 6= 0 if, and only if, φ = µ
and therefore n(χ) = 1. The assertion now follows from Corollary 3.5. �
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Recall the following general results from [13]. Since the module Mχ is irre-
ducible and G-equivariant, its support is the closure of a nilpotent orbit O = G.x.
Furthermore, if ı : O ↪→ g is the inclusion, Mχ is uniquely determined by its (D-
module) inverse image Lχ := ı!Mχ. The DO-module Lχ is an irreducible integrable
connection associated to an irreducible representation ψ of the component group
A(O) := Gx/(Gx)0 (where (Gx)0 is the connected component of the centralizer
Gx). Therefore, since χ is uniquely determined by O and ψ, we set χ = σ(O, ψ).

In our situation, i.e. in the complex case, we have O = O1
1 × O2

1 with Oj
1

nilpotent orbits in g1 for j = 1, 2. Then, χ = σ(O, ψ) = φ1 � φ2, Lχ = Lφ1 � Lφ2 ,

φj = σ(Oj
1, ψj), ψ = ψ1�ψ2. Note that b(χ) = b(φ1) + b(φ2) and λO = λO1

1
+λO2

1
.

Let x ∈ N(g0); set x = (x1, x1), x1 ∈ N(g1), O1 = G1.x1, O = G.x = O1 ×O1.
The inclusion ı : O ↪→ g is equal to ı1 × ı1, where ı1 : O1 ↪→ g1. By (3.1)
and Corollary 4.2 there exist χ ∈ W ,̂ χ1 ∈ W1̂ such that χ = χ1 � χ1 and
D(g).Θx

∼= Mχ1
�Mχ1

.
It is known (Harish-Chandra) that Θx = Θu,h′0

for some u ∈ S(h1) � S(h1).
The following result has been proved by various authors; see [2, 3] (when O1 is
“special”), [8], [9], [16].

Theorem 4.3. One has χ1 = σ(O1, triv), and there exists p ∈ (Vχ1 �Vχ1)W1 such
that Θx = ΘFh(p),h′0

.

Proof. Recall from [9] or [10] that χ = χ1 � χ1 = σ(O, triv). This means that

Lχ = Lχ1
� Lχ1

= OO = OO1
�OO1

(where we denote by OX the structural sheaf of an algebraic variety X). This yields
Lχ1 = OO1 and χ1 = σ(O1, triv).

Set Tx = Θ̂x; then D(g).Tx = Nχ1
�Nχ1

(see Lemma 1.4). Since S+(g∗)G.Θx = 0
we have S+(g)G.Tx = 0. It follows from Proposition 3.3(2) that we can write
Tx = Tp,h′0 for some p ∈ (H(h∗1)�H(h∗1))W1 or, equivalently, Θx = ΘFh(p),h′0

. Now,

by Theorem 2.4, D(h)W .p = V χ1�V χ1 and therefore CW.p ∼= Vχ1
�Vχ1

. Moreover,
Tx = Tp,h′0 is homogeneous of degree b(χO)− 2ν = 2b(χ1)− 2ν = deg p− 2ν. Thus

deg p = 2b(χ1) and, by definition of Vχ1 , p ∈ (Vχ1 � Vχ1)W1 . �
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