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THE RESULTS.

Fix a field k. LetOq = Oq(SLn(k)) be the (multiparameter) quantum coordinate ring of

the special linear group SLn(k) and let Mq = Oq(Mn(k)) be the corresponding quantum

coordinate ring of all n × n matrices, as defined in [AST]. (The definition of these and

other concepts used in this introduction are given in the next section). By definition, Oq =

Mq/(∆q − 1), where ∆q is a central element in Mq called the “quantum determinate”.

One would like to assert that the standard properties of the classical coordinate ring

O(SLn(k)), for example integrality and finite global homological dimension, also hold for

Oq. This is particularly true since it is easy to show that these properties do hold for Mq

(this follows from the fact that, as is proved in [AST, pp.890-1], Mq is an iterated Ore

extension of k in the sense of [Co, Section 12.2]). However, it is typically hard (and in the

abstract impossible) to show that such properties pass to factor rings. The main aim of

this note is to make the following observation, giving a different method for obtaining Oq

from Mq:

PROPOSITION. Set Oq(GLn(k)) = Oq(Mn(k))[∆
−1
q

] and let z be a central indetermi-

nate. Then

Oq(SLn(k))⊗k k[z, z−1] ∼= Oq(GLn(k)).

One should interpret this result as a “quantum” analogue of the well known fact that

SLn(k) × k∗ ∼= GLn(k). Once stated, this Proposition is almost trivial to prove. Its

significance, however, is that many desirable properties pass from a ring to a central

localization. Thus, for example, the Proposition allows one to prove:

COROLLARY. (i) Oq is a domain and a maximal order in its division ring of fractions.

(ii) GKdim(Oq) = gldim(Oq) = n2 − 1.

(iii) Oq is Auslander regular and CM.

(iv) K0(Oq) = Z.

At least for the standard 1-parameter version of Oq, the fact that Oq is a domain can be

proved in several other ways, but all of them seem to require considerably more knowledge

about the structure of Oq. For example, for most values of the quantum parameter and for

any classical group G, a proof that Oq(G) is a domain can be obtained by combining [En]

and [Jo, Lemme 9.11 ], while for G = SLn it also follows from the appendix to [APW].

Also, D. Jordan and the authors have shown independently that Mq/(∆q) is a domain,

from which it follows that Oq is a domain.
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THE PROOFS.

Given a ring C, write C∗ for the set of units of C. Let q =
{

λ, qij : 1 ≤ i, j ≤ n
}

⊂ k∗ be

fixed, non-zero scalars that satisfy λ 6= −1 and qij = q−1
ji and qii = 1, for all 1 ≤ i, j ≤ n.

Define Oq(k
(n)) to be the k-algebra with generators {xi : 1 ≤ i ≤ n} and relations

xjxi = qjixixj , for all 1 ≤ i, j ≤ n. Define p = {λ, pij} by pij = λ−1qij , for all i > j, and,

as before, pji = p−1
ij and pii = 1. Then Mq = Oq(Mn(k)) is defined to be the universal

bi-algebra having Oq(k
(n)) as a left comodule algebra and Op(k

(n)) as a right comodule

algebra, in the sense of [Ma, Section 5]. Thus, Mq is the k-algebra with generators

{xij : 1 ≤ i, j ≤ n} and relations defined by [AST, Equ. (8)]. The precise definition of

these relations is not important, here, except that they are of the following form:

xijxℓm =

{

αijℓmxℓmxij + (λ− 1)λ−1qimxℓjxim if i > ℓ and j > m

αijℓmxℓmxij otherwise
(1)

for some αijℓm ∈ k∗. We remark that the restrictions on the scalars q and p given above

are precisely what is required for Mq to have the same Hilbert series as a polynomial ring

in n2 variables (see [AST, Theorem 1]). The universal argument of [Ma, Section 8] shows

that there exists a quantum determinant

∆q =
∑

π∈Sn

απx1,π(1)x2,π(2) · · ·xn,π(n), (2)

where the απ ∈ k∗ are certain scalars and are defined in [AST, Equ. (15)]. By [AST,

Theorem 3],

∆q is central ⇐⇒ λj

n
∏

m=1

qjm = λk

n
∏

m=1

qkm for all j, k. (3)

Thus, Oq(SLn(k)) = Mq/(∆q − 1) is defined precisely when (3) holds. For k sufficiently

large, this gives a
(

n−1
2

)

+ 1 parameter family of deformations of O(SLn(k)) (see [ GGS,

Section 14]). If S = {∆r
q
: r ≥ 1}, we define Oq(GLn(k)) = (Mq)S = Mq[∆

−1
q

].

Finally, if C is a commutative k-algebra, we define Oq(C) = Oq(SLn(k))⊗k C and

Mq(C) = Oq(Mn(k))⊗k C. The results of this paper actually hold if k is taken to be any

Noetherian, commutative domain (in which case it is unnecessary to define Oq(C)) but,

in order to prove this, one first needs to prove the corresponding generalization of [AST].

The standard, one parameter quantum coordinate ring Oq(SLn(k)) of SLn(k), as for

example defined in [Ma] or [PW], is obtained by taking λ = q2 and qij = q for all i > j.
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PROOF OF THE PROPOSITION. Let C be a commutative k-algebra and µ ∈ C∗.

Then, as an C-algebra, Mq(C) = Oq(Mn(k))⊗k C is still defined by the relations given

in (1). The important point to note about these relations is that they are homogeneous

in the set of variables {x1j : 1 ≤ j ≤ n}. In other words, if a given relation from (1)

has r occurrences of elements from the set {x1j} occurring in one monomial, then every

monomial in that relation has r occurrences of elements from {x1j}. Thus, there is an

C-algebra automorphism σµ of Mq(C) defined by

σµ(x1j) = µ−1x1j and σµ(xij) = xij , for all 1 ≤ j ≤ n and 2 ≤ i ≤ n.

By the description of ∆q in (2), one sees that σµ(∆q) = µ−1∆q. Now assume that

C = k[z, z−1], for an indeterminate z. Then:

Oq(SLn(k))[z, z
−1] ∼= Oq(SLn(k))⊗k k[z, z−1] ∼= Mq ⊗k k[z, z−1]

/

(∆q − 1)

σz∼= Mq ⊗k k[z, z−1]
/

(∆q − z) ∼= Mq[∆
−1
q

].

Thus, Oq(SLn(k))[z, z
−1] ∼= Oq(GLn(k)). �

Another way of viewing this result is as follows: Under the isomorphism, Oq[z, z
−1] ∼=

Oq(GLn(k)), the element z maps to ∆q, and so, by inverting C = k[z]∗, respectively

D = k[∆q]
∗, we obtain Oq(SLn(k(z))) ∼= (Mq)D.

Let M be a finitely generated module over a Noetherian k-algebra A. Then the Gelfand-

Kirillov and homological dimensions of M will be denoted by GKdim(M), respectively

hd(M). The global homological dimension of A will be written gldim(A). If the injective

dimensions of AA and AA are finite, then they are equal, by [Za, Lemma A], and this

integer will be denoted by injdim(A). If injdim(A) < ∞, then A is called Auslander-

Gorenstein if A satisfies the following condition: For any integers 0 ≤ i < j and finitely

generated (right) A-module M , one has ExtiA(N, A) = 0 for all (left) A-submodules N

of ExtjA(M, A). If A is an Auslander-Gorenstein ring of finite global dimension, then A

is called Auslander-regular. Set j(M) = min{j : Extj(M, A) 6= 0}. The ring A is CM if

j(M) +GKdim(M) = Gkdim(A) holds for all finitely generated A-modules M .

Before proving the Corollary, we need the following result that provides some more-or-

less well known facts about these conditions.

Lemma. Suppose that R is a Noetherian ring that is Auslander-regular and CM. Let

S = R[x;σ, δ] be an Ore extension, in the sense of [Co, Section 12.2]. Then:

(i) S is Auslander-regular.
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(ii) Assume that R =
⊕

i≥0 Ri is a connected graded k-algebra (thus R0 = k) such that

σ(Ri) ⊆ Ri for each i ≥ 0. Then S is CM.

(iii) Let f be a central, regular element of R. Then R/fR is Auslander-Gorenstein and

CM.

Proof: (i) This follows from [Ek, Theorem 4.2].

(ii) Filter S by degree in x and note that the corresponding graded ring gr(S) is iso-

morphic to R[y;σ]. The hypotheses on R ensure that gr(S) has the structure of a con-

nected graded ring, defined by gr(S)n =
⊕

i+j=n Riy
j . Moreover, y is a normal, homo-

geneous element in gr(S) and gr(S)/y gr(S) ∼= R. Hence, by [Lv, Theorem 3.6], gr(S)

is (graded) CM and, by part (i) gr(S) is Auslander-regular. If M is a finitely gener-

ated S-module, give M a good filtration and consider the associated graded gr(S)-module

gr(M). Then, by [Bj, Theorem 4.3], jS(M) = jgr(S)(gr(M)) while, by [MS, Theorem 1.3],

GKdimS(M) = GKdimgr(S)(gr(M)). Thus,

jS(M) = GKdim(gr(S))−GKdim(gr(M)) = GKdim(S)−GKdim(M)

and S is CM.

(iii) To avoid triviality, assume that f is not a unit. Set R = R/fR. Since jR(R) = 1,

the CM condition implies that GKdim(R) = GKdim(R)−1. LetM be a finitely generated

R-module. By the Rees Lemma [Ro, Theorem 9.37], ExtjR(M,R) = Extj−1

R
(M,R), for

each j ≥ 1. It follows that R is Auslander-Gorenstein and CM. �

The extra conditions in part (ii) of the Lemma are necessary since, in general, GKdim(M)

6= GKdim(gr(M)). For example, suppose that R = C[z, z−1, y], where z and y are central

indeterminates, and σ is the C-automorphism of R defined by σ(z) = z but σ(y) = zy.

Then, let S = R[x;σ, 0] and set M = S/(x− 1)S and N = S/xS (thus, N = gr(M) in the

notation of the proof of part (ii) of the Lemma). It follows from [MS, Proposition 3.4]

that j(M) = j(N) = 1 but GKdim(M) = 3 > 2 = GKdim(N).

PROOF OF THE COROLLARY. Order the generators xij of Mq lexicographically

and consider the corresponding chain of rings

k〈x11〉 ⊂ k〈x11〉〈x12〉 ⊂ · · · ⊂ Mq. (†)

If R ⊂ S = R〈x〉 is a successive pair of rings from this chain, then [AST, pp.890-1] shows

that there exists a k-algebra automorphism τ and a τ -derivation δ of R such that S is

isomorphic to the Ore extension R[x; τ, δ]. Thus Mq is an iterated Ore extension.
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(i) By [MR, Theorem 1.2.9], Mq is a Noetherian domain. Since Oq = Mq/(∆q − 1),

certainly Oq is Noetherian. By the Proposition, Oq[z, z
−1] ∼= (Mq)S is a domain, and

hence so is its subring Oq. By [MaR, Proposition V.2.5], Mq is a maximal order in its

division ring of fractions D; that is, if Mq ⊆ T ⊆ D, for some ring T such that aTb ⊆ Mq

for some non-zero elements a, b ∈ Mq, then T = Mq. By [MaR, Proposition IV.2.1],

(Mq)S is also a maximal order in D. It follows easily from the Proposition that Oq is a

maximal order. This proves part (i) of the corollary.

(ii) and (iii) By [AST, Proposition 2, and its proof], GKdim(Mq) = gldim(Mq) = n2.

Thus, by the Proposition and [MR, Theorem 7.5.3(iv)],

gldim(Oq) = gldim(Oq[z, z
−1])− 1 = gldim((Mq)S)− 1 ≤ gldim(Mq)− 1 = n2 − 1.

By (1), Mq has the structure of a connected graded ring, by giving each xij degree one.

If R ⊂ S = R[x;σ, δ] are a pair of successive rings in the chain (†), then this induces, on

R, the structure of connected graded ring R =
⊕

i≥0 Ri and implies that σ(Rj) ⊆ Rj ,

for each j. Thus, by part (ii) of the Lemma and induction, Mq is Auslander-regular and

CM. Now regard Oq as Mq/(∆q − 1). Then, part (iii) of the Lemma implies that Oq is

Auslander-Gorenstein and CM, with GKdim(Oq) = GKdim(Mq) − 1 = n2 − 1. Since

gldim(Oq) < ∞, this implies that Oq is Auslander regular.

It remains to show that gldim(Oq) ≥ n2 − 1. Consider the factor ring

A = Oq/(xij : i 6= j, xℓℓ − 1 : ℓ 6= 1).

The description of the relations of Oq in (1) and (2) imply that A ∼= k[x11]/(x11 − γ), for

some γ ∈ k∗. Therefore, both A and Oq have a 1-dimensional module S. (This also follows

from [AST, Theorem 3].) But, by the CM condition, j(S) = GKdim(Oq)−GKdim(S) =

n2 − 1. Thus, gldim(Oq) ≥ n2 − 1. This completes the proof of parts (ii) and (iii) of the

Corollary.

(iv) By the proof of (ii), gldim(Mq) < ∞. Thus, by [MR, Corollary 12.3.6 and

Theorem 12.6.13], K0(Mq) = Z. Therefore, by the Proposition and [MR, Proposition

12.1.12], K0(Oq[z, z
−1]) = K0((Mq)S) = Z. By [MR, Corollary 12.3.6], this implies that

K0(Oq) = Z. �
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[Bj] J. E. BJÖRK, Filtered Noetherian rings, in Noetherian Rings and their Applications

(Ed. L. W. Small), Math. Surveys and Monographs. Vol. 24, Amer. Math. Soc.,

Providence, 1987.

[Co] P. M. COHN, Algebra II, Wiley-Interscience, Chichester, 1977.
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[Jo] A. JOSEPH, Algèbres Enveloppantes et Groupes Quantiques, Notes in preparation.

[Lv] T. LEVASSEUR, Properties of non-commutative regular rings, Glasgow J. Math., to

appear.

[Ma] Yu. I. MANIN, Quantum groups and Non-commutative geometry, Les Publ. du Centre

de Recherches Math., Université de Montréal, 1988.

[MaR] G. MAURY and J. RAYNAUD, Ordres Maximaux au sens de K. Asano, (Lecture Notes

in Math., No 808), Springer-Verlag, Berlin, (1980).

[MR] J. C. MCCONNELL and J. C. ROBSON, Non-commutative Noetherian Rings, Wiley-

Interscience, Chichester, 1987.

[MS] J. C. MCCONNELL and J. T. STAFFORD, Gelfand-Kirillov dimension and associated

graded modules, J. Algebra, 125 (1989), 197-214.

[PW] B. J. PARSHALL and J.-P. WANG, Quantum Linear Groups, Mem. Amer. Math.

Soc., No. 439, 1991.

[Ro] J. J. ROTMAN, An Introduction to Homological Algebra, Academic Press, New York,

1979.

[Za] A. ZAKS, Injective dimension of semi-primary rings, J. Algebra, 13 (1969), 73-86.


