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Introduction. Let A be a noetherian ring. When A is commutative (of finite Krull
dimension), A is said to be Gorenstein if its injective dimension is finite. If A has finite
global dimension, one says that A is regular. If A is arbitrary, these hypotheses are not
sufficient to obtain similar results to those of the commutative case. To remedy this
problem, M. Auslander has introduced a supplementary condition. Before stating it, we
recall that the grade of a finitely generated (left or right) module is defined by

jA(M) = inf{i / Ext'A(M,A)#0}eWU
The Auslander condition is: for all M as above, for all i > 0 and every A-submodule N of
Ext^(M, A), one has jA(N) > L A ring of finite (left and right) injective dimension (resp.
finite homological global dimension) which satisfies the Auslander condition is called
Auslander-Gorenstein (resp. Auslander-regular). On the other hand, assume that A is a
graded algebra over a field k, of the form A = k © ,4, © A2® . . . . Then M. Artin and W.
Schelter have introduced in [1] a definition of regularity for A. (See Section 6.1 for a
precise definition.) We shall then say that A is AS-regular.

Let A be a commutative regular affine fc-algebra, and assume for simplicity that A is
a domain. One knows that A is a Cohen-Macaulay ring, which is equivalent to:

dim M +jA(M) = dim A for all non-zero finitely generated v4-modules A/, (CM)

where dim denotes the Krull dimension. When A is noncommutative, a natural substitute
for the Krull dimension is the Gelfand-Kirillov dimension, denoted by GKdim. We then
have many examples of Auslander-regular fc-algebras which have the property (CM),
where dim is replaced by GKdim. The main examples occur when A is a filtered ring with
a regular commutative graded associated ring, see [6]. The work of [3], [4] shows that the
property (CM) plays an important role in the study of modules over AS-regular algebras.

The purpose of the present work is to compare the two notions of regularity
introduced above and to study the property (CM) for graded noetherian A:-algebras. The
paper is organized as follows.

Sections 1 and 2 recall results about filtered and graded rings and Auslander-
Gorenstein or regular rings.

Section 3 investigates the behaviour of the Auslander condition when we factor a
graded fc-algebra A = 0 An by a normal homogeneous non-zero divisor of positive
degree. "a 0

In Section 4, we show that over an Auslander-Gorenstein ring of injective dimension
H, M—> d(M) = ju —jA(M) defines a dimension function in the sense of [17]. This is used
to prove that an Auslander-regular fc-algebra A = k®Ax®A2®... is a domain.

Section 5 studies the property (CM) over a graded ^-algebra such that finitely
generated graded modules have polynomial growth; we call this condition (PG). The
main results are obtained in 5.10 and 5.13. Theorem 5.10 gives the following. Let
A = 0 An be a finitely generated positively graded /oalgebra with dim/t>lo<00; suppose
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Q e Ad, d > 0, is a normal non-zero divisor in A such that A/QA is Auslander-Gorenstein
and satisfies the condition (PG) and property (CM); then the same is true for A. In 5.13,
a criterion is given for a graded A:-algebra of injective dimension 2 to be an
Auslander-Gorenstein algebra satisfying property (CM).

In Section 6, we compare the two notions of regularity given above. Theorem 6.3
shows that an Auslander-regular graded ^-algebra A = k(BAi(BA2(B... such that
n—*d\mkAn has polynomial growth is AS-regular. In 6.6, we consider the algebras
B(X, a, Z£) constructed in [5] from an elliptic curve X, an automorphism a of A' and an
invertible sheaf 3? of degree at least 3 on X. Using 5.13, we show that B(X, o,S£) is
Auslander-Gorenstein of dimension 2 and has the property (CM). As a corollary (see
6.7), we deduce that the Sklyanin algebra as defined in [18] is Auslander-regular and
satisfies the property (CM).

In [15], this last fact is used to obtain detailed results about graded modules over the
Sklyanin algebra.

1. Preliminaries.
1.1. For the rest of the paper, we fix a commutative field k. The dimension of a

A:-vector space is denoted by dinv
Let A be a ring. We denote by Mod(A) (resp. Modf(A)) the category of left or right

j4-modules (resp. finitely generated ^-modules). We write AM or MA to indicate that M is
a left or right ^-module. The ring A is called noetherian if it is left and right noetherian.

Let AM (resp. MA) be in Mod(A) and aeA. We say that a is a non-zero-divisor
(n.z.d) in M if ax = 0, x e M, implies x = 0 (resp. xa = 0 implies x = 0). If a e A is a n.z.d.
in AA (resp. AA), we say that a is a right (resp. left) n.z.d. in A. If a is a left and right
n.z.d., we simply say that a is a n.z.d.

1.2. Let M be an .,4-module. We let pdA(M) denote the projective dimension of M
and injdim/4(M) the injective dimension of M. We say that A has finite global dimension
(resp. finite injective dimension) if the left and right global dimensions of A are finite and
equal (resp. the modules AA and AA have finite injective dimensions which are equal). In
that case we denote these numbers by gldim(/4) (resp. injdim(/4)).

DEFINITION. Let M be in Mod(/4). The grade number of M is

MM) = inf{» / E < ( M , A) # (0)} e N U {+<»}.

If no confusion can arise, we write j(M) for jA{M). Notice that jA((0)) = +°°. When A
is noetherian, MM) — pdA(M), and if furthermore injdim(/4) = pi < », we have MM) — ^
for all non-zero M e Modf(,4) (see Remark 2.2(1)).

1.3. An (increasing) filtration {A(n)}neZ on A is a sequence of additive subgroups of A
such that: leA(0), A(n)A(m)cA(n + m), A= U A{n). The associated graded ring,

denoted by G(A) or gr(i4), is the direct sum ® A(n)/A(n -1). We have similar
neZ

definitions for a decreasing filtration. When A is a fc-algebra, we require that k czA(0). If
Pi A(n) = (0), the filtration is called separated. We refer to [17] for the notions of filtered
neZ

modules, associated graded modules, etc.
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1.4. Assume A = 0 An is a graded ring. We say that A is positively graded if An = (0)
neZ

for all n < 0 . Then M= (& An is called the augmentation ideal and A0 = A/M is a
rt>0

bimodule over A If furthermore A is a fc-algebra with /40 = & then we write
A = k®Ax®A2® We denote by Modg(A) (resp. Mod?(,4)) the category of graded
/1-modules (resp. finitely generated graded y4-modules). Let M = 0A/ m € Mod8(/4). For

m

p eZ, the shifted module M[p] is defined in Modg(/4) by setting M[p]m = Mp+m. Recall
that if M, NeMod&(A) then HOM/,(Af,N) is the Z-graded group such that
H0MA(M, N)p = {(f>€ HomA(M, N)/(p(Mm) c Nm+P for all m}. When M e Modf(yl), one
has HOMA(M, N) = Horn^M, N); thus the derived functors EXTA(M,—) coincide with
the usual Ext'A(M,—). When not otherwise specified, a map M—*N between graded
j4-modules will be an element of HOMA(M, N)n.

The graded ring A has finite graded injective dimension /x if AA and AA are both of
injective dimension fi in the category Mods(A). We then write grinjdim(y4) = fi. Re-
call that E e Mods(^4) is injective in Mod8(/1) if and only if the functor HOM/,(—, E)
is exact, i.e. EXT^,(—, E) = 0 for all i s: 1. It follows that grinjdim(>l) = fi is equiv-
alent to EXTA(-,AA) = EXTA(-,AA) = (0) for i>fi, EXT^(—, AA)* (0) and
EXT^(—,/l^) ^ (0). Similarly we can define the graded global dimension of A,
denoted by grgldim(zl); details are left to the reader.

The following result is proved in [7, 2.18].

PROPOSITION. Let A be a graded ring. Then A is noetherian if and only if it is graded
noetherian, i.e. every left or right graded ideal is finitely generated.

1.5. We recall here some well-known facts of Homological Algebra. Our reference is
[9] to which the reader is referred for the details. We fix a noetherian ring A. Assume that
to each AM eModf(A) is attached a projective resolution R.(M) by finitely generated
projective v4-modules. We set EA(M) = H*(HomA(R.(M),A)). The abelian groups
EA(M) are finitely generated right A -modules and are naturally identified with the groups
ExtA(M,A). A similar result holds for MAeModf(A). We shall often write E*(M) in
place of EA(M) when there is no possible ambiguity. Recall that if M', M" e Mod{(A) and
/ e H o m ^ M ' ^ X / ' e H o m ^ j M ' ^ M ' ) , there exist morphisms a*(f):EA(M)^>EA(M'),
a*(f'):EA(M')^EA(M") such that *• ( /» / ' ) = a*(f')°a*(f):E*A(M)^E*A(M").

REMARKS. (1) If a"(f) and a"(f) are injective for some n e N then we get
compatible injections EA(M) a EA(M') a EA(M") given by the maps a"(f), a"(f),
<x"{fof).

(2) Assume that A is graded, M eModf(A) and that R.(M) consists of finitely
generated projective graded ,4-modules. Then the modules EA(M) are naturally graded
and, for all pel, we have EA(M[p]) = EA(M)[-p].

2. Auslander conditions. In this section, we summarize the results we shall use
about Auslander-Gorenstein, or Auslander-regular, rings. The main references are [6],
[7], [8], [10], [14], [16].
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2.1. DEFINITION. Let ,4 be a noetherian ring.
(a) An A -module M satisfies the Auslander-condition if: V^>0, jA(N)>q for all

,4-submodules N of Eq
A(M).

(b) The ring A is said to be Auslander-Gorenstein (resp. Auslander-regular) of
dimension fi if: injdim(/4) = ju <°° (resp. gldim(yl) = ju <°°), and every iWeModf(v4)
satisfies the Auslander-condition.

2.2. The principal tool for studying Auslander-Gorenstein rings is given by the
following result whose proof can be found in [14].

THEOREM. Assume A is a noetherian ring with (i = injdim(/4)<°°. Let M be in
Modf(,4).

(a) There exists a convergent spectral sequence in Modf(.<4):

Ep
2'-

q{M) = E"A{EA{M)) => W~q{M)

with W~q(M) = 0 if p=tq and H°(M) = M. The resulting finite filtration of M by
A-submodules is called the b-filtration. It has the form:

(0) = F"+1M c F^M c.cz FlM c F°M = M.

(b) When jA{Eq
A{M)) ^ q for all q, there are exact sequences

for all p e {0,. . . , n], where Q(p) has a filtration by submodules such that each
composition factor is a subquotient of some E%+l+i'~p~'(M) with i > 1.

REMARKS. (1) From (a), it follows that jA{M) < fi when M e Modf(,4)\(0).
(2) Let M and M' be in Modf{A). Suppose we have fixed projective resolutions

R.(M) and R.(M') as in 1.5. Let / be in HomA(M',M). By standard constructions in
homological algebra, to each map of complexes {f:R.(M')—>R.(M)} above / is
associated a map E.(f) between the associated spectral sequences E'i'(M'), E'{{M), and
their invariants. It is easily seen that the induced map IH]0(M')—»H°(M) coincides with /.
The homomorphisms E^~q{f):E^~q{M')^E^~q{M) come from the maps
aq{f):Eq

A{M)^>Eq
A{M') described in 1.5. In particular they are of the form ap(aq{f)). It

follows that if a"(f) is an isomorphism then E%'~"(f) is an isomorphism for all p.

2.3. THEOREM. Let A be an Auslander-Gorenstein ring. If 0—>M'—>M—»M"-»0 is
an exact sequence in Modt(A) then we have jA{M) = inf{jA(M'), JA(M")}.

This theorem is proved in [7,1.8]. By analogy with similar properties for dimensions,
one can say that the grade number is exact (on short exact sequences). We shall discuss
this property in Section 4.

2.4. DEFINITION. Let A be a noetherian ring and M be in Modf(A)\(0). Then M is
called pure if jA(N) =jA(M) for all non-zero submodules N of M. When n =jA(M) we say
that M is n-pure.

For an Auslander-Gorenstein ring the b-filtration of a module has a nice
interpretation.
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THEOREM. Assume A is Auslander-Gorenstein and let M be a non-zero finitely
generated A-module. Then if n = jA(M) we have:

(a) EA(M) is n-pure and EA(EP
A(M)) is (0) or p-pure;

(b) FPM is the largest submodule X of M such that jA(X) >/?;
(c) n = Max{p / M = FPM}.

For the proof see [7,14,16,8].

REMARK. Obviously A is 0-pure, i.e. L* = EA(L) =£ (0) for all non-zero left or right
ideals L of A.

3. Graded Auslander-Gorenstein rings. In this section A = 0 Am is a graded ring.
meZ

3.1. Assume A is noetherian, let M be in Modf(/1). As recalled in 1.5, the modules
EA(M) are naturally graded. Therefore the spectral sequence £2 (M) of Theorem 2.2 is in
Modf(A). Working with graded modules in Definition 2.1, one can obviously define the
notion of a "graded-Auslander-Gorenstein, or regular, ring". Fortunately we have the
following result.

THEOREM ([10, Theorem 0.1]). The noetherian graded ring A is Auslander-Gorenstein
(resp. regular) if and only if A is graded-Auslander-Gorenstein (resp. regular).

3.2. Let B be a ring and {B(v)}v be a separated filtration on B with associated
graded ring G(B). The Rees-ring attached to {B(v)}v is tf(fi): = 0 B ( v ) . Assume R(B)

is noetherian. Recall that a filtration F = {M(m)}m on Me Mod(B) is called good if
: = ($M(m) belongs to Modf(R(B)). Any M eModf(£) can be equipped with a

good filtration, the associated graded module G(M) is in Modf(G(B)). The filtration
{B(v)}v, or the ring B itself if there is no ambiguity, is called Zariskian if R(B) is
noetherian and good filtrations on elements of Modf(B) are separated. For instance if the
filtration is discrete and G(B) is noetherian then B is Zariskian. We recall the following
result.

PROPOSITION ([7, 3.1, 3.4]). Let B be a filtered ring and M e Modf(J3). Assume R(B)
is noetherian and let F be a good filtration on M with associated graded module G(M).

(i) There exists a canonical good filtration on EP
B(M) such that G{EP

B(M)) is a
subquotient of EP

G(B)(G(M)) in Modf(G(B)). If B is Zariskian one has jB(M)>
JGW(G(M)).

(ii) Suppose B is Zariskian and G(B) is Auslander-Gorenstein. Then jB(M) =

3.3. We return to A = 0 A m graded noetherian. In [10, Theorem 0.2], it is shown
m

that gldim(^4) (resp. injdim(/l)) is finite if and only if grgldim(v4) (resp. grinjdim(/l)) is
finite. Furthermore we have bounds:

grinjdim(A) < injdim(yl) ^ grinjdim(A) + 1.
V

When A = 0 Am is positively graded, we can filter A by setting A(v) - E A- I t ' s c ' e a r

maO /=O

that G(A) = 0>i(v)//4(v - 1) and yl are equal. Thus {A(v)}v is Zariskian. Notice that if
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+00 f v 1
M = 0 M, is a left-limited graded module, the filtration \ M(v):= E M, \ is good, the

i = -d I i = -d ) v

modules G(M) and M coincide in Mod8(y4). In this situation we have the following
(presumably well-known) result (we include a proof for completeness).

LEMMA. Let A = 0 Am be a positively graded noetherian ring. Then injdim(v4) < 00 if

and only if grinjdim(,4) < 00, in which case these two numbers are equal.

Proof. We filter A by {A(v)}v as above. Suppose fi = injdim(/i) < 00 and let M be in
Modf(v4) such that N: = EA(M)=fc (0). Choose any good filtration on M. By Proposition
3.2(i) and the previous remarks, we know that G(N) is a non-zero subquotient of
E£(A)(G(M)) = EA(G(M)) for some good filtration on N. Hence EA{G{M)) * (0). Since
G{M) e Modf(.4), we get grinjdim(/l) > n = injdim(/4). The lemma then follows from the
results of [10] quoted above.

3.4. Let B be any ring and let Q be a normal element of B, i.e. £2B = B£2. Assume
Q is a n.z.d. in B. Then we can define an automorphism o of B by the rule: bQ = Qo(b).
If BM e Mod(B), we shall denote by "M e Mod(B) the abelian group M with left B-action
given by b.x = o(b)x. When MB e Mod(fi) we make a similar definition to get
A/CTeMod(B). The following assertions are easy to check.

(1) The left multiplication by Q gives an element of HomB(aM,M). KerwQp =
{x e M I Qpx = 0} and Q"M are submodules of M for all p > 0.

(2) HomB(CTM, B) = HomB(M, B)a. The isomorphism is given by

(3) The functor F:Mod(fi)^Mod(fi), F(M) = aM, is an equivalence of categories
and restricts to an equivalence of categories F:Modt(B)—»Modf(5).

(4) EB{°M)^EB{M)°.
We can filter B by the Q-adic filtration {QvB}va0 (it is a decreasing filtration). The

following is well known.

PROPOSITION, (a) The associated graded ring G(B) = 0 QVB/QV+}B is isomorphic to
the graded ring (B/QB) [X, a].

(b) (Rees-Lemma) If M e Mod(B/QB) andp>0 we have: E"B
+\M) = Ep

BICiB(M).

REMARKS. (1) In (a), the graded ring (B/QB) [X, o] is the Ore-extension defined by
bX = Xo(b), where X is an indeterminate of degree 1.

(2) The Q-adic filtration is not Zariskian in general (it is generally not separated).
(3) The Rees-Lemma shows that jBiaB{M)=jB(M)-\. It is very easy to deduce

from it that, if B is Auslander-Gorenstein of dimension ft then B/QB is Auslander-
Gorenstein of dimension at most ju — 1.

3.5. Let A = 0 Am be positively graded. Assume Q eAd, d>0, is a normal n.z.d.

in A. Then it is not difficult to prove the following proposition.

PROPOSITION, (a) A is noetherian if and only if A/QA is noetherian.
(b) A is a domain ifA/QA is a domain.
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The proof of (a) is based on G(A) = (A/QA)[X, a], cf. 3.3, and the following: if L is
a left or right graded ideal of A, one has L = (~1 (L + QqA).

Assume A is noetherian. Even if the Q-adic filtration is not Zariskian, one has the
following well-known result (see [16, 4.6.7]).

LEMMA. The Q-adic filtration satisfies:
(1) the Rees ring ® Q M is noetherian, in particular good filiations induce good

V

filiations on submodules;
(2) good filiations on elements of Modf (A) are separated.
For the convenience of the reader we sketch a proof of this lemma.
(1) Put FVA = Q~VA if v <0 and FVA = A if v > 0. The Rees ring is R = © FVA. Let

/ \ veZ

* be an indeterminate. Define 6:R^>A[X,X~l] by 01 E av) = E M T . Then 6 gives an
\ V / V

isomorphism from R onto ^[QA'"1,^] and one easily sees that this ring is noetherian.
The second assertion is obvious.

(2) Let M be an object of Modf(>4). Assume that {FnM}n is a good filtration on M.
Using [7, 2.20], one obtains

H FnM c H &M = {meM /(l-a)m = 0 for some a e QA}.
n /al

Since Af is graded and Q is an element of positive degree we get that f) Q'M = (0).

3.6. THEOREM. Let A = © /lm be positively graded, Q eAd, d>0, a normal n.z.d.

in A, G(A)=®QmA/Qm+lA. Then:
m

(1) if A is noetherian and \nid\m(A/QA)<&, we have injdim(/l) = injdim(C(/4)) =
injdim(/4/Q/l) + l;

(2) /4/Q/4 is Auslander-Gorenstein of dimension v if and only if A is Auslander-
Gorenstein of dimension v + 1.

Proof. (1) By the Rees-Lemma, we know injdim(y4/Q/4) ^ injdim(/4) - 1 . Recall
that, if R is any noetherian ring with injdim(/?)<°° and a is an automorphism of R, we
have that injdim(i?[Ar, a]) = injdim(/?) + 1 (the proof for a the identity automorphism
can be used unchanged). It follows that injdim(G(.4)) = injdim(j4/Q.A) + 1 < injdim(y4).
We thus have to show that injdim(/4)^injdim(G(.4)). Suppose M.eModf(A) and let T
be any good filtration on M (with respect to the Q-adic filtration). Since R(A) is
noetherian, Proposition 3.2 (i) implies that G(E^(M)) is a subquotient of ££(/1)(G(M)).
Since the module E^(M) is graded, the good filtration on E^(M) is separated. Therefore
G(E%(M)) = (0) implies E^(M) = (0). Notice in passing that we have proved the following
result.

SUBLEMMA. If Me Modf(/1) then jA(M) s / G

Put y = injdim(G(/4)). By the above sublemma, E^(M) = (0) for all p > y and
M e Modf(>l). Hence grinjdim(/l) ^ y and we get equality by Lemma 3.3.
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(2) Suppose A/QA is Auslander-Gorenstein of dimension v. By Proposition 3.5(a),
we get A noetherian. From (1), we know injdim(y4) = v + 1. By Theorem 3.1, we only
have to show the "graded-Auslander-condition": if M eModf(A) and TV is a graded
submodule of EA(M), we have jA(N) —P-

Choose a good filtration on M. Then the canonical good filtration on EA(M) induces
a good separated filtration on N, for which G(N) is a submodule of G(EA(M)). By the
sublemma of part (1), we get jA(N) sy'C(i4)(G(A0). Since A/QA is Auslander-Gorenstein,
G(A) = (A/QA)[X, o] is also Auslander-Gorenstein by [10, Theorem 4.2]. Therefore

p ^jcW{E"cw{G{M))) <jc(A)(G(E

(notice that (G(EP
A(M))) is a subquotient of EP

C(A)(G{M)).
By these remarks, we have

icW(G(EA(M))) <jCiA)(G(N)) ^j

Hence p <jA(N), proving that A is Auslander-Gorenstein. We already noticed the
converse in Remark 3.4 (3).

REMARK. The reader should compare Theorem 3.6 with [16, Theorem 4.6.15] and
[10, Theorem 4.3], where similar results are proved, which have been at the origin of this
theorem.

4. The dimension function for an Auslander-Gorenstein ring.
4.1. Let A be a noetherian ring. Assume we are given a decreasing chain (Mt)isN of

submodules of Mo = M e Modf(A). We have natural projections

fl+JJ: M/Mi+j^ Ml Mt, gt:M^ M/M,

which satisfy,/-+2,/=//+i,/o/i>2,i+i,ft =/i-+i,iogi+i- Using the notation of 1.5, we deduce

*•(/)«./) = c(fi+2J+i) ° «"a+u) , or(gi) = or(gl+1) o or(fi+u). (4.1.1)

LEMMA. Suppose neN is such that, for all i>0, En
A~\Mi) = EA~\Mi/Mi+1) = (0).

Then there exists an increasing chain of submodules of EA(M):

EA(M/MX) c . . . c EA{MlMt) c . . . c E"A{M),

where each inclusion EA(M/Mt) c EA{MIMi+l) is given by a"(fi+lyi) and is the restriction
of the injective map o"(g,): E"A{MIM) -* En

A{M).

Proof. By [9, p. 92], we have connecting morphisms an(fi+xJ):En(MIMi)-*
E"{M/Mi+1) and a"(gi}:En(M/Mi)-+En(M). The hypothesis states that these maps are
injective. The lemma then follows from 1.5 and (4.1.1).

Under the hypothesis of the previous lemma, we have the next corollary.

COROLLARY, (a) There exists qeN such that an(fq+j,q):E"(M/Mq)->E"A(M/Mq+J) is
an isomorphism for all j ^ 0.

(b) Assume n = injdim(v4) < °°. The maps E"'~n(fi+1,,) between the spectral sequences
E2''(M/Mi+1) and E^'iM/Mj), defined in 2.2, are isomorphisms for all i>q.
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Proof, (a) follows from EA(M) e Mod((A) and A noetherian.
(b) is a consequence of Remark 2.2(2).

4.2. THEOREM. Assume A is an Auslander-Gorenstein ring. Let M be in Modf(^4)
with jA(M) > n and let (M,),6N be a decreasing chain of submodules of M. Then there exists
qeN such that jA(Mj/Mi+i) >n + lfor all i > q.

Proof. Recall that jA(X)^jA(M) for any subquotient X of M (see Theorem 2.3).
Hence we may assume M = Mo and apply Lemma 4.1 to the chain (M,),^. Put
NJ = M/MJ; since y"(N,)>/i, we have N,• = F"Ni in the b-filtration of fy (see Theorem
2.4(c)). The map fi+l ,:N,+1—»•Nt gives, by restriction, an ,4-module map between FpNi+i

and F"Ni for all p. (See Remark 2.2 (2) or Theorem 2.4 (b).)
Let q e N be given by Corollary 4.1. If i^q, the morphism a:= El'""(/<+1,,) is an

isomorphism and, by Remark 2.2 (2), we get a commutative diagram

F"N-

\f l«

n F"Ni ™

where the vertical map / is induced by fi+Ui. Consider X:={MiIMi+l
Jr

Fn+xNi+x)IF
n+lNi+l. It is a submodule of Ni+jFn+'iNi+l = F"Ni+jFn+iNi+l. Since

fi+i,i(Mi/Mi+l) = (0), we have f(X) = 0. But as a is an isomorphism, it follows that
X = (0); that is, M,/M,+1 c Fn+lNi+v By Theorem 2.4(b), this means y(M,/M,+1) 5= n + 1.

REMARK. Theorem 4.2 can be deduced from [7,1.17], where it is shown that a chain
M = Mo => Mi z>. . . =j Mp with jA(MJMi+l) =jA(M) for all i has at most e(M) terms for
some fixed integer e(M). We shall come back to this number in (4.6.5).

4.3. It follows from [7,1.19] that if M is a finitely generated module over an
Auslander-Gorenstein ring A and if <j> e. End/4(M) is injective then jA(M/<f>(M)) >
jA{M) + 1. We are going to reprove that result using 4.2.

THEOREM. Let A be an Auslander-Gorenstein ring, a an automorphism of A and
M e Modf(y4). If (j> e Hom^CM, M) is injective then we have jA(M/(t>(M)) >jA{M) + 1.

Proof. Recall that "M has been defined in 3.4. Obviously we may assume M =£ (0)
and we know j(M/(p(M))>j(M) by Theorem 2.3. Suppose j(M/(f>(M)) =j(M) and set

Each <pi(M) is an /1-submodule of M and < ,̂(M) = <p(M). If M g 0,(M), an easy
induction gives $1+1(M)g$,(Af) for all i. Furthermore there exist isomorphisms in
Modf(,4)

M_\ <ft,(M)

Denoting by x the class of an element in a quotient module, the <p,'s are defined as
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follows. For i = 1, we put q>j(x) = <p(x). Assuming <p, has been defined, consider

ft(Af) 1 <*>,+, (M) — —-
\ + < P ( x ) = 4>(x)

Then put q>i+i :—<pi+x° <p,; with a slight abuse of notation, we have <p,+1(i) = </>(<p,(i)). It
is easily seen that the <p,'s are bijective /1-linear maps. Using 3.4 (4), we get
Em

A{4>,(M)l4>t+i{M)) = EA(M/<p(M)). Hence /(0,(M)/0/+1(Af)) =j(M/<t>(M)) =j(M)
for all i. The chain {0/(M)}/aO contradicts Theorem 4.2, hence the result.

4.4. COROLLARY. Let A = © >lm 6e a positively graded Auslander-Gorenstein ring,

Q e>4d, d>0, a normal n.z.d. in A. Suppose M e Modf(/1) such that Q is a n.z.d. in M.
Then jA(M/QM) =jA{M) + 1.

Proof. Define oeAut(A) by aQ-Qo(a). Notice that a(Am) = Am for all m.
Therefore the module "M defined in 3.4 is graded with (aM)m = Mm. The hypothesis says
that there is an exact sequence in Modf(/1)

0^°M-^M^M/QM-^0. (*)

The multiplication by Q is a graded map of degree d > 0. It induces right multiplication
by Q from E"A(M) to Ep

A{aM) for all p. Suppose Ep
A

+i(M/QM) = (0), the long exact
sequence coming from (*) gives EA(aM) = EA(M)Q. By the remark above, EA(M) =
Ep

A(M)aas graded groups; since EA{M)° = E"A{aM), see 3.4 (5), the graded Nakayama's
lemma forces E"A(M) = (0). Thus y'(M/QM)</(M) + 1. To get the reverse inequality,
apply Theorem 4.3 to Q e Hom^CM, M).

4.5. DEFINITION. Let A be an Auslander-Gorenstein ring of dimension p. Define the
dimension of M e Modf(v4) by 6(M) = ft -j{M).

Note that j(M)e{0,... ,ju}U{°°}; hence d(M) e { 0 , . . . , fi} U {-<»}. The term
dimension given to 6(A/) is justified by the next result.

PROPOSITION. The function d:Modf(A)—>{0,...,(i,-<x>} is an exact dimension
function. Furthermore it is finitely partitive. This means:

(i) 5((0)) = - « ,
(ii) if 0^>M'^> M^>M"->0 is exact then 6{M) = Max{<5(M'), 8(M")},
(iii) if PM = (0) for some prime P and M is a torsion A/P-module then 6(M) <

6(A/P) - 1 (similarly for M a right module),
(iv) if M = Mo 3 A/, z>. . . z> A/,: z>. . . is a chain of submodules then 6(A/(7A//+1) ̂

Froo/. We follow the terminology of [17,6.8.4 and 8.7.3]. The properties (i), (ii) and
(iv) are clear from 1.2, 2.3, 4.2. To prove (iii), notice that it's enough to show
8(A/P + Aa) < 8(A/P) - 1 for a non-zero-divisor a in A/P. This follows from Theorem
4.3 applied to (f>:A/P^A/P, (f>(x)=xa.

4.6. We assume A Auslander-Gorenstein of dimension ju. We are going to list
consequences and properties coming from the dimension 6.
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(4.6.1) M eModf(A) is called homogeneous if 6(N) = d(M) for all non-zero sub-
modules N of M. If d(M) = s, we shall simply say M is s-homogeneous. Notice that M
s-homogeneous is the same as M (fi — s)-pure, see 2.4. In particular, by Remark 2.4, A is
^-homogeneous as a left or right module.

(4.6.2) MeModf(A) is said to be critical if 6(M/N)<d(M) for all non-zero
submodules N of M. If 6(M) = s, we say M is i-critical. This is equivalent to
jA(M/N) >jA{M) = s by definition.

(4.6.3) Any non-zero M e Modf(/1) has a critical submodule: use the proof of
[17,6.2.10].

(4.6.4) Let M be in Modf(/1). A critical composition series for M is a chain
M = M, =>M,+1 ZD. . . r)M0 = (0) such that each factor MjMi+1 is critical. Notice that
8(M) = Max {<5(M,/M,_i)}. Any M e Modf(A) has a critical composition series. One can

find a critical series with 6(M,/M,_,)> 6(M,_,/M,_2) for all i. Furthermore, two such
critical composition series have the same length. This follows from (4.6.3) together with
properties of 6 using standard arguments (see [17, 6.2.20, 6.2.21] with 6 in place of K).

(4.6.5) Let M e Modf(A) with 8(M) = s. If (*) M = M, => M,_, = . . . .= . Mo = (0) is a
critical composition series of M, we set

e,.(M) = #{s-critical factors in (*)}, eM(M) = #{/i-critical factors in (*)}.

Then the following are easy to prove:
the numbers es(M) and eM(M) depend only on M;
the function M—» es(M) is additive on short exact sequences in

{M eModf(A) / d(M) = s};
the function M-* £M(M) is additive on short exact sequences in Modf(A).

The number £M(M) will be called the d-critical length of M.
(4.6.6) The b-filtration of M e Modf(A) obtained in 2.3, 2.4 can be reinterpreted as

follows. Put n =jA{M), 6{M) = s = jU - n. The submodule FPM is the largest submodule
X of M such that 6(X)^n -p. The module EA(M) is ^-homogeneous. We have exact
sequences

where EP
A{EP

A{M)) is (0) or {fi — p)-homogeneous and d(Q(p)) < /z —/? — 2.
(4.6.7) It is not difficult to prove that the number es(Af) defined in (4.6.4) is equal to

the number e(M) obtained in [7,1.17].

4.7. In this section, we suppose that A = 0 Am is a positively graded Auslander-
m>(l

Gorenstein ring of dimension fi. Let 6 be its dimension as defined in 4.5. Let M be in
Modf(/1). We say that M is graded-critical (resp. graded-homogeneous) if 6(M/N)<
6(M) (resp. 8(N) = 8(M)) for all non-zero graded submodules N of M. These definitions
are not of great interest since we have the next lemma.

LEMMA. The module M e Modf(A) is graded-critical (resp. graded-homogeneous) if
and only if it is critical (resp. homogeneous).
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Proof. Set A/ = 0Afm. Recall that M(n):= 0 , 4 , | is a filtration with associated

graded ring equal to A. If F is a good filtration on M' e Modf(A) (w.r.t to {A(n)}n), we
have S(grr(Af')) = d(M') by Proposition 3.2 (ii). Filter the module M by

It is a good filtration and we obviously have grr(M) = M. If N is any non-zero submodule
of M, F induces good separated filtrations on N and M/N still denoted by F. Then the
exact sequence 0—>grr(N)-^M = grr(A/)—»grr(A//N)—»0 in Modf(A) shows that
8(N) = 6(M) if M is graded-homogeneous and 6(M/N) < d(M) if M is graded-critical.
The converse is obvious.

PROPOSITION. Any non-zero M e Modf(A) has a critical series composed of graded
submodules.

Proof. Notice first that M contains a graded-critical submodule (repeat the proof of
[17,6.2.10] with graded modules and 6 in place of K). It follows as usual that M has a
graded-critical composition series. Applying the lemma above, we conclude that it is a
critical composition series in Modf(v4).

4.8. THEOREM. Let A = 0 Am be a positively graded Auslander-regular k-algebra

with AQ = k. Then A is a domain.

Proof. We follow [3, Section 3]. Recall that A is ju-homogeneous, see (4.6.1). We
first prove that £ (̂̂ 4) = !. Any A/eModf(/4) has a finite resolution by graded free

di

modules of the form P,• = 0 y4[m/y], see [17,12.2.9]. By additivity of £„(-) (see (4.6.4)),

we get £^(M) = E ( -1 ) ' efl(Pi) = Tldieli(A)eZeli{A). Now choose M eModf(A) //-

critical (for instance a graded-critical ideal of A). We have e(1(M) = leZ£/1(^4) and
therefore e^A) = 1. Let aeA, a=£0. We must show that a is a right n.z.d., the proof
being identical on the left. Consider the exact sequence 0^>Aa^>A—>(A/Aa)—>0. Since
A is fi-homogeneous we have 6(Aa) = /i, hence e^Aa) > 1. Since e^A) = 1 = e^Aa) +
e^A/Aa) we have e^A/Aa) = 0. Hence 8(A/Aa) s n — 1 which means j(A/Aa) > 1, i.e.
HomA(A/Aa,A) = {beA/ab = 0} = (0). Thus a is a right n.z.d.

5. The Cohen-Macaulay property. The rings in this section are ^-algebras over the
fixed field k. The material concerning Gelfand-Kirillov dimension comes from [13].

5.1. We first recall the definition of polynomial growth for a function d:Z-»N,
d ^ 0. Suppose d{n) = 0 for n « 0, d increasing for n > n0. Then d has polynomial growth
of degree p e N if there exist K, m eN such that

d(n) < Knp, np < d(mn) for almost all n.

We shall write G(d) = Pp when this holds. We then have p = lim lognd(n), \ognd(n): =
logd(n)/\ogn.
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5.2. We shall use the following properties of Gelfand-Kirillov dimension, denoted by
GKdim. Let A be a A>algebra filtered by {A(i)}t (increasing) such that dimkA(i) <°o for
all i (in particular it is discrete). Assume that gr(A) = ®A(i)IA(i-l) is a finitely
generated fc-algebra.

(5.2.1) Let M e Modf(A), T = {M(*)}, a filtration on M such that dim*. M(i) <°° and
grr(M) e Modf(gr(A))1_Then, setting fr(n) = dimkM(n), we have GKdim,, M =
GKdimgrW grr(M) = lim logn/r(n). See [13, 6.6].

n

(5.2.2) If MeModf(A), we have GKdim/4M = 0 if and only if dim*M<°o and
GKdim,, M > 1 if dim* M = +oo.

(5.2.3) Assume gr(,4) noetherian. Then GKdim is exact in Modf(/1): GKdim,, M =
MaxfGKdim,, AT, GKdim,, M") for every exact sequence 0-»AT-»A/-»M"—>0 in
Modf(/l);see[13,6.14].

5.3. Assume B is a ^-algebra. One defines an s-homogeneous or ^-critical fl-module
(for GKdim) as in (4.6.1) or (4.6.2), with GKdim replacing 6. Combining 6.8.15 and
8.3.16 of [17], one obtains the following theorem.

THEOREM. Suppose B is a noetherian k-algebra such that GKdim is exact and B is {left
and right) homogeneous (for GKdim). Then B has a (left and right) Artinian quotient
ring. Furthermore the set S of n.z.d. in B satisfies

S = {beB I GKdim B I bB < GKdim B) = {b e B/GKdim B/Bb < GKdim B).

5.4. Let A = ® An be a finitely generated positively graded /c-algebra with

f " 1
dim* A)<°°- Then d\mkAn<™ for all n and \A(n):=Q) AA is a positive filtration
with gr(A)=A. Hence the results recalled in 5.2 apply to Modf(y4) (assuming A
noetherian for (5.2.3)). We introduce a condition named (PG) for polynomial growth.

DEFINITION. The algebra A satisfies (PG) if, for every M = ®Mn in Modf(v4)\(0),

one has G(fM) = Ps for some s e N . Here fM(n) = dim* M(n), M(n) = S dim* M,.
isn

REMARKS. (1) T:={M(n)}n is a good filtration on M (with respect to the filtration
{A(n)}n). This is because M = grr(M) as a gr(v4)-module. Thus GKdimM M =

(2) If / is a graded ideal of A then, if A satisfies (PG), A11 satisfies (PG).

5.5. There is an example of an algebra satisfying (PG) which is of particular
importance for the applications. Suppose A = k(B A{(B A2@. . . is noetherian. If
M = ($MneModf(A), the Hilbert series is defined by hM(t):= E (dim* Mn)t

n. Suppose
n n E 2

that, for all M eModf(A), one has hM(t): = qM(t)/pA(t), pA(t)eZ[t], qM(t) eZ[t,rl],
where the roots of pA(t) are roots of unity. Then [4,2.21] shows that dim* Mn =
ans~l/(s — 1)! + (terms of degree less than s — 1 in n), where a € N and s is the order of the
pole at t = 1 of hM(t). We have (1 - f)hM(l) eN,s = GKdim^ M and the algebra satisfies
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(PG). When pA(t) = (1 - 0", I* e N, hM{t) takes the form fM(t)/(l -1)% fM{t) e Z[t, C']

5.6. We return to A = 0 An as in 5.4. Assume that /4 is noetherian. The following
n>()

result should be well known. We include a proof for completeness.

PROPOSITION. Let QeAd, d>0, be a normal element. Then A satisfies (PG) if and
only if A/QA satisfies (PG).

Proof. By remark 5.4 (2), we only have to show one implication. So assume that
A I £X4 satisfies (PG). Let M = 0 Mn e Modf(/4), non-zero. We may assume Mn = 0 for all

n

n < q() ^ 0 (we don't impose Mqa =£ (0)). Let p eN and recall that KerM Qp = {x e
M/Qpx = 0} is a graded submodule of M. Since {KerM Qp}p is an increasing chain of
submodules we can define n(M) to be the smallest integer such that KerMQ"(M) =
KerM Qn(M)+i for all i > 0. We set M = M/QM, M' = M/KerM Q. With obvious notations,
it is easily seen that x' e KerM- £2P if and only if j ;eKer M Q p + 1 . Hence KerM. Qp =
KerM Qp+l/KerAf Q and we have that n(M') <n(M) - 1 if n(A/) > 1. We shall prove by

induction on «(M) than n——> E dim^ M, has polynomial growth.

1. Assume that n{M) = 0, i.e. Q is a n.z.d. in M. We have exact sequences

where Mn : = Mn/QMn_d gives the grading on M. It is easy to deduce that /M(«) =
/*#(«) -M" ~ d). Notice that Mn = (0) for « < 9 o , M,n = Af,0 and set £(«):=[(« - 9o)/d]

(integral part). Then we have fM{n) = £ /^(n - id). Suppose G(/^) = Pp, p e N, so that
0

/ ( ) pp ( / ) Pp,
1=0

there exist n0 e N*, A:, m e N* such tha t /^n) < ATnp and/«(m«) > np for all n > «,, > 0. If
n » 0, we get

where C = E / ^ ) and /C e W.

Let n » 0 and notice that m(n- n0) ^mn- qjd. We have

fM{mnd) > 2 /Av(wnd - id) s ^ fdjnnd - mjd).
;=o y=o

If 0 < / < « - «o, one has nd - jd >nd-nd + nnd > «„• Hence /«(md(n - / ) ) > dp(n - y ) p

n—no "—in

by the choice of m and nn. Therefore fM{mnd)> E dp(n-j)p> E (« - / ) p - Since

<j)(n): = nP, + (no + l ) p + . . . + np is a polynomial in n of degree p + 1, we can find
m' eN* such that fM(mm'nd)>(f)(m'n)>np+] if n » 0 . This proves the casen(M) = 0.
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2. Assume n(M) > 0. Set K: = KerM Q = 0 Kn; hence /C ¥= (0) and we have fM(n) =

fi<(n) + / M ( « ) . Observe that K e Modf(A/QA) and that we can apply the induction to
M'. Thus G{fK) = Pp~ and G(JM.) = Pp- for p ' , p" e N. Set p = Max{p\ p"}. It is easy to
show that G{fM) = Pp.

5.7. We continue with A = 0 An as in 5.6 and we suppose that A satisfies (PG).

Then we have the following result.

LEMMA. Let QeAd, d>0, be a normal element. Assume Q is a n.z.d in Me
Modf04)\(0). Then GKdim,, M/QM = GKdim,, M - 1.

Proof. As in the proof of 5.6, we set M = 0 M,, <?,,:£0, M = M/QM = 0 M , .

Hence M, = (0) if i<q0 and M,o = Mqo. Recall that fM(n)= t f^n-id), E{n): =
/'=0

[(n — qo)/d], (see part 1 in the proof of 5.6). Set s = GKdim M. By [13,5.1], we know
G K d i m M ^ s - l . Set p = GKdimM, so that /^(n)</C/ip for some tfe^J and all
« > n() > 0. Define a(n) to be the greatest integer q < E(n) such that n — qd> n0, and put

no—1

c = E ftiip)- Then if /i » 0, we have
P=<?0

a(n)

fM(n) < c + 2 fsfr - id) s K[a(n) + l]np + c.
1=0

But a{n) < £ ( « ) < « + c' for some c'e^J independent of n, hence /M(n) </Cnp+1 + c"
for some constant c". This implies 5 = lim logn/M(n) < p + 1.

n

5.8. Let (/?, J<) be a noetherian commutative local ring. Recall that R is Cohen-
Macaulay if and only if, for all non-zero MeModf(fl), we have Kdim M +jK(M) =
Kdim/?, where Kdim denotes the Krull dimension. Thus it is natural to make the
following definition.

DEFINITION. Let A be a noetherian ^-algebra with GKdim A = co e N. We say that A
satisfies the Cohen-Macaulay property if GKdim,, M +jA(M) = at for all

MeModf(/l)\(0).

REMARKS. (1) For short we shall say that A is CM.
(2) Notice that, if A is CM, we must have jA(M)<<x> and GKdim,, M eN for all

M # (0) in Uod({A).
(3) Recall that we have seen that over an Auslander-Gorenstein ring of dimension fi,

6(M) = n —jA(M) defines a dimension function on Modf(A) (see 4.5). Thus, if A is also
CM, we get 6(M) + (a> - fi) = GKdim,, M. See remark (5) below.

(4) Let 0—*Mx—>M—*M2—*0 be exact in Mod{(A). We always have GKdimM>
Max{GKdimM,} and jA(M)>inf{jA(Mi)}. Therefore if A is CM we see that GKdim,,

and jA{ ) are exact, i.e. we have equalities in these inequalities.
(5) Suppose char/: = 0. Then the Weyl algebra A^(k) = k[pu ... ,pM, qu . . . , q^],

Piqj-qjPi = Stj, [Pi,Pj] = [qi,qj] = O, is Auslander-regular of dimension ju and satisfies
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the Cohen-Macaulay property (here (o = 2n). See [6, Chap. 2, Section 7.1], and [14,
Th6oreme 4.4] for a generalization.

When A is graded, one can define a "graded CM property" by taking M e Mod$(A)\
(0) in Definition 5.8.

LEMMA. Let A = 0 An be a positively graded ring such that dim* Ao < °°. Assume A

is Auslander-Gorenstein and satisfies the "graded CM-property". Then A is CM.

Proof. Consider the Zariskian filtration |/4(/i):= S AA on A. We recalled in

Proposition 3.2(ii) and (5.2.1) that jA(N)=jA(grr(N)), and GKdim,, N = GKdim,, grr(N)
for any good filtration r o n i V e Modf(/1). This proves the lemma.

5.9. The following proposition shows that the CM-property makes an Auslander-
Gorenstein algebra very close to a commutative one.

PROPOSITION. Let A be a noetherian k-algebra with injdim(.<4) = ju <°° and
GKdim ,4 = a> e N. Assume A is CM. Then A is Auslander-Gorenstein if and only if
EA(EA(M)) = (0) for all p<q, and all M eMod,(A). Furthermore when this holds we
have

(i) GKdim M is exact and finitely partitive in Modf(/4),
(ii) A is homogeneous for GKdim and has a left and right Artinian quotient ring.

Proof. Assume Ep{Eq{M)) = (0) if p <q. Let N be a submodule of E"(M). By the
property CM we have GKdim Eq(M) < a> - q and, since GKdim JV< GKdim Eq{M)
always holds, we get j(N)^q. Then (i) and (ii) follow from Remark 5.8 (3), 4.5, (4.6.1)
and 5.3.

REMARKS. (1) By means of (4.6.5) and 6(M) + (co- ju) = GKdim M, the b-filtration
can be interpreted in terms of GKdim. We leave the translation to the reader.

(2) Assume A = 0 An is a positively graded noetherian ring with injdim(/l) < °° and

A satisfies the "graded CM-property". Then the proof above shows that A is
graded-Auslander-Gorenstein if and only if Ep

A{Eq{M)) = (0) for all p<q and Me
Modf(>4). By Theorem 3.1 and Lemma 5.8, we deduce that A is Auslander-Gorenstein
and CM, if dim* Ao < <».

5.10. Let (R,M) be a commutative noetherian local ring. It is well known that if
Q e ^ i s a n . z . d . then R is Gorenstein or CM if and only if R/QR is such. Therefore the
following result is not surprising.

THEOREM. Let A = ® An be a finitely generated positively graded k-algebra with
0 2:0

dimkAQ<<x>. Suppose QeAd, d>0, is a normal n.z.d. in A. Then B=AIQA is
Auslander-Gorenstein (of dimension v), satisfies the property CM and condition (PG) if
and only if A does so (with injdim(A) = v + 1).

Proof. Assume A is Auslander-Gorenstein, CM and satisfies (PG). Then by
Remarks 3.4 (3) and 5.4 (2), B has the required properties.

To prove the converse we start with a general result.
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SUBLEMMA. Let A be an Auslander-Gorenstein k-algebra for which GKdim is exact.
Let O^M,->M-»M,-»O be exact in Modf(,4) with GKdim,, M,+ y',,(M,) = co e N for
i = 1,2. Then GKdim,, M +jA(M) = co.

Proof. We have

GKdim M = Max {GKdim M,} = Max {co -jA{Mt)} = co - inf {^(Af,-)} = co -jA(M)
1=1,2 i = l,2 i = l,2

since A is Auslander-Gorenstein.

By Theorem 3.6, Proposition 5.6, Lemma 5.8, we only have to show that
GKdim M +j(M) = co + 1 for all M e Modf(/l)\(0), where co = GKdim B. We adopt the
notation of the proof of Proposition 5.6: M = M/QM, M' = M/KerMQ, where
KerMQp = {xeM/Q"x = 0}, n{M) is the smallest integer q such that KerM Qq =
KerM Q"+l. We noticed that n(M') <n(M) - 1 and we induct on n{M). If M = KerM Q,
i.e. M' = (0) then M e Modf(B). Hence GKdims M +jB(M) = co, GKdimB M =
GKdim,, M, jB{M) =jA(M) - 1 (Rees Lemma, Proposition 3.4(b)). Thus GKdim,, M +
jA(M) = co + 1. If «(M) = 0, Q is a n.z.d in M. By Lemma 5.7, GKdim,, M/QM =
GKdim,, M - l , jA(M/QM)=jB(M/QM) +I by the Rees Lemma and jA(M/QM) =
jA(M) + 1 by Corollary 4.4. Since GKdim,, M/QM = GKdimfl M/QM = co -jB(M/QM)
we obtain GKdim,, M +jA(M) = co + 1. If n(M) > 1, we may assume M' =t (0). Consider
the exact sequence 0—*KerM Q—>M—*M'—*0. By the sublemma, induction and the
results above, we obtain GKdim,, M + jA{M) = co + 1.

An easy induction yields the following corollary.

COROLLARY. Let A be a finitely generated positively graded k-algebra with dimkA{)<
oo. Suppose Q = {Ql 5. . . , Q/} is a regular normalizing sequence of homogeneous elements
of positive degree in A. Put B: = A/QA and suppose that B is Auslander-Gorenstein of
dimension v, satisfies the CM-property and condition (PG). Then A is Auslander-
Gorenstein of dimension n = v + /, satisfies the CM-property and condition (PG).

REMARKS. (1) Q regular normalizing means that, for all i, Q1+1 is a normal n.z.d in

(2) Obviously if we suppose gldim(j4) <°° in the corollary, we obtain A Auslander-
regular.

5.11. Let (/?, M) be a commutative noetherian local ring. To attempt to prove that R
is Gorenstein one can proceed as follows. Find a regular sequence (Q,,..., Qt)
contained in M with / = Kdim R, then R/(QU . . . , Q,) is an Artinian ring and one has to
prove that its socle is a 1-dimensional vector space. In the non-commutative setting it is in
general impossible to find a regular normalizing sequence ( Q , , . . . , Q,) such that
GKdim A/(QU... ,Q/) = 0. But, we shall see in Section 6 some examples where this
factor ring has GKdim 2. For this reason we give in 5.13 a criterion to ensure that such an
algebra is Auslander-Gorenstein. We begin with an easy lemma.

LEMMA. Let B be a noetherian k-algebra. Assume GKdim exact in Modf(B), B is
v-homogeneous, and the quotient ring Q of B is self-injective {i.e. injdim((2) = 0). Then
for all M e Modf(B) we have:

(a) GKdimB M<v-\ifand only if M* = E°B(M) = (0);
(b) for allq>l, GKdim E%(M) <v-\and EB{Eq

B{M)) = (0).
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Proof, (a) Denote by 5 the set of n.z.d. in B. Thus Q =S~lB = BS~l by Theorem
5.3. Suppose GKdimBM<v. Let 0eHomB(M,B). Then GKdims 0M < GKdimfl M <
v, so 6M = 0 since B is v-homogeneous. Conversely if M* = (0) then HomG(S~'Af, Q) =
HomB(M,B)®BQ = (0). Since Q is self-injective, we know S~'M = (S~'M)**, the
bidual over Q. Hence S~lM = (0) and GKdim M < v — 1 follows easily.

(b) The first assertion is consequence of injdim(£)) = 0 and Eq
B{M)®BQ =

Eq
Q(S~xM). The second follows from (a) and the first.

5.12. In this section we assume that B = k® B, © B2 © . . • is a noetherian positively
graded fc-algebra. We set M = 0 B, and consider k = B/M as a left or right graded

12=1

B-module. We shall write E'B(Bk) = 8, JkB or E'B{kB) = 5, v Bk to mean that this module is
(0) for i =£ v and isomorphic to k if / = v. Notice that E'B(k) e Modf(B); hence we in fact
have Ev

B(k) = k[m] for some m e Z (in Modf(fi)).

LEMMA. Assume v = injdim(B) < °°. T/ie/i
(a) /f E'B{Bk) = S, v fcB and SM e Modf(B) is such that dim,. M < oo, we /zawe

f'^M) = (0) for i < v a/zrf dim*. Eg(M) = dim* M;
(b) if E'B{Bk) = 8ivkB and E'^kB) = <5,,v Bk and we let BN e Modf(B) with pdB(N) <

oo then we have Tor?_,<fcB, N) = Ext'B(Bfc, A/) /or a// i > 0.

Proof, (a) We argue by induction on dim^M. It is true for dim* M = 1 by hypothesis.
For any M e Modf(B) there exists an exact sequence in Modf(B):

0^M'^M^Bk[m]-+0

for some m e Z. Then use induction and the long exact sequence in cohomology.
(b) We recall the following two facts.
(b.l) Let B be any noetherian ring with injdim(B) = v < °o and let BN e Modf(B)

with pdB(Af)<oo. Then injdims(N) < v. This can be proved by using the spectral
sequence

Tor£(Ext&(M, B), N) => Extfl-"(M, N), where BM e Modf(B) (see [12]).

(b.2) There exists a convergent spectral sequence

£§•"« = ExtpB(Exr|(A:B, B), N)^>Tor_ip_q)(kB, N)

(see [12] and use (b.l)).
We now prove the assertion. Since ExtB(kB,B) = 8qvBk, the spectral sequence of

(b.2) degenerates to isomorphisms Ep
2-~

vsExt^(BA:, N) = ££~v = Torv_p(kB, N).

5.13. THEOREM. Let B = k(&B,®B2®. • . be a noetherian graded algebra such
that:

(a) GKdimBMeNfor all MeModf(B);
(b) injdim(B) = GKdim B = 2, B is 2-homogeneous with a self-injective quotient

ring;
(c) E'B(Bk) = 8iakB and E'B{Bk) = di2kB.

Then B is Auslander-Gorenstein and satisfies the property CM.

Proof. We are going to prove that EP{E"{M)) = (0) for p < q and M e Modf(S), and
that B is CM. The theorem will then follow from Proposition 5.9.

By Lemma 5.11 (b), we have E°(Eq(M)) = 0 if q > 1. Since injdim(B) = 2, it remains
to show £;'(£;2(Af)) = (0). Consider the spectral sequence Ep

2'
q = Ep(Eq(M))^W~q of
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Theorem 2.2. We get EL~2 = (0) (because W = (0) if n =£0) and for all r > 2 we have
maps

C-l-r.r-3 d' . r-1,-2 rff , rr+l ,- l -r

But since 1 - r < 0 and 1 + r > 2 we have El
r~

r-r+3 = Er
r
+U~x~r = (0). Hence E\E\M)) =

£>•-*= E»--2 = . . . = E J ; - 2 = (O).
We shall break the proof of the property CM into four steps. First notice that one

can reduce to the graded CM-property by Remark 5.9 (2).
1. By hypothesis GKdim takes values in M on Modf(S); hence GKdimBA/ = 0, 1 or 2

for all M e Modf(B). If GKdimB M = 0 then dim* M < oo and/B(Af) = 2 by Lemma 5.12. If
GKdimB M = 2, we have £°(Af) = M* =£ (0) by Lemma 5.11, i.e. jB{M) = 0. Therefore the
case GKdims M = 1 is the only difficult case and all that follows is to deal with this case.

2. We recall the Auslander Approximation Theorem in Modf(fi), see [11, Proposi-
tion 3.8]. The Auslander Approximation Theorem states the following. Let B be a graded
noetherian ring. Let M e Modf(B) and suppose there exists r e N such that Ep

B{Eq
B{M)) =

(0) for all p<q<r. Then there exists M, eModf(B), pdB(M,)<r, a graded morphism
f:M—>Mx such that Ext'(/):£'B(M1)^'£B(M) is an isomorphism for all i e {1,. . . , r}.

The Auslander Approximation Theorem applies to any M eModf(B), B as in the
theorem, since we showed Ep(Eq{M)) = (0) if p<q^2. Hence we get f:M-*Mu

pdB(iW,) < 2, a'(f): £'B(M,) ^ £'B(M) isomorphisms for i = 1, 2.
3. When BA/ e Modf(B), we define the torsion submodule by T(M):= {x e M I 3i >

0, M!x = 0} and we put M = M/T(M). Recall that the socle of M is Soc(M) =
Homfl(BA:, M) = {* e M / Mx = 0}. We do the same for MB e Modf(B).

Claim, (i) T(M) # (0) if and only if Soc(M) # (0) if and only if £ |(M) # (0).
(ii) E'fl(A() a E'fl(A*),i = 0,1.
(iii) E2

B(M) = (0) and £B(M) = E2
B(T(M)) is a finite dimensional vector space.

Proof of the claim. Clearly T(M) ¥= (0) if and only if Soc(M) ^ (0). Notice that
dim* T{M) < <»; hence E''(r(M)) = (0) if t = 0 , 1 and dim* E2(T(M)) = dim* T(M) by
Lemma 5.12(a). The long exact sequence

proves (ii). Since T(M) = (0), (i) implies (iii). If T(M)±(0), we have E2(T(M)) * (0)
and hence E2(M)J=(0) follows from the surjection E2(M)—> E2(T{M)). So it remains
only to show that £2(M)=£(0) implies T(M)=t(0), i.e. Soc(M) =£ (0). L e t / : M ^ A / , be
given by step 2. Remark that pdB(M,) = 2 (because £2(M,) = E2{M) # (0)) and, since it is
a graded module, we have T o r ^ s , A/,)#(0). By Lemma 5.12(b), we have

B.AfOsExt'^Bit.M,) for all /. In particular Soc(A/,) = HomB(BA:, M,) =
, Mx) ^(0). Recall that / induces a map between the spectral sequences
x), E^~q{M) and their invariants (see Remark 2.1 (2)). Hence we obtain a

commutative diagram:

F3M = (0)^> F2M -^ FlM^> F°M = M

V V V
F3M, = (0)-» F2M, ̂  F'M, -> F°M, = Mj

Since <^{f):E\Mx)^E\M), i = l ,2 , we have isomorphisms ^ • i ( / ) :
(Remark 2.1 (2)).
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By Theorem 2.2 (b) and injdim(fl) = 2, we conclude that / induces isomorphisms

f:F2M = E2(E2(M)) ^ F2MX = £2(£2(M,))
and

It follows that / is an isomorphism from FlM onto F'M,. Since E2(M)¥=(0) and
E\E2(M)) = (0), i = 0,1, we see that E2(E2(M))*(Q), and therefore F 2 M s
£2(£2(M))*(0). Recall that we have 0^MJFlMl-+E°(E°(M,)) = M*X*. Hence
Soc(Mi//rlM1)cSoc(Aff*) = (0) since M** is a submodule of a free B-module and
Soc(B) = (0). It follows that Soc(FX) = Soc(M,). Thus Soc(M) => Soc(F'M) =
SocCF'M,) = Soc(M.) * (0), proving Soc(M) * (0).

4. We now finish the proof of the property CM for B. Assume GKdimBM = 1. Then
E°(M) = M* = (0) by Lemma 5.11. Suppose El(M) = (0); we get E^~\M) =
Ep(El(M)) = (0) for all p. Hence EP

2'~
q(M) = (0) except for (p,q) = (2,2), and the

spectral sequence degenerates to M = E2(E2(M)). By step 3, this implies dim* M < oo and
a contradiction. Thus yB(M) = 1. If GKdimBM = 2, we have E°(M) = Af * =£ (0) by Lemma
5.11, i.e.

REMARKS. (1) The condition on the quotient ring of B is in particular satisfied when
B is semi-prime.

(2) Let A = k(BAl®A2(B • • • be a finitely generated graded algebra containing
Q = { Q , , . . . , Q,}, a regular normalizing sequence of homogeneous elements of positive
degree in A. Assume that B = A/QA satisfies the hypothesis of the theorem above and
condition (PG). We deduce from Corollary 5.10 that: A is Auslander-Gorenstein, satisfies
the property CM and the condition (PG), injdim(/4) = 1 + 2.

6. Artin-Schelter regular algebras.
6.1. In [1] is introduced a notion of "regularity" for graded algebras. To avoid any

confusion we have chosen to call them AS-regular algebras. We shall compare this
definition with Auslander-regularity. For technical reasons it is natural to enlarge the class
of AS-regular algebras to AS-Gorenstein algebras.

DEFINITION. Let A = k ®AX ®A2 ©. . . be a finitely generated k-algebra. We say that
A is AS-regular (resp. AS-Gorenstein) of dimension ju if:

(i) gldim(A) = ju < oo (resp. injdim(/4) = n < °°);
(ii) the function n —> d\mk A n has polynomial growth of degree d — leNU { — 1};

(iii) A is Gorenstein in the following sense: E'A(Ak) = 6, JcA and E'A(kA) = 6LflAk.

REMARKS. (1) Assume A is a noetherian AS-regular algebra. Then A satisfies the
condition (PG) defined in 5.4. In fact the Hilbert series of every M eModf(A) has the
form hM(t) = qM(t)lpA(t) as in 5.5.

(2) Wehaved = GKdimA
(3) By the Rees lemma, if { & ! , . . . , Q/} is a regular normalizing sequence of

homogeneous elements of positive degree in some AS-Gorenstein algebra then B =
AI(QX,. . . , Q,) is also AS-Gorenstein.

(4) The definition of an AS-regular algebra given in [3] requires that Ak has a free
resolution in Modf(/4).
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6.2. In [1] and [3], [4], the following natural questions are raised about AS-regular
algebras.

(6.2.1) Is ,4 noetherian?
(6.2.2) Is A a domain?
(6.2.3) Is it always true that gldim(,4) = GKdim ,4 (i.e. n = d)l

When A is AS-Gorenstein, one can ask similar questions, replacing (6.2.2) and (6.2.3) by
(6.2.4). Is A ^-homogeneous for GKdim?
(6.2.5) Is it true that injdim(,4) = GKdim Al

The results from [1] and [3], [4] give (partial) answers to these questions; we summarize
in the following theorem.

THEOREM. Let A be an AS-regular algebra of dimension fx.
(i) / / / i < 3 and A is generated by Ax then A is a noetherian domain and

GKdim A = n.
(ii) / / A is noetherian and GKdim A = fi s 4 then A is a domain.

(iii) / / GKdim A = ju < 3 and A is noetherian then A satisfies the property CM and the
condition: E'A(EA(M)) = (0) for all i <j and M e Modf(,4).

Using the results of 5.9, we deduce the next corollary.

COROLLARY. Let A be an AS-regular algebra as in (iii) of the previous theorem. Then
A is Auslander-regular and satisfies the property CM.

We shall recover (particular) cases of this corollary in 6.7 and prove a similar result
for some algebras of gldim(yl) < 4.

6.3. In 4.8, we showed that a positively graded Auslander-regular fc-algebra with
An = k is a domain. In view of Corollary 6.2, we may ask the following questions.

(6.3.1) Let A = k(BAt(BA2(B... be finitely generated over k. Do we have: A
AS-regular (resp. AS-Gorenstein) if and only if A is Auslander-regular (resp. Auslander-
Gorenstein) and A satisfies condition (PG)? Furthermore does A satisfy the property CM
with GKdim A =gldim(y4) (resp. GKdim A = injdim>l)?

Notice that a positive answer to (6.3.1) gives positive answers to (6.2./), j = 1,. . . , 5.
One of the implications is easy, namely we have the following result.

THEOREM. Let A = k(BAl®A2(B... be an Auslander-Gorenstein k-algebra of
dimension fi. Then E'A(Ak) = 6, MkA. In particular if n—*d\mk An has polynomial growth
A is AS-Gorenstein.

Proof. Put n =j(Ak), m =j(kA). We first have to show n = m. Set NA: = E"A(Ak) e
Modf(/1). Since there exists a surjective graded morphism NA—>kA[m]—*0, for some
meZ, we have j(N)<j(kA) = m. But j(N) = n by Theorem 2.4. Hence « < m and, by
symmetry, n = m. We now prove n = \i. Let 5^ e Modf(A) be such that AM = £M(5) =£
(0). 5 exists by Lemma 3.3. Since £'(£"(S)) = (0) if i < n, we have j(M) = fi. There exists
an exact sequence Q-*M'—>M—>Ak[m]^>0 in Modf(A). It follows that fi=j(M) =
inf{j(Ak), y'(Af')}; thus n=j(Ak) = p. It remains to show that dim* E^k) = 1 (same
proof for kA). The b-filtration for Ak takes the form: (0) <^Ftl

Ak =. . . = Ak; hence
Ak = F>t

Ak = E>'(Ef'(Ak)) by Theorem 2.2. Put NA = E"(Ak), so that j(N) = p, and
suppose that dim^A^>l. Consider an exact sequence in Modf(A): 0—»N'—»N—»•
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kA[m]—>0. We get j(N')>j(N) = ju; hence j(N') = n. Therefore we have an exact
sequence 0^ E»(kA[m])^ E"(N)-+ E"(N')^0. From E»(N')*(0) and E"(N) = Ak, it
follows that E"(kA[m]) = £"(Jt/,)[-m] = (0), contradicting the fact that j(kA) = \i.

6.4. We recall here results from [5] and [3], [4] which will be used to give an example
of an Auslander-Gorenstein ring in the next section.

For simplicity we assume that k is algebraically closed and we denote by X an
irreducible projective variety over k. The category of quasi-coherent (resp. coherent)
(^-modules is denoted by C^-Mod (resp. Ox - Modcoh). Let a be a /c-automorphism of
X. When M e Gx-Mod we set Ma: = o*M. An invertible sheaf is called a-ample if: for all
9 e Qr-Modeoh, all q > 1, H"(X, &®%®Z£a®...® 3°"") = 0 if n » 0. From now on
we fix a a-ample invertible sheaf X and, as in [5], we define

?a®. . .®iP0""1 if n>0,

.®ira~" if

38n), B:=B(X,o, i?):=© Bn.

Then 98 is a sheaf of graded algebras and B is a graded domain. The main theorem of [5]
proves the next theorem.

THEOREM. The algebra B = k® BX(B B2(& . . . is noetherian and there is an
equivalence of categories:

Modg(B)/Tors = <VMod,

where Tors is the full subcategory o/Mods(B) consisting of modules which are direct limits
of finite dimensional modules.

REMARK. The equivalence from 6X-Mod onto Modg(B)/Tors is induced by the
functor rV<VMod^Modg(B) defined by r*(M):= © H°(X,M®Ox%)- It takes
coherent (^-modules to finitely generated B-modules. "eZ

6.5. We assume that the variety X of 6.4 is a smooth elliptic curve and we fix
oe A\itk(X). Then any ample invertible sheaf X is a-ample and we have GKdim B = 2,
see [5,1.5] and Lemma 6.6.

The following proposition is a reformulation of results by A. Yekutieli, see [20], [21].

PROPOSITION. The algebra B satisfies: injdim(B) = 2, E'B(kB) = 5i2Bk, E'B(Bk) =

Proof. By [20,4.3.1] and the fact that the canonical sheaf on X is isomorphic to €x,
we have a resolution by injectives in <VMod:0^> 6X^*^X

X-^^X^Q. Set 7" =
r^afp1). JX = U(X°X), J2 = T^TX)/6(T\(XX

1)). Then, by the proof of [20,4.5.3], one
obtains: / ' is a graded bimodule over B injective on both sides, 7° and 71 are torsion free
and 72 = HOMk(B, k) is the injective hull of Bk, or kB, in Modg(B). Thus, applying T* to
the resolution above, we obtain an injective resolution 0—»fl—»7°—»7'-»72—»0 in
Mod8(B). This proves grinjdim(B) = injdim(B)<2. By symmetry, the proposition will
follow from E'B(Bk) = 8i2kB. Since 7°, 71 are torsion free and 72 = HOMk(B, k), we have:
HomB(BA:,7') = (0) if * = 0, 1 and HomB(Bk,J2) = Homk(B,k)n = kB. Since E'B(Bk) =
H'(HOMB(k,J')) = /f'(HomB(A:,7")), the proof is complete.
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6.6. Assume (X, a, !£) is as in 6.5 and suppose furthermore that ££ is very ample,
i.e. degi?>3. Denote by C the algebra B(X,ldx,%). Hence C=®Cn, where

Cn = H°(X,J£'8"'), is the homogeneous coordinate ring of the projective embedding
x^P(H"(x,<e)*).

LEMMA. Let M = ® Mm be in Modf(B). Then the function m —* dim* Mm is given by a
m

polynomial for n » 0. In particular B satisfies the condition (PG).

Proof. Let i be a coherent (^-module. We first notice that, if m»0,
dim* H\X, M®Ox®m) = dim* H\X, M®Ox^®m). This can be proved as follows. Taking
a finite locally free resolution of M, one reduces to the case where M is locally free. Then
[2, Lemma 15] gives the result since <&m and i?®"1 have the same degree. Now, by
Theorem 6.4, we have equivalences

Mod8(fi)/Tors = <VMod = Modg(C)/Tors.

If dim* M < oo, the lemma is obvious. Therefore we assume that M is torsion free and
denote by M e C -̂Mod,.,,,, the corresponding ©^-module. See N = T*(M) e Modf(C). By
the previous remark, dimk Mm = dimk Nm. Then it is well known that m—^dimytA^ is
given by a polynomial of degree GKdim N — 1 for n» 0. Hence the lemma is proved.

REMARK. The Hilbert series of M e Modf(B.) is of the form hM{t) = qM(t)l(\ -1)2,
qM(t)eZ[t,t~1]. This is a consequence of the proof of the lemma and the truth of this
assertion in Modf(C). We have hB(t) = (1 + {r - 2)t + t2)/(l - t)2 if r = deg iP.

THEOREM. Let (X, o, i?) be a triple as above. Then the algebra B(X, a, ££) is
Auslander-Gorenstein of dimension 2, satisfies the CM-property and the condition (PG).

Proof. Notice that GKdim B = 2 and apply the lemma, Proposition 6.5 and Theorem
5.13.

6.7. We deduce, from Remark 5.13 (2), the following result.

COROLLARY. Let A = k®Al®A2®... be a finitely generated graded k-algebra.
Assume Q = {Qu . . . ,Q,} is a regular normalizing sequence of homogeneous elements of
positive degree in A such that A/QA = B(X,o,3!) for some triple {X,o,!£) as in 6.6.
Then A is Auslander-Gorenstein of dimension 1 + 2 and satisfies the CM-property and
condition (PG).

APPLICATIONS. (1) Let A be an AS-regular algebra of dimension 3 and type A as in
[3]. Then A is Auslander-regular and satisfies the CM-property. This follows from the
corollary since A/QA = B(X,o,£S) for a central element of degree 3 and a triple
(X, o, i?) as in 6.6 (with degi? = 3). In particular, we recover [4, Theorem 4.1] in this
case.

(2) Let S be the Sklyanin algebra as in [18, Theorem 5.4]. Then 5 is Auslander-
regular of dimension 4 and satisfies the CM-property. The corollary applies to S since
5/(Q,, Q2) — B(X, a, ££) for a regular centralizing sequence {Q,, Q2} of quadratic
elements and a triple (X, a, =2") as in 6.6 (with deg if = 4). Since gldim(5) = 4 by [18,
Theorem 0.3], we have that 5 is Auslander-regular.
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(3) In [19], the construction of the Sklyanin algebra is generalized to obtain
AS-regular algebras A of dimension 4 such that A/(QUQ2) = B(X, o,i£) for a regular
normalizing sequence {Q1;Q2} of quadratic elements and a triple (X,o, Z£) as in 6.6
(with degi? = 4). Thus the corollary can be applied to these algebras.
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