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RÉSUMÉ. Cet article étudie les ‘point modules’ et ‘line modules’ sur l’algèbre

définie par E.K. Sklyanin dans [17]. Ces modules sont précisément les modules de Cohen-

Macaulay de multiplicité 1 et dimension de Gelfand-Kirillov 1 et 2 respectivement. Il a été

démontré en [21] que les ‘point modules’ sont en bijection avec les points d’une courbe el-

liptique E dans P3 augmentée de 4 autres points. On prouve ici que les ‘line modules’ sont

en bijection avec les droites sécantes de E. On montre que d’autres propriétés algébriques

de ces modules sont conséquences et/ou analogues de propriétés géométriques de E et des

4 points. Par exemple, si deux droites non concourantes sont sur une quadrique lisse

contenant E, alors les deux modules correspondant ont le même annulateur. On démontre

également que l’algèbre de Sklyanin peut être définie à l’aide des formes bilinéaires s’annulant

sur une certaine sous-variété de P3 × P3.

ABSTRACT. This paper studies point modules and line modules over the algebra

defined by E.K. Sklyanin in [17]. It was proved in [21] that the point modules are in

bijection with the points of an elliptic curve E in P3 together with 4 other points. Here it

is proved that the line modules are in bijection with the lines in P3 which are secant lines to

E. The point and line modules are precisely the Cohen-Macaulay modules of multiplicity

1, and Gelfand-Kirillov dimension 1 and 2 respectively. Further algebraic properties of

these modules are shown to be consequences and analogues of the geometric properties of

the elliptic curve and the 4 points. For example, if two lines lie on a smooth quadric

containing E, and they do not intersect, then the two corresponding line modules have the

same annihilator. It is also shown that the Sklyanin algebra may be defined in terms of the

bilinear forms vanishing on a certain subvariety of P3 × P3.
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Introduction.

The 4-dimensional Sklyanin algebra is the graded algebra A = C[x0, x1, x2, x3] defined
by the six relations:

x0xi − xix0 = αi(xjxk + xkxj)

x0xi + xix0 = xjxk − xkxj

where (i, j, k) is a cyclic permutation of (1, 2, 3), and (α1, α2, α3) ∈ C3 lies on the surface

α1+α2+α3+α1α2α3 = 0. (One also excludes a certain finite set of points on this surface

– see §1 for details). This two parameter family of algebras was defined and first studied

by E.K. Sklyanin in 1982 [17]. Although the above succinct description of A suffices for

the purposes of this introduction, an alternative ”better” definition (which explains the

restriction on the αi) is given at the start of Section 1. There A will be defined in terms

of an elliptic curve C/Λ, and a point τ ∈ C/Λ which is not of order 4.

Sklyanin’s initial study of A showed (among other things) that A has various finite

dimensional representations in spaces of theta functions, and that A has two homogeneous

central elements of degree two [17], [18]. Further algebraic properties of A were obtained

in [21]. It was proved there that A is a noetherian domain, and has the same Hilbert series

as the polynomial ring in 4 variables, namely (1−t)−4. Furthermore, A is a Koszul algebra

of global homological dimension 4, and is regular in the sense of Artin and Schelter [1].

The methods in [21] follow closely those in [2] and [3]. Further homological properties of

A were established in [11]; in particular A is Auslander-regular.

The purpose of this paper is to begin a study of the representation theory of A. All the

results mentioned in the previous paragraph will play a key role in our analysis. Following

the ideas in [2] and [3], we study three classes of A-modules: point modules, line modules

and plane modules. These are defined to be cyclic modules with Hilbert series (1 − t)−n

where n = 1, 2, 3 respectively. Thus the Hilbert series of a line module is the same as that

of the homogeneous coordinate ring of the projective line P1. The point modules were

classified in [21]. They are in bijection with the points of a subvariety E ∪ S of P3, where

E is a smooth elliptic curve, and S consists of 4 more points. If p ∈ E ∪S, we write M(p)

for the corresponding point module. It is rather easy to see that plane modules are in

bijection with the hyperplanes in P3. Thus our main interest is in line modules.

We will prove that the line modules are in bijection with the set of lines in P3 which

are secant lines of E (we note that E has no trisecants). If p, q ∈ E, then M(p, q) denotes

the corresponding line module. Both M(p) and M(q) are quotients of M(p, q), and the

kernel of each of these surjections is again a line module. The line modules can also be

characterized by their homological properties. They are precisely the Cohen-Macaulay

modules of projective dimension 2, and multiplicity 1 (see §1 for definitions).

As in [21], the proof of these results is closely related to the geometry of E. The

algebra A determines not just E ∪ S (as the space parametrizing the point modules), but
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also an automorphism σ of E ∪ S. It is shown in [21] that σ|S = Id and σ|E is translation

p 7→ p+ τ by a certain point τ ∈ E.

For this paragraph, suppose that τ is of infinite order. Then the center of A is a

polynomial ring C[Ω1,Ω2] in the two central elements found by Sklyanin. The annihilator

of M(p, q) is generated by a non-zero element Ω ∈ CΩ1 ⊕ CΩ2. Moreover, up to scalar

multiples, Ω depends only on p+ q, so we write Ann M(p, q) = 〈Ω(p+ q)〉. Furthermore, if

r, s ∈ E, then CΩ(r) = CΩ(s) if and only if either r = s or r+s = −2τ . As an indication of

the parallels between the algebraic properties of A and the geometric properties of E ⊂ P3

we will prove that, if z ∈ E is fixed, then all the secant lines through p and z − p lie on

a common quadric containing E, and all the line modules M(p, z − p) have a common

annihilator.

The results are presented as follows. Section 1 begins with a definition of the Sklyanin

algebra, and shows that the defining relations have a succinct geometric description. This

way of viewing the relations, and the degree two central elements of A, will be extremely

useful for us. Section 1 also contains background material on homological properties (e.g.

the Auslander condition) and Hilbert series of graded algebras. Section 2 gives a homolog-

ical classification of point, line and plane modules: they are precisely the Cohen-Macaulay

modules of multiplicity 1. Section 3 examines the geometry of the secant lines of E, and

the quadrics on which they lie. Section 4 proves that the line modules are in bijection with

the secant lines of E. Section 5 examines point modules, their finite dimensional simple

quotients, and their relationship to line modules. For example, if p, q ∈ E then there is a

short exact sequence 0→M(p+ τ, q− τ)→M(p, q)→M(q)→ 0. Section 6 describes the

annihilators of the line modules.
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§1. Preliminaries.

1.1. The defining equations of the Sklyanin Algebra.

We now define the Sklyanin algebra in a way which will be more useful than that

given in the introduction. From our point of view (1.2b) below is the best way to define

the Sklyanin algebra.

Fix, once and for all η ∈ C with Im(η) > 0, and write Λ = Z⊕Zη. Let θ00, θ01, θ10, θ11
be Jacobi’s four theta functions associated to Λ, as defined in Weber’s book [24, p.71]. In

particular,

θab(z + 1) = (−1)aθab(z), θab(z + η) = exp(−πiη − 2πiz − πib)θab(z)

and the zeroes of θab are at the points ( 1+b
2 ) + ( 1+a

2 )η + Λ. Furthermore θ11 is an odd

function, and the other θab are even functions.

Fix, once and for all τ ∈ C, such that τ is not of order 4 in C/Λ. Whenever

{ab, ij, kl} = {00, 01, 10}, define

αab = (−1)a+b

[
θ11(τ)θab(τ)

θij(τ)θkℓ(τ)

]2
,

and set α1 = α00, α2 = α01, α3 = α10. It is not difficult to show that these satisfy α1 +

α2 + α3 + α1α2α3 = 0, and {α1, α2, α3} ∩ {−1, 0, 1} = ∅.
Let V be a 4-dimensional vector space with basis x0, x1, x2, x3. Define A to be the

quotient of the tensor algebra T (V ), with defining relations as in the introduction. Thus

A = T (V )/I where I is the graded ideal generated by its six dimensional subspace of degree

two elements, namely I2 ⊂ V ⊗V . There is another ideal in T (V ) which is important for us.

In [17] Sklyanin found two central elements in A2; see also [21, §3.9]. It will be convenient

for us to take these central elements to be any two of the following:

Ω0 = (1 + α3)x
2
1 + (1 + α1α3)x

2
2 + (1− α1)x

2
3

Ω1 = (1 + α3)x
2
0 + (α1α3 − α3)x

2
2 − (α1 + α3)x

2
3

Ω2 = (1 + α1α3)x
2
0 + (α3 − α1α3)x

2
1 − (α1 + α1α3)x

2
3

Ω3 = (1− α1)x
2
0 + (α1 + α3)x

2
1 + (α1 + α1α3)x

2
2.

(The hypothesis that τ /∈ E4 ensures that none of the coefficients of the x2i is zero.) We will

write Z2 for the two dimensional space spanned by these elements, and define B := A/〈Z2〉
to be the algebra obtained by quotienting out these elements. Define J to be the kernel of

the map T (V )→ B. Thus J is generated by its 8-dimensional subspace J2 ⊃ I2.
For each ab ∈ {00, 01, 10, 11} define

gab(z) = γabθab(τ)θab(2z) where γab =

{
i =
√
−1 ab = 00, 11

1 ab = 01, 10
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Define jτ : C/Λ→ P(V ∗) = P3 by

jτ (z) = (g11(z), g00(z), g01(z), g10(z))

with respect to the homogeneous coordinates x0, x1, x2, x3. Write E = jτ (C/Λ). It follows
from [21, §2.4] that E is defined by any two of the following quadratic forms:

g0 = (1 + α2α3)x
2
1 + (1 + α3)x

2
2 + (1− α2)x

2
3

g1 = (1 + α2α3)x
2
0 + (α2α3 − α3)x

2
2 + (α2α3 + α2)x

2
3

g2 = (1 + α3)x
2
0 + (α3 − α2α3)x

2
1 + (α2 + α3)x

2
3

g3 = (α2 − 1)x20 + (α2 + α2α3)x
2
1 + (α2 + α3)x

2
2.

(The hypothesis that τ /∈ E4 ensures that none of the coefficients of the x2i is zero.)

We will show that the defining relations of A have a succinct description in terms of

the geometry of E. Consider V as linear forms on P(V ∗), and V ⊗ V as bi-homogeneous

forms on P(V ∗)× P(V ∗). We define the following subvarieties:

e0 = (1, 0, 0, 0), e1 = (0, 1, 0, 0), e2 = (0, 0, 1, 0), e3 = (0, 0, 0, 1)

S = {ei | 0 ≤ i ≤ 3}
∆S = {(ei, ei) | 0 ≤ i ≤ 3}
∆τ = {(p, p+ τ) | p ∈ E}
Γ = ∆S ∪∆τ .

Thus Γ is the graph of the automorphism σ of E ∪ S which was introduced in [21, §2.8].
Recall that σ(p) = p+ τ for p ∈ E, and σ(ei) = ei for i = 0, 1, 2, 3. The following is one of

the main results in [21, §§2,3].

Theorem 1.1. The subvarieties of P(V ∗)×P(V ∗) defined by I2 and J2 are V(I2) = Γ,

and V(J2) = ∆τ .

Theorem 1.2.

(a) I2 is the subspace of J2 consisting of those forms which vanish on ∆S . Thus I2 is the

subspace of V ⊗ V consisting of those forms which vanish on Γ = ∆τ ∪∆S .

(b) If f ∈ J2 vanishes at two points of ∆S then f ∈ I2.
Proof. (a) Since I2 vanishes on Γ, we need to show that if f ∈ J2 vanishes on ∆S ,

then f ∈ I2. Let Ω̃1 and Ω̃2 be preimages of the central elements Ω1 and Ω2 in V ⊗ V .

Thus J2 = I2 ⊕ CΩ̃1 ⊕ CΩ̃2. Since Ω̃1, Ω̃2 ∈
⊕

0≤i≤3 C(xi ⊗ xi) never vanish at all the

points ei, if f ∈ J2 and f(∆S) = 0, then f ∈ I2.
(b) The result follows from the fact that a non-zero element in CΩ̃1 ⊕CΩ̃2 cannot be

a linear combination of just two of the xi ⊗ xi. �
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Remarks. 1. In Section 3 it will be proved that the points ei ∈ S are the only points

in P3 which lie on infinitely many secant lines of E. Thus S is determined by E, and

hence Γ ⊂ P3 × P3 is determined by E and τ . Therefore (1.2a) gives a succinct geometric

description of the defining relations of A.

2. We shall use (1.2) as a way of recognizing non-zero central elements in A2. If

f ∈ V ⊗ V vanishes on ∆τ but not on ∆S , then the image of f in A is a non-zero central

element. Furthermore if two elements of J2 vanish at a common point (ei, ei) ∈ ∆S , then

the elements are scalar multiples of one another.

1.2. Homological properties of the Sklyanin Algebra.

Let k be a field. For the sake of simplicity the algebras considered in this section will

be noetherian graded k-algebras of the form A = k ⊕ A1 ⊕ A2 ⊕ . . .. The dimension of a

k-vector space E is denoted by dimE.

We denote by Mod(A), respectively Modg(A), the category of left or right A-modules,

respectively Z-graded A-modules. The subcategories of finitely generated A-modules will

be denoted by Modf (A) and Modgf (A), respectively. LetM =
⊕

mMm be in Modg(A) and

p ∈ Z. The shifted module M [p] is defined by setting M [p]m :=Mp+m. If M and N are in

Modg(A), then HOMA(M,N) denotes the Z-graded group such that HOMA(M,N)p =

{φ : M → N | φ is A-linear and φ(Mm) ⊂ Mm+p for all m}. It is well know that if

M ∈ Modgf (A), then HOMA(M,N) coincides with the usual HomA(M,N). In that case

the derived functors ofHOMA(M,−) and HomA(M,−) are the same, namely ExtqA(M,−).
When not otherwise specified a map M

φ→N between modules of Modg(A) will be an

element of HOMA(M,N)0, i.e. φ(Mm) ⊂ Nm for all m.

The projective dimension of M ∈ Mod(A) is denoted by pd(M). The algebra A is

said to have finite global homological dimension if d = sup{pd(M) |M ∈ Mod(A)} is finite.
In this case we write gldim(A) = d. We say that A has finite injective dimension if the

left and the right A-module A both have finite injective dimension. They are then equal

(because A is noetherian) and we set µ = injdim(A).

Let AM be in Modgf (A) with p = pd(M) < ∞. There exists a minimal graded free

resolution of length p of M . That is: P• → M → 0, Pj = 0 if j > p, Pj =
⊕

iA[−i]aij ,

and ∂j : Pj+1 → Pj is given by a matrix where the non-zero entries are elements of A of

positive degree. We call P•
∂→M → 0 the minimal resolution of M .

The dual of M is an element MD of the derived category Db
r(A) of bounded com-

plexes of finitely generated graded right modules. It is defined by RHomA(M,A) and is

represented by 0 ← P∨
• ← . . ., where P∨

• = HomA(P•, A). The cohomology of this com-

plex gives the groups ExtqA(M,A) ∈ Modgf (A). The Hilbert series of M is defined to be

hM (t) :=
∑

m(dimMm)tm and is then equal to
∑

j(−1)jhPj
(t) =

∑
j(−1)j [

∑
i ai,jt

ihA(t)].
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Let M =
⊕

mMm be in Modgf (A). Define a function fM : Z → N by fM (n) :=∑
m≤n dimMm. From now on we shall assume that, for all M ∈ Modgf (A), the growth

of fM , as defined in [9, Chapter 1], is a polynomial of degree s. The Gelfand-Kirillov

dimension of M , GKdim(M), is defined to be s = limn
log f(n)
logn . A module of Gelfand-

Kirillov dimension s is said to be s-homogeneous if every non-zero submodule is also of

Gelfand-Kirillov dimension s. A module is s-critical if it is of Gelfand-Kirillov dimension

s and all its proper quotients have strictly smaller Gelfand-Kirillov dimension.

We shall be interested in the case where hM (t) = gM (t)(1− t)−d for some fixed d ∈ N
and gM (t) ∈ Z[t, t−1]. As in [3, 2.21] one can see that fM has polynomial growth of

degree s which is the order of the pole at t = 1 of hM (t). Hence hM (t) = gM (t)(1− t)−s,

where gM (t) ∈ Z[t, t−1], and the multiplicity of M is defined to be e(M) := gM (1) =

[(1− t)shM (t)]t=1 ∈ N.

Let M be in Modf (A). The grade of M is the element j(M) ∈ N ∪ {+∞} defined by

j(M) := inf{i | ExtiA(M,A) 6= 0}. When injdim(A) <∞ and M 6= 0 we have j(M) <∞,

(see [10, Theorem 3.1] for instance). We say that M is pure if j(N) = j(M) for all non-

zero submodules N of M . When n = j(M) we say that M is n-pure. We abbreviate

ExtqA(M,A) by Eq
A(M) or Eq(M).

Definition. The algebra A is Auslander-Gorenstein, respectively Auslander-regular,

of dimension µ if

(a) inj.dim(A) = µ <∞, respectively gldim(A) = µ <∞, and

(b) for allM ∈ Modf (A), and for all q ≥ 0, j(N) ≥ q for every A-submodule N of Eq(M).

Remarks. 1. Condition (b) is called the Auslander condition. It implies that

Ep(Eq(M)) = 0 for all p < q, which may be taken as the definition of a Gorenstein

ring in the commutative case. This condition is discussed in detail in [6].

2. By [8, Theorem 0.1] one can replace Modf (A) by Modgf (A) in the definition.

3. Assume A is Auslander-Gorenstein. Then the grade number j(M) is exact on

short exact sequences: that is, if 0 → M ′ → M → M ′′ → 0 is exact then j(M) =

inf{j(M ′), j(M ′′)}, (see [6,§1.8]).

Proposition 1.3. [11] Let A be Auslander-regular. Then A is a domain and is regular

in the sense of Artin-Schelter (cf. [1] and [2, 2.12]).

The following summarizes results in [5, Chapter 2], [6, §1], [7], [10, §4], and [12].

Theorem 1.4. Let A be an Auslander-Gorenstein algebra of dimension µ, and let M

be a non-zero finitely generated A-module.

(a) There exists a convergent spectral sequence in Modf (A):

Ep,−q
2 := Ep

A(E
q
A(M)) =⇒ Hn
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where Hn = 0 if n 6= 0 and H0 =M . The resulting filtration on M has the form:

0 = Fµ+1M ⊂ FµM ⊂ . . . ⊂ F 1M ⊂ F 0M =M.

(b) There is an exact sequence

0→ F pM

F p+1M
→ Ep(Ep(M))→ Q(p)→ 0

where Q(p) is a subquotient of
⊕

i≥1E
p+i+1(Ep+i(M)) and satisfies j(Q(p)) ≥ p+2.

(c) F pM is the largest submodule X of M such that j(X) ≥ p. In particular j(M) =

max{p | F pM =M}.
(d) Ej(M)(M) is pure and Ep(Ep(M)) is either 0 or p-pure.

Remark. When M ∈ Modgf (A) the spectral sequence in (1.4a) takes place in

Modgf (A). Hence the filtration F •M consists of finitely generated graded submodules

of M .

Definition. Let µ be an integer. We say that A satisfies the Cohen-Macaulay property

(CM-property for short) if GKdimM + j(M) = µ for all 0 6=M ∈ Modf (A).

Remarks. 1. If A satisfies the Cohen-Macaulay property, then GKdimA = µ.

2. If (A,M) is a commutative noetherian local ring, then A is Cohen-Macaulay if and

only if Kdim(M) + j(M) = Kdim(A) for all 0 6=M ∈ Modf (A) (here Kdim is the Krull

dimension). This explains the terminology in the definition.

Corollary 1.5. Suppose that A is Auslander-Gorenstein of dimension µ. Let 0 6=
M ∈ Modf (A) and suppose that GKdim(A) = µ. If A satisfies the Cohen-Macaulay

property, then:

(a) M is n-pure if and only if M is (µ− n)-homogeneous

(b) The submodule F pM is the largest submodule of M of GK-dimension ≤ µ− p.
(c) If N is a submodule of Eq

A(M), then GKdim(N) ≤ µ− q.
Proof. The assertions follow easily from the definitions and Theorem 1.4. �

There is an example of an Auslander-Gorenstein algebra which is of particular impor-

tance for us. For simplicity assume that k is algebraically closed.

Let E be a smooth elliptic curve, L an invertible sheaf of degree ≥ 3 on E, σ a

k-automorphism of E. As in [2], [4], or [21] one can construct a graded algebra B :=

B(E, σ,L) = k ⊕ B1 ⊕ B2 ⊕ . . ., which for σ = IdE is the homogeneous coordinate ring

of the projective embedding E →֒ P(H0(E,L)∗). By [2] and [4] it is known that B is a

noetherian graded algebra generated by B1, GKdim(B) = 2, and B is a domain.

The next two results are proved in [11].
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Proposition 1.6. [11] Let B = B(E, σ,L) be as above. Then B is Auslander-

Gorenstein of dimension 2 and satisfies the Cohen-Macaulay property.

Remarks. 1. This result (which is well known in the commutative case viz. σ = IdE)

is based on results of A. Yekutieli [25].

2. It is easily seen that if M ∈ Modgf (B) then the Hilbert series hM (t) is of the form

qM (t)(1− t)−2 for some qM (t) ∈ Z[t, t−1].

Definition. An element Ω ∈ A, is said to be normal if ΩA = AΩ. Recall also that a

sequence {Ω1, . . . ,Ωℓ} ⊂ A is a regular normalizing (respectively centralizing) sequence if

Ωi+1 is a regular (i.e. non zero divisor) normal (respectively central) element in the ring

A/〈Ω1, . . . ,Ωi〉, for all 0 ≤ i ≤ ℓ− 1.

Theorem 1.7. [11] Suppose that {Ω1, . . . ,Ωℓ} is a regular normalizing sequence

of homogeneous elements of positive degree in A. If B = A/〈Ω1, . . . ,Ωℓ〉 is Auslander-

Gorenstein of dimension ν and satisfies the Cohen-Macaulay property, then A is Auslander-

Gorenstein of dimension µ = ν + ℓ and satisfies the Cohen-Macaulay property.

Corollary 1.8. Suppose that A contains a regular normalizing sequence {Ω1, . . . ,Ωℓ}
of homogeneous elements of positive degree, such that B := A/〈Ω1, . . . ,Ωℓ〉 ∼= B(E, σ,L)
for some triple (E, σ,L) as above. If gldim(A) < ∞, then A is Auslander-regular of

dimension ℓ+ 2 and satisfies the Cohen-Macaulay property: GKdim(M) + j(M) = ℓ+ 2

for all 0 6=M ∈ Modf (A).

By [21, 5.4], Corollary 1.8 applies to the Sklyanin algebra. Since we are mainly

interested in modules over this algebra we isolate:

Corollary 1.9. The 4-dimensional Sklyanin algebra is an Auslander-regular ring of

dimension 4 which satisfies the Cohen-Macaulay property.

Remark. There are some other cases where (1.8) can be applied. In [2,§2] some

“regular” algebras are introduced which have the property A/〈Ω〉 ∼= B(E, σ,L) for a central
element Ω ∈ A3 and a triple (E, σ,L) with degL = 3. In [23], J.T. Stafford modifies the

construction of the Sklyanin algebra to construct some families of “regular” algebras which

satisfy A/〈Ω1,Ω2〉 ∼= B(E, σ,L), where {Ω1,Ω2} is a regular normalizing (not centralizing

in general) sequence of quadratic elements and degL = 4.

For the rest of Section 1 we make the following assumptions on A:

(a) the Hilbert series of A is hA(t) = (1− t)−µ,

(b) A is Auslander-regular of dimension µ,

(c) A satisfies the Cohen-Macaulay property.
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The 4-dimensional Sklyanin algebra satisfies these conditions.

As noticed in (1.3), A is then regular in the sense of Artin-Schelter and by [3, §2.18]
every M ∈ Modgf (A) satisfies hM (t) = qM (t)(1− t)−s, for some qM (t) ∈ Z[t, t−1] such that

qM (1) 6= 0. Furthermore in this situation s = GKdim(M) = µ− j(M) whenever M 6= 0.

If 0 6= M ∈ Modgf (A) with n = j(M), then we define the dual of M to be M∨ :=

En(M). When A is Auslander-Gorenstein M∨ is an n-pure graded right module, so (1.4b)

gives a natural map 0 → M/Fn+1M → M∨∨. This map generalizes the well known map

from M modulo its torsion to the bidual of M .

Definition. A non-zero module M ∈ Modgf (A) is called Cohen-Macaulay (CM for

short) if pd(M) = j(M), i.e. Ei
A(M) = 0 if i 6= n = j(M).

Proposition 1.10. The duality M → M∨ gives a bijection between left and right

Cohen-Macaulay-modules of projective dimension n. In particular M ∼= M∨∨, hM∨(t) =

(−1)µ−nt−µhM (t−1), and e(M∨) = e(M).

Proof. We first show that M∨ is CM. We have Ei(En(M)) = 0 if i < n by the

Auslander condition and En(En(M)) 6= 0 by (1.4). Thus j(M∨) = n. We must prove

Ej(M∨) = Ej(En(M)) = 0 if j > n. Recall the spectral sequence of (1.4):

Ep,−q
2 = Ep(Eq(M)) =⇒ Hp−q =

{
0 p 6= q
M p = q

It follows that Ep,−q
∞ = 0 if p > q. If r ≥ 2, the differential dr in the spectral sequence

gives:

Ej−r,−n+(r−1)
r

dr−→Ej,−n
r

dr−→Ej+r,−n−(r−1)
r .

Since n ∓ (r − 1) 6= n, En∓(r−1)(M) = 0. Hence E
j+r,−n±(r−1)
r = 0 for all r ≥ 2 and it

follows that Ej,−n
2 = Ej,−n

3 = . . . = Ej,−n
∞ = 0 for all j > n. Thus Ej(En(M)) = Ej,−n

2 = 0

if j > n.

Because Ep(M) = 0 when p 6= n, the filtration on M has the form: M = F 0M =

. . . = FnM%Fn+1M = . . . = FµM = 0. By (1.4b) M = FnM ∼= M∨∨ = En(En(M)).

Since M is CM we have hMD (t) = (−1)nhM∨(t). From [3, §2.35,§2.36] we deduce that

hMD (t) = (−1)µt−µhM (t−1), and e(MD) = (−1)ne(M) (recall µ = n+GKdimM) so the

proof is complete. See also the remark after (1.12). �

Corollary 1.11. Let M ∈ Modgf (A) be a Cohen-Macaulay module. Set n = j(M),

and m = GKdimM . Then M is n-pure, (equivalently m-homogeneous). Furthermore, if

e(M) = 1, then M is critical for GK-dimension.

Proof. By (1.9)M = (M∨)∨ = En(M∨), so the first assertion follows from (1.4d) and

the CM-property. The second assertion is then obvious by additivity of the multiplicity.�

9



Lemma 1.12. Let 0 → M ′ → M → N → 0 be an exact sequence in Modgf (A).

Suppose that j(M) = n, and j(N) = n+ 1.

(a) If M and N are Cohen-Macaulay then so is M ′

(b) If M and M ′ are Cohen-Macaulay then so is N .

Proof. Use the definition and the long exact sequence in cohomology associated to

0→M ′ →M → N → 0. �

Remark. Let P• →M → 0 be the minimal resolution of a Cohen-Macaulay module

M . Then P∨
• →M∨ → 0 is the minimal resolution ofM∨, where P∨

• = HomA(P•, A). This

follows from the following two observations. Firstly, if ∂j : Pj+1 =
⊕

iA[−i]ai,j+1 → Pj =⊕
iA[−i]ai,j is the differential in P•, its dual ∂

∨
j : P∨

j =
⊕

iA[i]
ai,j → P∨

j+1 =
⊕

iA[i]
ai,j+1

is also given by a matrix where entries have positive degree. Secondly, by definition of a

CM-module, the complex (P∨
• , ∂

∨) has cohomology only in the top degree n = j(M) and

this cohomology is M∨.

¿From this remark and the fact that hA(t) = (1 − t)−µ, one obtains the equalities

hM∨(t) = (−1)µ−nt−µhM (t−1) and e(M∨) = e(M) of (1.10).

We shall be interested in Cohen-Macaulay modules of multiplicity 1 over the Sklyanin

algebra. It may be useful to recall the situation for a commutative polynomial ring in

µ variables (which satisfies the assumptions made after (1.9) which are in force for the

remainder of this section). Because there seems to be no suitable reference we include a

proof of the following:

Theorem 1.13. Let A = k[X1, . . . , Xµ] be a polynomial ring in µ variables, graded

by setting degXi = 1. Let M be in Modgf (A). Then the following are equivalent:

(a) M is cyclic with Hilbert series tp(1− t)−d for some p ∈ Z.
(b) there exists p ∈ Z such that M [p] ∼= A/〈Y1, . . . , Yµ−d〉 where Y1, . . . , Yµ−d are linearly

independent elements of A1.

(c) M is a Cohen-Macaulay module, GKdim(M) = d and e(M) = 1.

Proof. Replacing M by a suitable shift M [p] if necessary, we can assume that M =

⊕m≥0Mm with M0 6= 0.

(a) =⇒ (b) Write M ∼= A/I for some graded ideal I. Since hM (t) = (1 − t)−d we

have dim I1 = µ − d. If {Y1, . . . , Yµ−d} is a basis of I1 we get a natural graded surjective

map: A/〈Y1, . . . , Yµ−d〉 φ→M . Since these two modules have the same Hilbert series, φ is

an isomorphism.

(b) =⇒ (c) This is easy and well known (for instance use (1.12b)).

(c) =⇒ (a) Notice that (a) and (c) remain true under base extension. If k ⊂ L is a field

extension, set AL = L ⊗k A = L[X1, . . . , Xµ], and ML = L ⊗k M =
⊕∞

m=0(L ⊗k M)m ∈
Modgf (AL). We make three useful observations. Firstly M is CM if and only if ML is

CM (because A →֒ AL is faithfully flat). Secondly hM (t) = hML
(t), so GKdimML =

10



GKdimM and e(ML) = e(M). Thirdly ML/〈X1, . . . , Xµ〉ML
∼= L ⊗k M/〈X1, . . . , Xµ〉M

so M is cyclic if and only if ML is cyclic.

Thus to prove the implication we may assume that k is an uncountable field.

1. If m = (m1, . . . ,mµ) ∈ Nµ with m1 < m2 < . . . < mµ we put fm(X) =

det[Xjmi

i ]1≤i,j≤µ =
∏

1≤i≤µX
mi

i

∏
1≤i<j≤µ(X

mj

j −Xmi

i ). Since k is uncountable we can

find 0 6= λ ∈ k which is not a root of unity. If we set λ = (λ, λ, . . . , λ) ∈ Nµ then fm(λ) 6= 0

for all m as above.

2. Let M1, . . . ,Mt be proper ideals of A and assume A1 ⊂
⋃t

j=1 Mj . Choose λ as

above and notice that the set S = {λmX1 + λ2mX2 + . . . + λµmXµ | m ∈ N} is infinite.

Since S ⊂ A1 ⊂
⋃t

j=1 Mj there exists ℓ ∈ {1, . . . , t} such that S ∩Mℓ is infinite. Choose

m = (m1 < m2 < . . . < mµ) ∈ Nµ such that
∑µ

i=1 λ
imjXi ∈ Mℓ for all j ∈ {1, . . . , µ}.

Since fm(λ) 6= 0 we deduce that Xi ∈Mℓ for all i, that is Mℓ = 〈X1, . . . , Xµ〉.
3. We now prove the implication by induction on d = GKdimM . If d = 0, then

dimM = e(M) = 1, hence M = M0 = A/〈X1, . . . , Xµ〉. If d ≥ 1, denote by M1, . . . ,Mt

the associated prime ideals of M . Recall that
⋃t

j=1 Mj is the set of zero-divisors in M .

Suppose A1 ⊂
⋃t

j=1 Mj . By part 2 we get Mℓ = 〈X1, . . . , Xµ〉 for some ℓ. It follows

thatA/〈X1, . . . , Xµ〉 →֒ M which implies pd(M) = µ, i.e. d = 0, which is a contradiction.

Therefore we can find a ∈ A1 which is a non-zero divisor in M . The graded module

M = M/aM is CM with Hilbert series hM (t) = (1 − t)hM (t), and M/〈X1, . . . , Xµ〉M =

M/〈X1, . . . , Xµ〉M . By induction M is cyclic, hM (t) = (1 − t)1−d, and from above we

conclude that M is cyclic and hM (t) = (1− t)−d. �
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§2. Homological Characterization of Point, Line and Plane Modules.

Throughout this section we will assume that A is a C−algebra of finite global dimen-

sion containing a regular normalizing sequence {Ω1,Ω2}, where Ω1,Ω2 ∈ A2 are such that

B := A/〈Ω1,Ω2〉 ∼= B(E, σ,L) (graded isomorphism) for some (E, σ,L) with L of degree

4. As we noticed after (1.8) the Skylyanin algebra is an example of such a ring; also see

the remark after (1.9).

Since hB(t) = (1 + t)2(1 − t)−2 = (1 − t2)2hA(t) we have hA(t) = (1 − t)−4. By

(1.8) A is Auslander regular of dimension 4 and satisfies the Cohen-Macaulay property.

Furthermore, since B is generated by B1, the algebra A is generated by A1. Hence if

M =
⊕

m≥1Am is the augmentation ideal we have: M = A1A = AA1.

The following proposition provides a version of [3, Theorem 4.1, Corollary 4.2].

Proposition 2.1 Let 0 6=M ∈Modgf (A), set n = j(M), and m = GKdimM . Then

(a) n+m = 4;

(b) M∨ = En(M) is m-homogeneous and e(M∨) = e(M);

(c) GKdimEq(M) ≤ 4− q and the following are equivalent:

(i) GKdimEq(M) = 4− q,
(ii) Eq(Eq(M)) 6= 0,

(iii) GKdimN = 4− q for some submodule 0 6= N ⊆M ;

(d) There is a canonical map M
φ→M∨∨ and an exact sequence 0→M/kerφ→M∨∨ →

Q → 0 with Kerφ equal to the maximal submodule of M of GKdim < m, and

GKdimQ ≤ m− 2;

(e) The following are equivalent:

(i) pd(M) < 4,

(ii) the socle of M is Soc(M) = HomA(A/M,M) = 0,

(iii) E4(M) = 0,

(iv) the torsion submodule of M is T (M) := {x ∈M | Mix = 0 for some i} = 0;

furthermore E4(M) ∼= E4(T (M)) is a finite dimensional vector space of the same

dimension as T (M) and Ei(M) ∼= Ei(M/T (M)) for all i < 4;

(f) If m ∈ {0, 1, 2}, M∨ is Cohen-Macaulay. If m = 3, Ej(M∨) = 0 for j = 0, 3, 4 and

E2(M∨) ⊂ E4(E2(M)) is a finite dimensional vector space.

Proof. (a) This is the Cohen-Macaulay property.

(b) This follows from (1.4) and [3,§2.8] using the inequality GKdimEq(M) ≤ 4− q of

(c).

(c) The inequality is (1.5c). By §1.2, GKdimEq(M) = 4 − q ⇔ j(Eq(M)) = q ⇔
Eq(Eq(M)) is q-pure ⇔ F qM/F q+1M 6= 0 ⇔ M contains a submodule of GK-dimension

4− q.
(d) The map φ is the composition of M/Fn+1M →M∨∨ with the natural projection

M →M/Fn+1M . Hence Kerφ = Fn+1M , so (d) is a consequence of (1.4) and (1.5).
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(e) This is proved in [3,§2.46].
(f) We shall use the notation in the proof of (1.10). Recall that the spectral sequence

Ep,−q
2 ⇒ Hp−q implies Ep,−q

∞ = 0 if p − q 6= 0. Furthermore Ep,−q
r+1 = Kerdr/Imdr. If

r ≥ 2, then n + 1 − r < n so Ep−r,−n−1+r
2 = 0 and Ep,−n

r+1 = Ker(dr). By the Auslander

condition Ep(M∨) = Ep(En(M)) = 0 if p < n = 4−m.
Suppose that p > n, and that m ∈ {0, 1, 2} or equivalently n ≥ 2. If r ≥ 2, then

p + r > 4, so Ep−r,−n−1+r
2 = 0 because gldim(A) = 4. It follows that Ep,−n

2 = Ep,−n
3 =

· · · = Ep,−n
∞ = 0.

Suppose that m = 3, or equivalently that n = 1. When p ≥ 3 and r ≥ 2 the previous

argument shows that Ep,−n
2 = · · · = Ep,−n

∞ = 0 because p+ r ≥ 5. Assume p = 2. If r ≥ 3

then 2 + r ≥ 5 so 0 = E2+r,−1
2 , whence 0 = E2,−1

∞ = · · · = E2,−1
3 = Ker(E2,−1

2
d2−→E4,−2

2 ).

Thus E2,−1
2 = E2(M∨) is a submodule of E4(E2(M)) = E4,−2

2 , hence is finite dimensional

by (e). �

We want to study Cohen-Macaulay modules with multiplicity 1. There are two easy

cases. If M is Cohen-Macaulay and GKdimM = 0 then M ∼= k[p], for some p ∈ Z. If

M is Cohen-Macaulay, and GKdimM = 4 then M ∼= A[p], for some p ∈ Z. Therefore we

shall only consider the case 1 ≤ GKdimM ≤ 3. If A is a commutative polynomial ring in

4 variables, Theorem 1.13 shows that these modules are (up to a shift) in bijection with

the linear subvarieties of P(A∗
1)
∼= P3. On the other hand [3] describes such modules over

a regular algebra A of dimension 3 with A/〈Ω〉 ∼= B(E, σ,L) where Ω is a central cubic

element and L has degree 3. They can be classified (up to a shift) as follows:

–If GKdimM = 1, M is a “point module”, i.e. M is cyclic, and hM (t) = (1− t)−1.

Point modules are parametrized by the points of E ⊂ P2 ∼= P(A∗
1). See [3,§6.17].

–If GKdimN = 2, M is a “line module”, i.e. M is cyclic, hM (t) = (1 − t)−2. Line

modules are parametrized by the lines in P2 ∼= P(A∗
1). See [3,§6.1].

In view of these remarks we make the following definition:

Definition. Let M be in Modgf (A). We say that

M is a plane module if M is cyclic and hM (t) = (1− t)−3,

M is a line module if M is cyclic and hM (t) = (1− t)−2,

M is a point module if M is cyclic and hM (t) = (1− t)−1.

A shift of a plane, respectively line or point, module is a cyclic module with Hilbert

series tp(1 − t)−i, p ∈ Z, i = 3, 2, 1 respectively. The main result in this section is the

following.

Theorem 2.2. The module M ∈ Modgf (A) is a shift of a plane, respectively line,

respectively point, module if and only if M is a Cohen-Macaulay module, e(M) = 1 and

GKdimM = 3, respectively 2, respectively 1.
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The proof of Theorem 2.2 occupies the rest of §2. We shall examine separately the

different types of modules. Because of the following consequence of (1.10) and (1.11), we

will work with left A−modules unless otherwise specified.

Corollary 2.3. The dualityM →M∨ gives a bijection between left and right shifted

plane, respectively line or point, modules. These modules are critical.

We first investigate the case of plane modules. Proposition 2.5 below is a particular

case of [3,§2.43]. For the convenience of the reader we include a proof of it in our setting.

We first begin with a lemma taken from [3, §2.41].

Lemma 2.4. Let f :
⊕

iA[−i]bi −→
⊕

iA[−i]ai be an injective linear map of degree

0 between finitely generated graded free modules. Assume that the non-zero matrix entries

of f all have positive degree. Then bj ≤
∑

i<j(ai − bi) for all j.
Proof. The assumptions on f imply that f(

⊕
i≤j A[−i]bi) ⊂

⊕
i<j A[−i]ai . If X is

the quotient of these two modules, then hX(t) = (1 − t)−4(
∑

i<j ait
i −∑

i≤j bit
i). Since

[(1− t)GKdimXhX(t)]t=1 = e(X) ≥ 0, we have 0 ≤ [(1− t)4hX(t)]t=1 =
∑

i<j ai−
∑

i≤j bi.

The result follows. �

Proposition 2.5. If M ∈Modgf (A) the following are equivalent:

(a) M is a shift of a plane module;

(b) M ∼= (A/Aa)[p], for some p ∈ Z, where 0 6= a ∈ A1.

(c) M is Cohen-Macaulay, GKdimM = 3 and e(M) = 1.

Proof. We may assume that M =M0 ⊕M1 ⊕M2 ⊕ · · · , and M0 6= 0.

(a) ⇒ (b) We have dimM0 = 1, dimM1 = 3, and dimA1 = 4. Hence there exists

0 6= a ∈ A1 such that aM0 = 0. It follows that M = AM0 is a quotient of A/Aa. But A is

a domain, so hA/Aa(t) = (1− t)−3 = hM (t). Thus M = A/Aa.

(b) ⇒ (c). The short exact sequence 0 → A[−1] ×a−→A −→ M → 0 is the minimal

resolution of M and hM (t) = (1 − t)−3. This shows that GKdimM = 3, e(M) = 1, and

pd(M) = 1.

(c)⇒ (a). Let 0→⊕
iA[−i]bi

∂→⊕
iA[−i]ai →M → 0 be the minimal resolution of

M . As noticed in §1, 0 →⊕
iA[i]

ai
f=∂∨

→ ⊕
iA[i]

bi → M∨ → 0 is the minimal resolution

of M∨. By Lemma 2.4 applied to f we have aj ≤
∑

i>j(bi − ai). Therefore

(∗)
∑

i≥1

i(bi − ai) =
∑

i≥1

(bi − ai) +
∑

i≥2

(bi − ai) +
∑

i≥3

(bi − ai) + · · · ≥
∑

j≥0

aj ≥ 1.

It follows from the presentation of M that

hM (t) =
1

(1− t)4
∑

i≥0

(ai − bi)ti =
1

(1− t)4
∑

j≥0

(−1)j

∑

i≥j

( ij )(ai − bi)


 (1− t)j .
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Since GKdimM = 3 and e(M) = 1, this implies that
∑

i≥0(ai − bi) = 0 and
∑

i≥1 i(bi −
ai) = 1. By (∗) it follows that ∑j≥0 aj = 1. Thus

∑
j≥0 bj = 1.

But a0 6= 0 because M0 6= 0. Hence a0 = 1 and ai = 0 if i ≥ 1. Thus 1 =∑
i≥1 i(bi − ai) =

∑
i≥1 ibi. But

∑
j≥0 bj = 1 so b1 = 1, and bi = 0 if i 6= 1. Hence the

minimal resolution takes the form 0→ A[−1]→ A→M → 0, which proves (a). �

We now consider the point modules.

Proposition 2.6. Let M be a Cohen-Macaulay module, with GKdimM = 1 and

e = e(M). Then

(a) hM (t) = tp
(∑

0≤i≤d−1 fit
i + etd(1− t)−1

)
for some p ∈ Z, d ∈ N, and fi ∈ N such

that 1 ≤ fi ≤ e− 1 for all i ∈ {0, · · · , d− 1}.
(b) If e = 1, then hM (t) = tp(1− t)−1, p ∈ Z.
(c) If e = 2, then hM (t) = tp(1 + td)(1− t)−1, for some p ∈ Z, d ∈ N.

Proof. By shifting the grading we may assume thatM =
⊕

n≥0Mn, and thatM0 6= 0.

(a) Since GKdimM = 1 we have hM (t) = g(t)(1 − t)−1, where g(t) ∈ Z[t]. Write

g(t) = e + (1 − t)p(t), where p(t) ∈ Z[t] is of degree d − 1. It follows that hM (t) =

f0+f1t+ · · ·+fd−1t
d−1+etd(1− t)−1, with fi ∈ N , and f0 6= 0. We can choose d as small

as possible with respect to this property. For this choice we obviously must have fd−1 6= e.

Note that fj 6= 0 for all j ∈ {0, · · · , d− 1}. If this doesn’t hold choose j minimal such

that fj−1 6= 0, and fj = 0. Then A1Mj−1 ⊂ Mj = 0 implies Mj−1 ⊂ Soc(M); but M is

Cohen-Macaulay so its socle is zero by (2.5e). This contradiction shows that fj 6= 0.

Recall that M∨ := E3(M) is a CM -module whose Hilbert series is −t−4hM (t−1) by

(1.10). Hence hM∨(t) = (e−fd−1)t
−d−3+(e−fd−2)t

−d−2+· · ·+(e−f0)t−4+et−3(1−t)−1.

In particular e ≥ fj for all j. Since e > fd−1 and Soc(M∨) = 0 we can conclude as above

that e > fj for all j. Hence 1 ≤ fj ≤ e− 1 for all j and (a) is proved.

(b) If e = 1 the condition 1 ≤ fj ≤ 0 forces d = 0, i.e., hM (t) = (1− t)−1.

(c) If e = 2 it follows from 1 ≤ fj < 2 that hM (t) = 1+ t+ · · ·+ td−1 +2td(1− t)−1 =

(1 + td)(1− t)−1. �

Proposition 2.7. Let M be in Modgf (A). Then the following are equivalent:

(a) M is a shift of a point module;

(b) M is Cohen-Macaulay, and GKdim(M) = e(M) = 1.

Proof. (a)⇒ (b) As usual we may assume that M is a point module. Say M = Av0
where v0 ∈ M0 and hM (t) = (1 − t)−1. By (2.1e) it suffices to show that Soc(M) = 0.

Suppose that 0 6= x ∈ Soc(M)p. Then A1x = 0 and Mp = Cx = Ap
1v0, so A

p+1
1 .v0 = 0

which is a contradiction.

(b) ⇒ (a) By (2.6b) hM (t) = tp(1 − t)−1. We must show that M is cyclic. Pick

0 6= x ∈ Mp. Since T (M) = 0 we know that An.x = An
1 .x 6= 0 for all n ≥ 0. Thus

An.x =Mn+p and M = A.x. �
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To prove Theorem 2.2 it remains to investigate the line modules. We begin with a

characterization of line modules which furnishes half of the desired result: a shift of a line

module is Cohen-Macaulay of GK-dimension 2 and multiplicity 1.

Proposition 2.8.

(a) If u, v ∈ A1 are linearly independent and A1u ∩ A1v 6= 0 then L = A/Au + Av is a

line module

(b) If L is a line module, then there exist linearly independent u, v ∈ A1 such that

A1u ∩A1v 6= 0 and L ∼= A/Au+Av.

(c) If L is a line module then L is Cohen-Macaulay, GKdimL = 2, and e(L) = 1.

Proof. (a) Let 0 6= a ∈ A1 satisfy au ∈ A1v. Write M = A/Av and u ∈ M1

for the image of u. There is a surjective map ψ : A/Aa → Au[1]. Since u and v are

linearly independent Au is a non-zero submodule of the plane module M . Since M is

critical and GKdimM = 3 it follows that GKdim(Au) = 3. But A/Aa is also a plane

module, so critical of GKdim3. Hence ψ is an isomorphism and hL(t) = hM (t)−hAu(t) =

(1− t)−3 − t(1− t)−3 = (1− t)−2. Thus L is a line module.

(b) If L is a line module then dimL1 = 2 so there exist linearly independent u, v ∈
A1 such that uL0 = vL0 = 0. Hence there is a surjective map φ : A/Au + Av → L.

However dimL2 = 3, dimA2 = 10, dimA1u = dimA1v = 4, so A1u ∩ A1v 6= 0. By (1)

hA/Au+Av(t) = hL(t) = (1− t)−2 so φ is an isomorphism.

(c) Write L = A/Au + Av as in (b). We must show that L is CM . As in the proof

of (1) write M = A/Av and u for the image of u. Then M ′ = Au is a shift of a plane

module and we have an exact sequence 0 → M ′ → M → L → 0 where M ′ and M are

CM, j(M) = 1, and j(L) = 2. By (1.12b) L is Cohen-Macaulay. �

Corollary 2.9.

(a) A line module L has a minimal resolution of the form

0→ A[−2] ∂1−→A[−1]⊕A[−1] ∂0−→A→ L→ 0.

(b) The line modules are in bijection with those lines ℓ in P3 := P(A∗
1) such that ℓ = V(u, v)

where u, v ∈ A1 are linearly independent elements satisfying A1u∩A1v 6= 0. The line

module corresponding to such an ℓ is M(ℓ) := A/Au+Av.

Proof. (a) Write L ∼= A/Au + Av as in (2.8) and denote by β a non-zero element

in A1u ∩ A1v. Define ∂0 by the matrix [uv ] and ∂1 by [β]. It is clear that this gives the

minimal resolution of L.

(b) If L and L′ are isomorphic line modules then AnnA1
(L0) = AnnA1

(L′
0) so the

elements u, v ∈ A1 and u′, v′ ∈ A1 guaranteed by (2.8) span the same subspace of A1 and

hence define the same line in P3. �

Remember that throughout this section we are assuming that A2 contains a regular

normalizing sequence {Ω1,Ω2} such that A/〈Ω1,Ω2〉 := B ∼= B(E, σ,L).
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Our next goal is to prove a converse of (2.8c). Two preliminary results are necessary

before this is done in (2.12).

Lemma 2.10. Let 0 6=M ∈Modf (A) be critical and let 0 6= Ω be a normal element

of A. Then Ω is a non-zero divisor in M if and only if ΩM 6= 0.

Proof. Since A is a domain we can define an automorphism α of A by the formula

Ωα(a) = aΩ, for all a ∈ A. Denote by αM the abelian group M with A acting by

a · x = α(a)x, for a ∈ A, and x ∈ M . Then αM is a critical A-module and multiplication

by Ω defines an A-module map αM
Ω−→M with image ΩM and kernel K = {x ∈ M |

Ωx = 0}. The isomorphism αM/K
∼→ΩM shows that GKdim(M/K) = GKdim(ΩM) <

GKdim(M) if K 6= 0. Since GKdim(ΩM) = GKdim(M) if ΩM 6= 0, the result follows.�

Proposition 2.11.

(a) Suppose M ∈ Modgf (A) is 2–homogeneous with e(M) = 1. Then M is critical.

Furthermore if Ω1M = 0, then Ω2 is a non-zero divisor in M .

(b) Let M be a Cohen-Macaulay module, with GKdim(M) = 2 and e(M) = 1. Then

hM (t) = tp(1 + td)(1− t)−1(1− t2)−1 where p ∈ Z and d ∈ N is odd.

Proof. (a) The first assertion is obvious. Suppose Ω1M = 0 and that 0 6= y ∈ M is

such that Ω2y = 0. We may assume that y is homogeneous of degree q. Then N = Ay is

a B-module and N = By ∼= B
L [−q] for some graded left ideal L of B. Since B is a domain

and GKdim B = GKdim N = 2 we must have L = 0. Thus hN (t) = tq (1+t)2

(1−t)2 which

implies e(N) = 4 which contradicts e(N) ≤ e(M) = 1. Thus Ω2M 6= 0 and by (2.10) Ω2

is a non-zero divisor in M .

(b) Without loss of generality we may assume that M =
⊕

n≥0Mn, and M0 6= 0.

By (a) and (2.10) one of the elements Ω1,Ω2 is a non-zero divisor in M , say Ω2. Set

M = M/Ω2M and notice that hM (t) = (1 − t2)hM (t) so GKdimM = 1, and e(M) = 2.

Denote by α the automorphism of A defined by Ω2α(a) = aΩ2 for a ∈ A, and define
αM ∈Modgf (A) as in the proof of (2.10). It is clear that αM is Cohen-Macaulay and that

there is an exact sequence 0 −→ αM
×Ω2−→M [2] −→ M [2] −→ 0. Thus, by (1.12b), M [2]

is Cohen-Macaulay. From (2.6c) we deduce hM (t) = (1 + td)(1 − t)−1, for some d ∈ N.
Therefore hM (t) = (1+ td)(1− t)−1(1− t2)−1. But hM (t) must have the form f(t)(1− t)−4

for some f(t) ∈ Z[t], whence 1 + t divides 1 + td. Thus d is odd. �

Proposition 2.12. Let M be a Cohen-Macaulay module, with d(M) = 2, and

e(M) = 1. Then M is a shift of a line module.

Proof. As usual we shift the grading and assume that M = M0 ⊕M1 ⊕ · · ·, and
M0 6= 0. Write the minimal resolution of M in the form

0 −→
⊕

i

A[−i]bi ∂1−→
⊕

i

A[−i]ai
∂0−→

⊕

i

A[−i]ci ϕ−→M −→ 0.
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By the Remark after (1.12), the minimal resolution of M∨ is

0 −→
⊕

i

A[i]ci
∂∨

0−→
⊕

i

A[i]ai
∂∨

1−→
⊕

i

A[i]bi
ε∨−→M∨ −→ 0

Notice that ci, resp. bi, is the number of elements of degree i, resp. −i, in a minimal set of

homogeneous generators forM , resp. M∨. SinceM =
⊕

n≥0Mn it is easily seen that a0 =

b0 = b1 = 0, and ai = bi = ci for all i < 0. Thus hM (t) == (1− t)−4
∑

i≥0(bi − ai + ci)t
i.

By (2.11b), there is an odd integer d ∈ N, such that

hM (t) =
1 + td

(1− t)2(1 + t)

= 1 + t+ 2t2 + 2t3 + · · ·
+ (d−1

2 )td−3 + (d−1
2 )td−2 + (d+1

2 )td−1 + (d+3
2 )td + · · · .

We first have to show that d = 1, or equivalently that hM (t) = (1− t)−2. Suppose to

the contrary that d ≥ 3. Then dimM0 = 1, and dimM2 = 2. Since A2M0 6= 0 it follows

that c2 ≤ 1. We will show in the next paragraph that b2 ≤ 1, but assume for the moment

that this is true. By comparing the coefficient of t2 in the two expressions for hM (t) above,

it follows that b2 − a2 + c2 = 4. Therefore 4 ≤ a2 + 4 = b2 + c2 ≤ 2 which is absurd. Thus

d = 1.

Now we prove that b2 ≤ 1. First we have

hM∨(t) = t−4hM (t−1)

= t−(d+1)hM (t)

= t−(d+1) + t−d + 2t−(d−1) + · · ·
+ (d−1

2 )t−4 + (d−1
2 )t−3 + (d+1

2 )t−2 + · · · .

By (1.10) M∨ is Cohen-Macaulay, GKdimM∨ = 2 and e(M∨) = 1. By (2.11a) applied to

M∨, either Ω1 or Ω2 is a non-zero divisor in M∨. Let Ω be this element. Let w1, · · · , wb2

be elements of M∨
−2 which are part of a minimal set of homogeneous generators for M∨.

Then the sum ΩM∨
−4 +

∑
1≤i≤b2

Cwi must be direct and dimM∨
−4 = dimΩM∨

−4. Hence

b2 + dimM∨
−4 ≤ dimM∨

−2. Thus b2 ≤ dimM∨
−2 − dimM∨

−4 = d+1
2 − d−1

2 = 1.

It remains to prove that M is cyclic. Since M ∼= (M∨)∨, it is enough to show that

M∨ is cyclic. Since hM∨(t) = t−2 + 2t−1 + · · ·, it follows that b2 = 1, and bi = 0 if i ≥ 3.

But b0 = b1 = 0, so M∨ is cyclic generated by an element of degree 2 (cf (2.9a)). �
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Proposition 2.13. Let M be a point module. Then M ∼= A/Au+Av+Aw for some

u, v, w ∈ A1. In fact a minimal projective resolution of M has the form

0 −→ A[−3] ∂2−→A[−2]3 ∂1−→A[−1]3 ∂0−→A[0] ε−→M −→ 0.

Proof. Take a minimal resolution for M , say

0 −→
⊕

i

A[−i]di
∂2−→

⊕

i

A[−i]ci ∂1−→
⊕

i

A[−i]bi ∂0−→
⊕

i

A[−i]ai
ε−→M −→ 0.

The dual complex is a minimal resolution ofM∨ by the remark after (1.12). Recall thatM∨

is a shifted point module, generated in degree−3. BecauseM andM∨ are cyclic, a0 = d3 =

1 and all other ai and di are zero. As usual we have HM (t) = HA(t).
∑

i(ai− bi+ ci−di)ti
and thus

∑
i(−bi+ci)ti = −3t+3t2. Because dim(M1) = dim(A1)−3 and the resolution is

minimal it follows that b1 = 3; the same argument applied to M∨ shows that c2 = 3. The

minimality of the resolution ensures that bi = 0 for i ≤ 0 and ci = 0 for i ≤ 1. Therefore∑
i≥2 bit

i =
∑

i≥3 cit
i. In particular b2 = 0 so it remains to show that for all i ≥ 3 we have

bi = ci = 0. Suppose this is not the case.

Because A is noetherian, and M is finitely generated we can set k := max{i | bi 6= 0}.
Thus k ≥ 3. Write

F ′ :=
⊕

i<k

A[−i]ci , G′ := A[−k]ck , F :=
⊕

i<k

A[−i]bi , G := A[−k]bk .

Thus ∂1 : F ′ ⊕ G′ → F ⊕ G. Since deg(∂1) = 0 and Gm = 0 for m < k it follows that

∂1(F
′) ⊂ F. Since the resolution is minimal, ∂1(G

′) ⊂MF ⊕MG. But G′ is generated in

degree k and MG is zero in degree k so ∂1(G
′) ⊂ F. Thus ∂1(F ′ ⊕G′) ⊂ F.

On the other hand
⊕

iA[−i]ai ∼= A[0] so ∂0(F ) and ∂0(G) are left ideals of A. The

minimality of the resolution ensures they are both non-zero. Since A is a noetherian

domain it follows that ∂0(F ) ∩ ∂0(G) 6= 0. Hence there exists 0 6= f ∈ F and 0 6= g ∈ G
such that ∂0(f) = ∂0(g). It follows that f − g ∈ ker(∂0) = Im(∂1) but f − g /∈ F . This

contradicts the conclusion of the previous paragraph, so the result follows. �
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§3. Quadrics and secant lines.

This section gives proofs of the following properties of the quadrics which contain E,

and the secant lines of E. There is a pencil of quadric hypersurfaces containing E, and

each point of P3\E belongs to a unique quadric in this pencil. Each line on one of these

quadrics is a secant line of E, and every secant line lies on some (in fact, a unique) quadric

in the pencil. There are exactly 4 singular quadrics in the pencil, say Qj (0 ≤ j ≤ 3).

Each Qj may be characterized as the unique quadric which contains E and ej where ej is

as defined in §1.1. Furthermore, Qj is defined by a rank 3 quadratic form so has a unique

singular point, and that point is ej . If p∈Qj then the line through p and ej is contained

in Qj , so ej lies on infinitely many secant lines of E, and Qj is the union of all the secant

lines of E which pass through ej . In contrast any point in P3\(E ∪ S) lies on at most two

secant lines of E. Thus the points ej are in very special position relative to E: they are

the only points in P3\E lying on infinitely many secant lines of E.

The map C/Λ → E described in the introduction fixes the group law on E, and the

identity element 0∈E. The group law is related to the geometry of the secant lines. Since

E is a degree 4 curve, being an intersection of two quadrics, any hyperplane in P3 meets

E at 4 points (counted with multiplicity). The sum of these 4 points of E is zero, and

conversely, if 4 points of E sum to zero then they are precisely the points of intersection

(counted with multiplicity) of some hyperplane with E. Since E is not contained in any

hyperplane, E has no trisecants, so a secant line meets E at two points (counted with

multiplicity, where p∈ℓ ∩ E has multiplicity two if ℓ is tangent to E at p). If p, q ∈ P3

we will write ℓpq for the line through p and q. The subgroup E2 of E, of points of order

2, contains 4 elements. These elements may be labeled as ωj (0 ≤ j ≤ 3) in such a way

that if p, q ∈ E, then ℓpq passes through ej ⇐⇒ p+ q = ωj . In fact, Qj is the union of all

the secant lines ℓpq such that p+ q = ωj . Now suppose that Q is a smooth quadric in the

pencil. Hence Q ∼= P1×P1 and there are two families of lines on Q (all of which are secant

lines of E). There is a point z ∈ E (determined by Q up to sign) such that if p, q ∈ E,

then ℓpq lies on Q ⇐⇒ p + q = ±z. Moreover, all those ℓpq such that p + q = z do not

intersect, and ℓpq intersects ℓp′q′ ⇐⇒ p+ q = −(p′ + q′).

All the results in this section are straightforward and rather elementary. In fact

they are all well-known to the average 19th century geometer; see for example [16, Art.

347]. Hence the point of this section is to state these facts, and to provide proofs for the

convenience of some readers.

If 0 6= x ∈ A1, then E meets the hyperplane x = 0 at 4 points, counted with multiplic-

ity, and the corresponding degree 4 divisor on E will be denoted by (x)0 = p1+p2+p3+p4.

There will be potential for confusion, since the sum of points of E, in the group law on

E, will also be denoted by p1 + p2 + p3 + p4. The context should make it clear whether +

denotes addition in E or in DivE.
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Lemma 3.1. Let p1, p2, p3, p4 ∈ E. Then there exists 0 6= u ∈ A1 such that (u)0 =

p1 + p2 + p3 + p4 if and only if the sum p1 + p2 + p3 + p4 in (E,+) is zero.

Proof. By Abel’s theorem if p1, . . . , pr, q1, . . . , qr ∈ E, then O(p1 + . . . + pr) ∼=
O(q1 + . . .+ qr)⇐⇒ p1 + . . .+ pr = q1 + . . .+ qr (on the LHS + is in DivE, on the RHS

+ is in E). The 4 points of E which lie on the plane x0 = 0 are the four z ∈ C/Λ, such
that θ11(z) = 0, namely 0, 12 ,

1
2η,

1
2 + 1

2η (the points of E2). Hence, if j : E → P3 is the

inclusion, then j∗OP3(1) ∼= O(0 + ( 12 ) + ( 12η) + ( 12 + 1
2η)). Therefore, if p1, p2, p3, p4 ∈ E,

then they are the points of intersection of a hyperplane and E ⇐⇒ O(p1+ p2 + p3 + p4) ∼=
j∗OP3(1)⇐⇒ p1 + p2 + p3 + p4 = 0 + 1

2 + 1
2η + ( 12 + 1

2η) = 0. �

Remark. It is easy to see that E has no trisecants. Suppose to the contrary that ℓ

is a trisecant. Since E = X ∩ Y is an intersection of quadrics, the defining equations of X

and Y restricted to ℓ are quadratic forms so either have two zeroes or vanish identically.

However, by hypothesis they must have at least 3 zeroes, so we are forced to conclude that

ℓ ⊆ X ∩ Y = E. This is absurd.

Let g1 and g2 be any two (linearly independent) quadratic forms which define E.

To be definite we can take g1 and g2 to be the functions so labelled in §1.1. For each

λ = (λ1, λ2) ∈ P1, define Qλ := V(λ1g1 + λ2g2). This gives a pencil of quadrics, each of

which contains E.

Proposition 3.2.

(a) If Q is a quadric containing E, then Q = Qλ for some λ ∈ P1.

(b) If p ∈ P3\E, then there is a unique λ ∈ P1 such that p ∈ Qλ.

(c) If λ 6= µ, then Qλ ∩Qµ = E.

(d) If ℓ is a secant line of E, then there is a unique Qλ such that ℓ ⊂ Qλ.

(e) If ℓ is a line lying on a quadric Q containing E then ℓ is a secant line of E.

Proof. (a) By [21, 2.5], the polynomial ring modulo 〈g1, g2〉 is reduced. In particular,

if g is a quadratic form vanishing on E, then g∈
√
〈g1, g2〉 = 〈g1, g2〉, so g is a linear

combination of g1 and g2.

(b) Since p /∈ E, either g1(p) 6= 0 or g2(p) 6= 0. Hence there is a unique λ = (λ1, λ2) ∈
P1 such that (λ1g1 + λ2g2)(p) = 0. Of course (c) is an immediate consequence of (b).

(d) The uniqueness of such a Qλ is guaranteed by (b). Set {p, q} = ℓ ∩ E (counted

with multiplicity), and note that each gλ vanishes at both p and q. Now fix r ∈ ℓ\E,

and note that either g1(r) 6= 0 or g2(r) 6= 0. So there exists λ = (λ1, λ2) ∈ P1 such that

λ1g1(r) + λ2g2(r) = 0. But then gλ = λ1g1 + λ2g2 vanishes at 3 points of ℓ, and hence on

all of ℓ since deg(gλ) = 2.

(e) Let g be a quadratic form vanishing on E but not on Q. Then ℓ ∩ E is given by

the zeroes of the restriction of g to ℓ. Since there are two such zeroes, ℓ meets E with

multiplicity 2. �
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Lemma 3.3. Let p, q, r, s ∈ E be such that ℓpq and ℓrs are distinct. Then ℓpq∩ℓrs 6= ∅
if and only if p+ q = −(r + s).

Proof. There is a plane containing both ℓpq and ℓrs if and only if ℓpq ∩ ℓrs 6= ∅. This
happens if and only if p, q, r, s are coplanar. The result now follows from (3.1). �

Proposition 3.4.

(a) For each j = 0, 1, 2, 3 there is a unique quadric, Qj say, which contains ej and E.

(b) Each Qj is singular, of rank 3, and these are the only singular quadrics in the pencil

of quadrics which contain E.

(c) The only singular point on Qj is ej .

(d) If p ∈ Qj then the line ℓpej lies on Qj . Furthermore, every line on Qj passes through

ej , and Qj is the union of the lines it contains.

(e) For each j, Qj is the union of all those secant lines of E which pass through ej .

Proof. (a) This is a special case of (3.2b).

(b) Since E is not contained in any hyperplane, E can not be contained in any rank

2 quadric. Thus the defining equation of Qj is the unique (up to scalar multiple) linear

combination of g1 and g2 in which the coefficient of x2j is zero. This is the equation denoted

by gj in §1.1.
A quadratic form q on Pn, defines a singular variety ⇔ rank(q) < n + 1. Hence a

pencil λ1q1 + λ2q2 generated by two quadratic forms, contains n+1 singular forms (given

by the zeroes of the determinant of an (n+1)× (n+1) matrix whose entries are linear in

λ1, λ2). Hence in our situation there are 4 such, and these must be the Qj .

(c) Since rank(qj) = 3 it has a unique singular point. Indeed, the singular point of

V(y21 + y22 + y23) in coordinates y0, y1, y2, y3 is (1, 0, 0, 0).

(d) Let Q be a rank 3 quadric in P3 defined by y21 + y22 + y23 in suitable coordinates

y0, y1, y2, y3. Then e=(1, 0, 0, 0) is the unique singular point of Q. Let p = (p0, p1, p2, p3)

and q = (q0, q1, q2, q3) be distinct points of Q such that ℓpq, the line through p and q, lies on

Q. Then for each (s, t) ∈ P1, sp+tq ∈ Qj . In particular, this gives st(p1q1+p2q2+p3q3) = 0

because p, q ∈ Qj . Thus p1q1 + p2q2 + p3q3 = 0. Hence


 p1 p2 p3
q1 q2 q3






p1 q1
p2 q2
p3 q3


 = 0.

If rank

(
p1 p2 p3
q1 q2 q3

)
= 2, then its transpose is also of rank 2, and it is impossible for

such a product to be zero. Hence the rank is ≤1. So we can choose s, t ∈ P1 such that

sp1 + tq1 = sp2 + tq2 = sp3 + tq3 = 0. Therefore sp+ tq = (1, 0, 0, 0), so e lies on ℓpq.

To see that Q is the union of the lines it contains, suppose that p = (p0, p1, p2, p3) ∈ Q
and p 6= e. Then a typical point of the line ℓep through e and p is (sp0+ t, sp1, sp2, sp3) for

(s, t) ∈ P1. It is clear that y21 + y22 + y23 vanishes at this point, so ℓep ⊆ Q. In particular, p

lies on a line contained in Q.

(e) If p, q ∈ E and ℓpq passes through ej , then the unique quadric which contains ℓpq
(such a quadric exists by (3.2d)) also contains ej . But the only quadric containing ej is
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Qj , so ℓpq ⊆ Qj . �

Corollary 3.5 If p ∈ E, then the line ℓpej is a secant line of E. In particular, each

ej lies on infinitely many secant lines of E.

Notation. The points of E2 are labelled as follows:

ω0 = 0, ω1 = 1
2 + 1

2η, ω2 = 1
2η, ω3 = 1

2 .

Proposition 3.6. Set ζ0 = 0, ζ1 = 1
4 + 1

4η, ζ2 = 1
4η, ζ3 = 1

4 . Then

(a) the cosets of E2 in E4 are ζj + E2 (j = 0, 1, 2, 3);

(b) if p ∈ E, then ℓpej is tangent to E at p⇐⇒ p ∈ ζj + E2 ⇐⇒ 2p = ωj .

Proof. The zeroes of gab occur at
1+a
4 η+ 1−b

4 +{0, 12 , 12η, 12 + 1
2η}+Λ. Hence ζ0+E2

is the zero set of g11, ζ1+E2 is the zero set of g00, ζ2+E2 is the zero set of g01, and ζ3+E2

is the zero set of g10. It is clear that (a) is true.

Let p = (p0, p1, p2, p3) ∈ E2. The line ℓpe0 is tangent to E at p ⇔ ℓpe0 meets E at p

alone. Since e0 = (1, 0, 0, 0), ℓpe0 consists of the points {(sp0+t, sp1, sp2, sp3) | (s, t) ∈ P1}.
It follows from the defining equations of E, that such a point of ℓpe0 will lie on E if and

only if 2stp0 + t2 = 0. Hence ℓpe0 is tangent to E at p ⇔ the only solution (s, t) ∈ P1 to

the equation 2stp0 + t2 = 0 is (s, t) = (1, 0) ⇔ p0 = 0 ⇔ p = j(z) where z is a zero of

g11 ⇔ p ∈ ζ0 + E2 = E2.

This proves (b) for j = 0. The proof for j = 1, 2, 3 is similar. Finally, since 2ζj = ωj ,

it is clear that p ∈ ζj + E2 ⇔ 2p = ωj . �

Proposition 3.7. Let p, q ∈ E. The line ℓpq passes through ej if and only if p+q = ωj ;

that is, ℓpq ⊂ Qj ⇔ p+ q = ωj .

Proof. (⇒) Suppose that ej ∈ ℓpq. If p = ζj , then (3.6b) implies that q = ζj also,

whence p + q = 2ζj = ωj . Suppose that p 6= ζj . Then the lines ℓpq and ℓζjej are distinct

and intersect at ej . Hence they are contained in a single plane. Therefore, by (3.1),

p+ q + ζj + ζj = 0, whence p+ q = ωj .

(⇐) Suppose that p + q = ωj . If p = ζj , then q = ζj too, so ℓpq is tangent to E at

ζj , and (3.6b) shows this line passes through ej . Suppose that p 6= ζj . The three points

p, q, ζj lie on a common plane, H say. By (3.1) H meets E at a fourth point, namely

−(p+ q+ ζj) = ζj . Hence H meets E at ζj with multiplicity 2, so H contains the tangent

line to E at ζj . But this tangent line passes through ej , so ej ∈ H, whence ℓpej ⊂ H. But

ℓpej is a secant line, so meets E at another point of E ∩H. Since p 6= ζj , that other point

must be q. Hence ℓpej = ℓpq, and ej ∈ ℓpq. �

Corollary 3.8. A line through two distinct points of S is not a secant line of E.

Let Q ⊆ P3 be a smooth quadric. Then Q ∼= P1 × P1 (via the Segre embedding),

so Pic(Q) ∼= Z
⊕

Z, where the hyperplane section is (1,1) and the intersection pairing is
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given by (m,n) · (m′, n′) = mn′+nm′. There are two families of lines on Q, corresponding

under the isomorphism to those of the form {p}×P1 and P1×{q}. Lines in the first family

correspond to (1,0) in Pic(Q), and those in the second to (0, 1). Each point of Q lies on

exactly two lines, one from each family. If Q′ is any other rank 4 quadric in P3, then Q∩Q′

is a curve of class (2,2) in Pic(Q). Hence any line on Q meets Q ∩Q′ at two points.

Lemma 3.9. If p ∈ P3\(E ∪ S) then p lies on at most two secant lines of E. In fact

if p lies on a smooth quadric containing E then p lies on two secant lines, whereas if p lies

on a singular quadric then p lies on one secant line.

Proof. Let Q be the quadric containing p and E. If Q is singular then it follows from

(3.4) that p lies on a unique secant line. If Q is smooth, then by the above comments, p

lies on two lines contained in Q, say ℓ and ℓ′. Since E = (2, 2) in Pic(Q), both ℓ and ℓ′ are

secant lines of E. If ℓ′′ is any secant line through p, then the quadric containing ℓ′′ also

contains p, so by uniqueness must be Q. Thus ℓ′′ ⊂ Q, so ℓ′′ is either ℓ or ℓ′. �

Theorem 3.10. Fix r, s ∈ E such that r + s /∈ E2. Let Q be the unique quadric

containing E and ℓrs. Then

(a) Q is smooth;

(b) every line on Q is a secant line of E;

(c) if ℓ is a line on Q with ℓ ∩ E = {p, q}, then
(i) ℓ ∩ ℓrs = ∅ ⇔ p+ q = r + s,

(ii) ℓ ∩ ℓrs 6= ∅ ⇔ p+ q = −(r + s);

(d) if p, q ∈ E, then ℓpq ⊂ Q⇔ either p+ q = r + s, or p+ q = −(r + s).

Proof. (a) Since r + s ∈ E2, ℓrs is not contained in any of the four singular quadrics

Qj by (3.7b). Hence Q is smooth.

(b) This is contained in the remarks prior to (3.9).

(c)(ii) This is (3.3).

(c)(i) (⇐). Since r+ s /∈ E2, p+ q = r+ s⇒ p+ q 6= −(r+ s) so by (ii), ℓpq ∩ ℓrs = ∅.
(c)(i) (⇒). Since ℓ∩ ℓrs = ∅, ℓ and ℓrs give the same element of Pic(Q). Hence there

is a line ℓ′ on Q such that ℓ′ · ℓ = ℓ′ · ℓrs = 1. Hence ℓ and ℓ′ are coplanar; let a = 0 be

the plane containing ℓ and ℓ′. Similarly, there is a plane b = 0 containing ℓrs and ℓ′. If

ℓ′ ∩ E = {z, w}, it follows that the divisors on E consisting of the zeroes of a and b are

(a)0 = p+ q + z +w, and (b)0 = r + s+ z +w. Hence the divisor of the rational function
a
b ∈ C(E) is div(ab ) = p+ q − r − s. By Abel’s Theorem p+ q = r + s in E.

(d) (⇒) This follows at once from (c).

(d) (⇐). Since p ∈ E ⊂ Q, and Q is the union of the lines it contains, there is a line

on Q passing through p. In fact there are two such lines, ℓ′ and ℓ′′ say, and they satisfy

ℓ′ · ℓrs = 1 and ℓ′′ · ℓrs = 0.

Suppose that p + q = r + s. Since ℓ′′ ∩ ℓrs = ∅, if ℓ′′ ∩ E = {p, t} then p + t = r + s

by (c)(i). Therefore t = q, so ℓ′′ = ℓpq, and ℓpq ⊂ Q.
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Suppose that p+q = −(r+s). Since ℓ′∩ℓrs = ∅, if ℓ′∩E = {p, t} then p+t = −(r+s)
by (c)(ii). Therefore t = q, so ℓ′ = ℓpq, and ℓpq ⊂ Q. �

Corollary 3.11. Given any quadric Qλ, λ ∈ P1, in the pencil of quadrics containing

E, there exists zλ ∈ E such that, if p, q ∈ E then ℓpq ⊂ Qλ ⇔ p+ q = ±zλ.
Proof. Combine (3.4), (3.7) and (3.10). �
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§4. Geometric Classification of Line Modules.

The main result in this section is that the line modules are in bijection with the secant

lines of E.

Throughout this section u and v will denote linearly independent elements of A1, and

a and b will denote non-zero elements of A1. We shall make frequent use of (1.1) and (1.2).

Proposition 4.1. If A/Au+Av is a line module, then V(u, v) is a secant line of E.

Proof. By (2.8), A1u ∩ A1v 6= 0, so there exist non-zero a, b ∈ A1 such that a⊗ v −
b⊗ u ∈ I2. Since the proposition is only concerned with the subspace of A1 spanned by u

and v, we may replace u and v by any linear combinations which are themselves linearly

independent. In particular, we can assume that there exist distinct ej , ek ∈ S such that

u(ej) = v(ek) = 0 and u(ek) 6= 0, v(ej) 6= 0. By (1.1) a⊗v − b⊗u vanishes at (ej , ej) and

(ek, ek), so a(ej) = b(ek) = 0.

Let p∈E. Since u(ej) = 0, if u(p) = 0 then so too is u(ωj − p) = 0 by (3.9). Hence

there exist p1, p2, q1, q2 ∈ E such that the zeroes of u and v on E are given by

(∗)
{

(u)0 = (p1) + (ωj − p1) + (p2) + (ωj − p2)
(v)0 = (q1) + (ωk − q1) + (q2) + (ωk − q2).

Suppose that u and v have no common zero on E. Since a(p)v(p+τ)−b(p)u(p+τ) = 0

for all p∈E, taking p to be each of the zeroes of u in turn, it follows that (a)0 = (p1 −
τ) + (ωj − p1 − τ) + (p2 − τ) + (ωj − p2 − τ). Since these 4 points are coplanar, their sum

is zero. Hence 4τ = 0. But this contradicts the fact that τ /∈ E4. Hence u and v have at

least one common zero.

Suppose that u and v have exactly one common zero on E. With a change of notation

if necessary, we may assume that p1 = q1. Therefore {ωj − p1, p2, ωj − p2} ∩ {ωk −
p1, q2, ωk − q2} = ∅. It will be useful to rewrite this as

(†) {ωj − p1 − τ, p2 − τ, ωj − p2 − τ} ∩ {ωk − p1 − τ, q2 − τ, ωk − q2 − τ} = ∅.

Since a(p−τ)v(p)−b(p−τ)u(p) = 0 for all p ∈ E, evaluating this at the points p which are

zeroes of only one of u and v, it follows that a vanishes at ωj − p1− τ , p2− τ , ωj − p2− τ ,
and b vanishes at ωk − p1 − τ , q2 − τ , ωk − q2 − τ . Both a and b have a fourth zero on

E which can be determined from the other three zeroes by the fact that four points are

coplanar if and only if their sum is zero. Hence

(a)0 = (ωj − p1 − τ) + (p2 − τ) + (ωj − p2 − τ) + (p1 + 3τ)

(b)0 = (ωk − p1 − τ) + (q2 − τ) + (ωk − q2 − τ) + (p1 + 3τ).

Since a(ej) = 0, it follows that a(p) = 0⇔ a(ωj − p) = 0, for p ∈ E. Hence

(1) {ωj − p1 − τ, p2 − τ, ωj − p2 − τ, p1 +3τ} = {p1 + τ, ωj − p2 + τ, p2 + τ, ωj − p1 − 3τ}.
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Similarly, since b(ek) = 0, it follows that

(2) {ωk − p1− τ, q2− τ, ωk − q2− τ, p1 +3τ} = {p1 + τ, ωk − q2 + τ, q2 + τ, ωk − p1− 3τ}.

Since p1+τ belongs to the right hand side of both (1) and (2), it belongs to the intersection

of the left hand side of (1) with the left hand side of (2). However, by (†) this intersection
is {p1+3τ}. Hence p1+τ = p1+3τ , whence 2τ = 0. This contradicts the fact that τ /∈ E4.

Hence u and v have at least two common zeroes on E. �

Lemma 4.2. Let u, v ∈ A1 define a secant line ℓ = V(u, v) of E. Suppose that the

divisor of the rational function u
v on E is div(uv ) = (x+ τ) + (y + τ)− (w + τ)− (z + τ).

(a) Define a symmetric and transitive relation ∼ on E, by s ∼ t if s + t = −(x + y). If

s ∼ t, then there exists a unique plane a = 0, such that (a)0 = x+ y + s+ t.

(b) If 0 6= a ∈ A1 is such that (a)0 = x+ y+ s+ t, then there exists a unique b ∈ A1 such

that a⊗ v − b⊗ u vanishes on ∆τ ; furthermore (b)0 = w + z + s+ t.

(c) Let ≈ denote the equivalence relation generated by ∼ i.e. s ≈ t if either s = t or

x+ y + s+ t = 0; then there is a bijective map

ϕ : E/≈ −→ {(a, b) ∈ P(A1 ×A1) | (a⊗ v − b⊗ u)(∆τ ) = 0},

given by ϕ(s) = (a, b) where a ∈ A1 satisfies (a)0 = x+ y + s+ (−x− y − s) and b is
determined as in (b).

Proof. (a) If s ∼ t, then x + y + s + t = 0, so there certainly exists 0 6= a ∈ A1

(unique up to non-zero scalar multiple) such that (a)0 = x+ y + s+ t.

(b) By Abel’s Theorem x + y = w + z, so w + z + s + t = 0. Hence there exists

b ∈ A1 such that (b)0 = w+ z+ s+ t. Notice that b is only determined up to a (non-zero)

scalar multiple. Both a⊗ v and b⊗ u vanish at the six points (x, x+ τ), (y, y+ τ), (s, s+

τ), (t, t+ τ), (w,w + τ), and (z, z + τ).

By [21, 2.8], there are cubic forms f and g on E such that (uv )
σ = f

g ; that is, (
f
g )(p) =(

u
v

)
(p + τ) for all p ∈ E. Since E is a degree 4 curve in P3, and f and g are forms

of degree 3, both f and g have 12 zeroes on E. However, since div
(
u
v

)
is as above,

div
(

f
g

)
= x+ y− z−w, so f and g must have 10 common zeroes on E; let these common

zeroes be p1, · · · , p10. Hence both ag and bf vanish at the 16 points x, y, s, t, w, z, p1, · · · , p10
of E. Replace b by a suitable scalar multiple of itself, such that ag − bf vanishes at some

seventeenth point of E. Since the degree 4 form ag − bf now has 17 zeroes on E, it is

identically zero on E. Hence (a⊗ v − b⊗ u)(∆τ ) = 0.

If some other b′ ∈ A1 also satisfies (a⊗v−b′⊗u)(∆τ ) = 0, then ((b−b′)⊗u)(∆τ ) = 0.

If b 6= b′, then ∆τ ⊆ P3 × V(u), which is absurd since E is not contained in a hyperplane.

(c) There certainly is such a map ϕ. The injectivity of ϕ is clear: if ϕ(s) = ϕ(s′), then

(a)0 = (a′)0, whence {s, t} = {s′, t′}, so the equivalence classes of s and s′ coincide. To see

that ϕ is surjective, suppose that a, b∈A1 are such that (a⊗v−b⊗u)(∆τ ) = 0. Evaluating
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a⊗ v− b⊗ u at the points (x, x+ τ) and (y, y+ τ) gives a(x)v(x+ τ) = a(y)v(y+ τ) = 0,

whence a(x) = a(y) = 0. So (a)0 = x+ y + s+ t for some s, t. �

Remarks. 1. By (1.2), the element av − bu determined by (4.2) is in the center of

A, so annihilates the line module A/Av +Au.

2. We may restate part of (4.2) as follows. If V(u, v) = ℓpq and a, b ∈ A1 satisfy

(a ⊗ v − b ⊗ u)(∆τ ) = 0, then V(a, b) is a secant line ℓrs for some r, s such that r + s =

p+ q + 2τ , and every such r and s may occur.

Lemma 4.3. Let p, q ∈ E. Let u, v ∈ A1 be linearly independent. Then there exists

at most one point (a, b) ∈ P(A1 ×A1) such that (a⊗ v − b⊗ u)(Γ) = 0.

Proof. By (1.2) (a⊗ v− b⊗u)(Γ) = 0⇔ av = bu. Hence we must show that there is

at most one b ∈ P(A1) such that bu ∈ Av (such b then uniquely determines a, and hence

determines (a, b)∈ P(A1 ×A1)).

Consider u ∈ A/Av. Since A/Av is a plane module, it is 3-critical. If bu ∈ Av, there
is a surjective map A/Ab −→ Au. Since A/Ab is also 3-critical, this map must be an

isomorphism; hence b is unique up to (non-zero) scalar multiples. �

Proposition 4.4. Let p, q ∈ E. Suppose that u, v ∈ A1 are such that V(u, v) =

ℓp+τ,q+τ and div(uv ) = (x + τ) + (y + τ) − (w + τ) − (z + τ). If s ∈ E, and ϕ(s) =

(a, b) ∈ P(A1 × A1) where ϕ is as in (4.2), then av − bu ∈ A2 is a central element.

Furthermore, av − bu = 0 if and only if (a)0 = x + y + (p + 2τ) + (q + 2τ). In that case

(b)0 = w + z + (p+ 2τ) + (q + 2τ).

Proof. By (4.2) and (1.2) av − bu is central. By (4.3) there is at most one pair

(a, b) ∈ P(A1 ×A1) such that av = bu. Hence it is enough to show that (a, b) = ϕ(p+ 2τ)

satisfies (a ⊗ v − b ⊗ u)(Γ) = 0. By (1.2) and (4.2) it therefore suffices to prove that

(a⊗ u− b⊗ v)(ei, ei) = 0 for two ei ∈ S.
There are at least two i such that p+2τ 6= ωi−p−2τ and p+τ 6= ωi−p−τ . For such

an i, ei lies on the secant lines ℓp+2τ,ωi−p−2τ and ℓp+τ,ωi−p−τ . Since p+ 2τ 6= ωi − p− 2τ

and p+ τ 6= ωi − p− τ there are scalars λ, ξ, µ, ρ such that

ei = λ(p+ 2τ) + µ(ωi − p− 2τ) = ξ(p+ τ) + ρ(ωi − p− τ).

All these scalars are non-zero, since ei /∈ E. Now

a(ei)v(ei)− b(ei)u(ei) =(
λa(p+ 2τ) + µa(ωi − p− 2τ)

)
.
(
ξv(p+ τ) + ρv(ωi − p− τ)

)

−
(
λb(p+ 2τ) + µb(ωi − p− 2τ)

)
.
(
ξu(p+ τ) + ρu(ωi − p− τ)

)

= µρ
(
a(ωi − p− 2τ)v(ωi − p− τ)− b(ωi − p− 2τ)u(ωi − p− τ)

)
.

But (a⊗ v − b⊗ u)(∆τ ) = 0, so this expression is zero, and the result follows. �
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Theorem 4.5. The isomorphism classes of line modules are in bijection with the

secant lines of E.

Proof. By (2.8) and (4.1), if M is a line module, then M ∼= A/Au + Av where

u, v ∈ A1 are such that ℓ=V(u, v) is a secant line of E. Conversely, if u, v ∈ A1 are such

ℓ:=V(u, v) is a secant line of E, then by (4.4) there exist 06=a, b∈A1 such that av = bu 6= 0,

so A1u ∩A1v 6= 0. By (2.8) A/Au+Av is a line module.

To show that distinct secant lines give non-isomorphic line modules, let V(u, v) and

V(u′, v′) be distinct secant lines. If ϕ : A/Au+Av −→ A/Au′ +Av′ is a (graded) isomor-

phism of the corresponding line modules, then ϕ maps the degree 0 part to the degree 0

part; say ϕ(1) = e ∈ (A/Au′ +Av′)0. But Ann(1)1 = Cu+Cv and Ann(e)1 = Cu′ +Cv′.
However, since the lines are distinct Cu+ Cv 6= Cu′ + Cv′, so the line modules cannot be

isomorphic. �

Proposition 4.6. Let M(p, q, r, s) be a plane module. Then there is a short exact

sequence 0→M(p+ τ, q + τ, r − τ, s− τ)[−1]→M(p, q, r, s)→M(p, q)→ 0.

Proof. Let u, v ∈ A1, be such that (u)0 = p + q + r + s, and V(u, v) = ℓpq. Thus

M(p, q) ∼= A/Au+Av, giving an exact sequence 0→ A.v → A/Au→ A/Au+Av → 0.

By (4.3) and (4.4) there is a unique a ∈ P(A1) such that av ∈ A1u. Since plane modules

are 3-critical, the map A/Aa → Av is an isomorphism. By (4.2) and (4.4), (a)0 = (p +

τ) + (q + τ) + (r − τ) + (s− τ). This proves the result. �

Remark. Iterating this proposition, M(p, q, r, s) contains a submodule isomorphic to

M(p+n1τ, q+n2τ, r+n3τ, s+n4τ) if (n1, n2, n3, n4) ∈ Z4 satisfies n1+n2+n3+n4 = 0.
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§5. Point modules.

The first result in this section, namely (5.2), shows that if p ∈ E ∪ S, then the

corresponding point module is M(p) ∼= A/Au + Av + Aw where u, v, w ∈ A1 are linear

forms such that V(u, v, w) = {p}. It is obvious from the definition of M(p) that there is a

surjective map A/Au + Av + Aw → M(p), since M(p) =
⊕∞

j=0 Cej and x ∈ A1 acts via

x.ej = x(p − jτ)ej+1. The main result in this section is that if p, q ∈ E, then there is a

short exact sequence 0→M(p+ τ, q − τ)→M(p, q)→M(p)→ 0.

Lemma 5.1. Let p ∈ E, and let W ⊂ A1 be the subspace vanishing at p. Then

J ⊂ AW whence A/AW ∼= B/BW .

Proof. Consider A1⊗A1 as bihomogeneous forms on P3×P3. Then V(I2+A1⊗W ) =

V(I2) ∩ V(A1 ⊗W ) = Γ ∩ (P3 × {p}) = (pσ, p). Since I2 + A1 ⊗W vanishes at a unique

point of P3 × P3, it is of codimension ≤ 1 in A1 ⊗ A1. Hence any function vanishing at

(pσ, p) lies in I2 +A1 ⊗W . In particular, as J2(∆τ ) = 0, J2 ⊂ I2 +A1 ⊗W . �

Remark. The lemma does not apply to ei ∈ S, because J2 does not vanish at (ei, ei).

In fact, if ei ∈ S, then M(ei) is not a B-module. Hence there are two cases in the proof of

the following proposition, depending on whether or not p ∈ E.

Proposition 5.2. Let p ∈ E ∪ S. Then the point module corresponding to p is

M(p) = A/AW where W ⊂ A1 is the subspace vanishing at p.

Proof. Let p ∈ E. There is a surjective map A/AW → M(p), so it suffices to

show that dim(An+1/AnW ) = 1 for all n ≥ 1 (we did the case n = 1 in (5.1)). Since

A/AW ∼= B/BW it is enough to show that dim(Bn+1/BnW ) = 1 for all n ≥ 1.

Let i : E → P3 be the inclusion, and let L = i∗O(1). Define Ln = L ⊗ σ∗(L)⊗ . . .⊗
(σn−1)∗(L). By [21,§3], it follows that Bn+1/BnW is the cokernel of the map H0(E,Ln)⊗
W → H0(E,Ln+1) which is the restriction of the map

H0(E,Ln)⊗H0(E,L)→ H0(E,Ln)⊗H0(E,Lσn

)→ H0(E,Ln+1).

Note that W = H0(E,L(−p)). Hence we wish to show that the cokernel of the map

H0(Ln)⊗H0(L(−p))→ H0(Ln)⊗H0(L(−p)σn

)→ H0(Ln ⊗ L(−p)σ
n

)→ H0(E,Ln+1)

is of dimension 1.

Apply Ln ⊗ − to the sequence 0 → L(−p)σn → Lσn → Lσn

/L(−p)σn → 0 and take

cohomology. Since deg(Ln ⊗ L(−p)σ
n

) > 0 (actually = 4n + 3), H1(Ln ⊗ L(−p)σ
n

) = 0

and we have an exact sequence

0→ H0(Ln ⊗ L(−p)σ
n

)→ H0(Ln+1)→ H0(Ln ⊗ Lσn

/L(−p)σn

)→ 0.
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These spaces have dimensions 4n+3, 4n+4, and 1 respectively. Hence it suffices to prove

that the cokernel of the map H0(Ln)⊗H0(L(−p)σn

)→ H0(Ln⊗L(−p)σ
n

) is zero. Apply

[13, Theorem 2(b)] with F = Ln, L = L(−p)σn

and i = 0, to conclude that this cokernel

is indeed zero (the hypothesis of Mumford’s Theorem only needs to be checked for i = 1,

and by degree arguments it is satisfied).

Now suppose that p = ei ∈ S. Let Wi := Cx0⊕ · · · ⊕ Ĉxi⊕ · · · ⊕Cx3 be the subspace

of A1 vanishing at ei. A careful examination of the defining relations of A shows that

AWi is a 2-sided ideal, and that A/AWi
∼= C[xi]. In particular, there is a surjective map

C[xi] −→M(ei), and because the Hilbert series are the same this map is an isomorphism.

Thus, A/AWi
∼=M(ei) as required. �

A more elementary proof of (5.2) follows from (2.13).

Lemma 5.3. Let p, q ∈ E. Then there is a short exact sequence

0 −→ K −→M(p, q) −→M(p) −→ 0

where the kernel K is a shifted line module.

Proof. Let u, v, w ∈ A1 be such that ℓpq = V(u, v), and V(u, v, w) = {p}. Thus

M(p) ∼= A/Au + Av + Aw, and M(p, q) ∼= A/Au + Av. This shows the existence of a

surjective map M(p, q) → M(p) with kernel K ∼= Aw, the submodule of A/Au + Av

generated by the image of w. Its Hilbert series is (1− t)−2− (1− t)−1 = t(1− t)−2, so A.w

is a shifted line module. �

Remarks. 1. If p+ q /∈ E2, then ℓpq meets E ∪ S only at p and q, so the only point

modules which are quotients of M(p, q) are M(p) and M(q). However, if p+ q = ωi ∈ E2,

then ℓpq passes through the point ei ∈ S, so M(ei) is a quotient of M(p, q). This describes

all the ways in which a point module can arise as a quotient of a line module.

2. Our notation obscures the fact that there is only one surjection (up to scalar

multiples) from M(p, p) to M(p). This is implicit in the proof of (5.3): p determines

Cu + Cv + Cw, the subspace of A1 vanishing at p, so if ℓpp = V(u, v), then the kernel of

any map M(p, p)→M(p) must contain Cw = (Cu+ Cv + Cw)/(Cu+ Cv).
3. Next we determine the line module K in (5.3). This is done in (5.5), and (5.7)

describes the kernel of the map M(p, ωi − p)→M(ei).

Lemma 5.4. Let p, q ∈ E. The elements of E2 may be labelled E2 = {ωi, ωj , ωk, ωℓ}
in such a way that

(a) p+ q /∈ {ωi, ωj}, ωi + ωj /∈ {p− q, p− q − 2τ} and
(b) there exists 0 6= u ∈ A1 such that (u)0 = p+ q + (ωi − p) + (ωi − q) and u(ej) 6= 0.

Proof. If p + q /∈ E2 then (a) is easily satisfied. On the other hand if p + q = ωℓ

then {ωi + ωj , ωi + ωk, ωj + ωk} consists of 3 distinct elements, so one of these is not in

{p− q, p− q − 2τ}. Again (a) holds.
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Now pick 0 6= u ∈ A1 with the zero locus as in the statement of the lemma. Now

u(ej) = 0 if and only if either p+ q = ωj or p+ (ωi − q) = ωj . Since these possibilities are

excluded by (a), (b) is also true. �

Theorem 5.5. Let p, q ∈ E. Then there is a short exact sequence

0 −→M(p+ τ, q − τ)[−1] −→M(p, q) −→M(p) −→ 0.

Proof. Choose ωi, ωj ∈ E2 and u ∈ A1 as in (5.4). Thus (u)0 = (p) + (q) + (ωi −
p) + (ωi − q). Define 0 6= v, w ∈ A1 by (v)0 = (p) + (q) + (ωj − p) + (ωj − q) and (w)0 =

(p)+(ωi−p)+(ωj−p)+(ωi+ωj +p). The careful choice of ωi and ωj ensures that u, v, w

are linearly independent. Therefore V(u, v, w) = {p}, and the secant lines V(u, v) = ℓpq,

V(u,w) = ℓp,ωi−p and V(v, w) = ℓp,ωj−p are pairwise distinct. By (5.3), Aw ⊂ A/Au+Av

is the line module to be determined. By (4.4) there exist non-zero elements x, y, b, b′ ∈ A1

such that xw− bu = yw− b′v = 0. Furthermore, since div( u
w ) = (q)+ (ωi− q)− (ωj − p)−

(ωi +ωj + p) we must have (x)0 = (q− τ) + (ωi− q− τ) + (p+ τ) + (ωi− p+ τ). Similarly

(y)0 = (q−τ)+(ωj−q−τ)+(p+τ)+(ωj−p+τ). Notice that x and y are linearly independent:

if not then (x)0 = (y)0 so (ωi− q− τ) + (ωi− p+ τ) = (ωj − q− τ) + (ωj − p+ τ), whence

ωi− q− τ = ωj − p+ τ contradicting our choice of ωi and ωj . Therefore Aw ∼= A/Ax+Ay

and V(x, y) = ℓp+τ,q−τ . �

The next result should be compared with [14, Theorem 3.2].

Proposition 5.6. Suppose that p − q /∈ Z · 2τ . Then M(p, q) has a basis {eij |
(i, j) ∈ N2} with the property that

(a) M(p, q)n has basis {eij | i+ j = n};
(b) A.eij ∼=M(p+ (j − i)τ, q + (i− j)τ);
(c) A.eij has basis {ei+k,j+ℓ | k, ℓ ≥ 0};
(d) if x ∈ A1, then x.eij ∈ Cei+1,j ⊕ Cei,j+1;

(e) if x ∈ A1, then x.eij ∈ Cei+1,j if and only if x(q + (i − j)τ) = 0, and x.eij ∈ Cei,j+1

if and only if x(p+ (j − i)τ) = 0.

Proof. Write M = M(p, q), and pick 0 6= e00 ∈ M0. Clearly (a) is true for n = 0,

and (b) is true for i = j = 0. The truth of (c) and (d) will follow from the way in which

the basis is constructed

Since p 6= q, there are short sequences 0 → K(p) → M(p, q) → M(p) → 0 and

0 → K(q) → M(p, q) → M(q) → 0 where, by (5.4), K(p) = Ae01 ∼= M(p + τ, q − τ) and

K(q) = Ae10 ∼= M(p − τ, q + τ), for some e01, e10 ∈ M1. The elements e01 and e10 are

linearly independent, because if not, then M(p) ∼= M/Ae01 = M/Ae10 ∼= M(q), whence

p = q (which contradicts the hypothesis on p and q). Since dim(M1) = 2, it follows that

{e01, e10} is a basis for M1. This proves (a) for n = 1, and (b) for i+ j = 1.
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Since p − q /∈ Z.2τ , p + τ 6= q − τ , so the previous paragraph may be applied to

Ae01 ∼= M(p+ τ, q − τ). Hence there exist e02, e11 ∈ M2 such that A1.e01 = Ce02 ⊕ Ce11,
and Ae02 ∼= M(p + 2τ, q − 2τ) and Ae11 ∼= M(p, q). Similarly, there exist e′11, e20 ∈ M2

such that A1.e10 = Ce20 ⊕ Ce′11, and Ae20 ∼=M(p− 2τ, q + 2τ) and Ae′11
∼=M(p, q).

We will now show that Ce11 = Ce′11. By (6.1) there exists a central element Ω ∈ A2

such that Ω.M(p, q) 6= 0. Then 0 6= Ω.e00 ∈M2. Since a point module associated to a point

of E is a B-module, Ω.M(p) = Ω.M(q) = 0. Hence Ω.e00 ∈ Ae01 ∩ Ae10. Let u, v ∈ A1

be such that ℓpq = V(u, v). Then u.e00 = v.e00 = 0. Since Ae11 ∼= M(p, q), we also have

v.e11 = u.e11 = 0. On the other hand, if u.e02 = ve02 = 0, then ℓp+2τ,q−2τ = V(u, v) = ℓpq;

this forces {p + 2τ, q − 2τ} = {p, q} which is impossible, since τ /∈ E2 and p − q /∈ Z.2τ .
Hence Ce11 is the unique 1-dimensional subspace of A1.e01 which is annihilated by u and

v. But, since Ω is central, Ω.e00 is also killed by u and v, so Ce11 = CΩe00. Similarly,

Ce′11 = CΩe00. Thus Ce11 = Ce′11, and we can take e′11 = e11 in the previous paragraph.

Now M2 = A2.e00 = A1e01 + A1e10 = Ce02 + Ce11 + Ce20. Since dim(M2) = 3,

{e02, e11, e20} is a basis for M2. Hence (a) is true for n = 2, and (b) is true for i+ j = 2.

We proceed by induction. Suppose we have obtained eij for all i+ j ≤ n, that (a) is

true for all m ≤ n, and that (b) is true for all i+ j ≤ n. We apply the earlier arguments

to A1.ei,n−i. This gives elements ei+1,n−i and e′i,n−i+1 in Mn+1 such that A1.ei,n−i =

Cei+1,n−i+Ce′i,n−i+1. The previous argument applied to A1ei,n−i and A1ei−1,n−i+1 shows

that we can take ei,n−i+1 = e′i,n−i+1. Hence we have elements ei,n−i+1(0 ≤ i ≤ n+1), such

that A.ei,n−i+1
∼=M(p+(n+1−2i)τ, q−(n+1−2i)τ) and A1.ei,n−i = Cei+1,n−i+Cei,n−i+1.

(Notice that we needed to use the fact that p−q /∈ Z ·2τ). SinceMn+1 = A1.Mn, it follows

that {e0,n+1, e1,n · · · , en,1, en+1,0} spansMn+1, and since dim(Mn+1) = n+2, it is actually

a basis. This proves (a) for n+ 1, and (b) for i+ j = n+ 1. Hence (a) and (b) follow by

induction. �

Remark. If p−q ∈ Z ·2τ , thenM(p, q) contains a submodule isomorphic toM(p′, p′)

for some p′, and the arguments we have just used fail - indeed there is only one submodule

of M(p′, p′) such that the quotient is isomorphic to M(p′), so we are unable to obtain e01
and e10 as in the proof of the proposition.

The basis has the property that if Ω∈A2 is central, then Ω.eij ∈ Cei+1,j+1 for all i, j

(since Ω annihilates every point module M(p) with p ∈ E).

Theorem 5.7. Let p, q ∈ E be such that p + q = ωi ∈ E2. Then there is a short

exact sequence

0→M(p− τ, q − τ)[−1]→M(p, q)→M(ei)→ 0.

Proof. Let u, v, w ∈ A1 be such that V(u, v) = ℓpq and V(u, v, w) = {ei}. By

(5.3), the kernel of the surjection M(p, q)→ M(ei) is K ∼= A.w contained in A/Au+ Av.

Thus the kernel is isomorphic to M(ℓ) where ℓ is the line V(x, y), and x, y ∈ A1 satisfy

x.w, y.w ∈ A1u+A1v.
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We can choose u, v, w such that V(u, v),V(u,w) and V(v, w) are three distinct secant

lines of E. For example, choose u, v, w such that (u)0 = p+ q+ r+ s, (v)0 = p+ q+ r′ + s′

and (w)0 = r+ s+ r′ + s′ with r, s, r′, s′ in general position subject to r+ s = r′ + s′ = ωi.

Now apply (4.4) to these three secant lines. This gives x, y, b, b′ ∈ A1 such that xw− bu =

yw − b′v = 0. Since w is not zero at p or q but both u and v are, it follows that (x)0 and

(y)0 both contain (p− τ) + (q − τ). Thus V(x, y) = ℓp−τ,q−τ as required. �

We now study the finite dimensional simple quotients of point modules. First consider

a graded algebra A = C⊕A1 ⊕A2 ⊕ · · · generated by A1, with dim(A1) <∞.

By [2] the point modules for A are parametrised by a space Γ which is an inverse

limit of projective varieties. Furthermore, there is a map σ:Γ→ Γ such that if p ∈ Γ, and

M(p) is the corresponding point module, then M(p−σ) is isomorphic to the submodule

M(p)≥1 =
⊕

j≥1M(p)j of M(p). Thus M(p)≥k ∼=M(pσ
−k

).

Fix a basis x0, . . . , xn−1 for A1, and consider these as a system of homogeneous coor-

dinates on P(A∗
1). Suppose (as is the case for the Sklyanin algebra, and the 3-generated

3-dimensional regular algebras of [1]) that there is an embedding Γ → P(A∗
1), such that

σ is an automorphism of Γ, and for each p ∈ Γ, M(p)0 and M(p)1 have bases e0 and e1
with the property that xi.e0 = xi(p)e1 for all i. Then M(p) has a basis e0, e1, . . . such that

x.ej = x(pσ
−j

)ej+1 for all x ∈ A1, and all j. This assumption applies in (5.8) and (5.9).

The point modules for the Sklyanin algebra are parametrised by E ∪ S [21, §2], and
the automorphism is given by σ(p) = p+ τ if p ∈ E, and σ(ei) = ei. Hence if p ∈ E then

M(p) has basis ej such that x.ej = x(p− jτ)ej+1 for all x ∈ A1.

Lemma 5.8. Let M =M(p) = Ae0 be a point module as above. Let a ∈ N.
(a) Let N be a submodule of M which does not contain any ei. If dim(M/N) = a, then

pσ
b

= p for some b ∈ {1, . . . , a}; in particular |〈σ〉 · p| divides b.
(b) Suppose that |〈σ〉 · p| = a, and N is a submodule of M such that dim(M/N) = a.

Suppose that N ′%N is a submodule of M . If N ′ 6=M then N ′ contains some ej .

(c) Suppose that |〈σ〉 · p| = a. For each 06=λ∈C, N=A(e0 − λea) is a proper submod-

ule of M with basis {ei − λei+a | i ≥ 0}. Furthermore, M/N is simple with basis

{e0, e1, . . . , ea−1}.
(d) If |〈σ〉 · p| =∞, then the only simple quotient of M(p) is the trivial module.

Proof. (a) Choose b minimal such that N contains an element of the form e =∑b
j=0 λjei+j with λ0λb 6= 0. Clearly 1 ≤ b ≤ a. Let x0, x1, . . . , xn−1 be a basis for A1.

For each k, N contains xk · e =
∑

0≤j≤b λjxk(p
σi+j

)ei+j+1. Consider the 2×n matrix, the

rows of which are the homogeneous coordinates of the points pσ
i

and pσ
i+b

, namely

X = (xk(p
σi+j

))j=0,b;0≤k≤n−1.

If rank(X) = 2, then xk(p
σi

)xℓ(p
σi+b

) − xℓ(p
σi

)xk(p
σi+b

) 6= 0 for some k and ℓ. Hence

N contains the element (xℓ(p
σi+b

)xk − xk(pσ
i+b

)xℓ) · e which is a linear combination of
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ei+1, . . . , ei+b+1 with the coefficient of ei+1 non-zero, and the coefficient of ei+b+1 equal to

zero. This contradicts the minimality of b, so we conclude that rank(X) = 1. Hence the

rows are scalar multiples of each other. Therefore pσ
i

= pσ
i+b

, whence p = pσ
b

.

(b) Suppose that N ′ does not contain any ej . Then dim(M/N ′) = d < a and (a)

applies to M/N ′. That is, a = |〈σ〉 · p| divides b for some b ∈ {1, ..., d}. This is impossible.

(c) Define ϕ :M(p)→M(p)≥a by ϕ(ei) = ei+a. Because p
σa

= p, ϕ is A-linear. Thus

N = Im(1 − λϕ) has basis {(1 − λϕ)(ei) | i ≥ 0} = {ei − λei+a | i ≥ 0}, and M/N has

basis as claimed.

Suppose that N ′%N is a submodule. If N ′ contains some ej , choose the minimal such

j. If j ≥ a, then ej−a−λej ∈ N ⊆ N ′ implies ej−a ∈ N ′. Hence j < a. But then ea ∈ N ′,

whence e0 ∈ N ′, so N ′ =M . Hence by (b) M/N is simple.

(d) Suppose that M/N is a simple quotient of M . If N contains ej , then M/N

is trivial, since M/Aej = M/M≥j has a composition series all of whose factors are the

trivial module. Hence if M/N is a non-trivial simple quotient, then (a) applies, and this

contradicts the fact that |〈σ〉 · p| =∞. �

Proposition 5.9. LetM(p) be a point module as above. The following are equivalent:

(a) pσ = p;

(b) M(p) has at least one non-trivial 1-dimensional quotient module;

(c) for all λ ∈ C×, M(p)/A(e0 − λe1) is a 1-dimensional A-module;

(d) Ann(e0) is a 2-sided ideal, and A/Ann(e0) is a polynomial ring in 1 variable.

Proof. (c) =⇒ (b) is obvious, and (a) ⇐⇒ (c) by (5.8c).

(b) ⇐⇒ (a) Let M(p)/N be a non-trivial 1-dimensional module. Since every compo-

sition factor of M(p)/Aei is the trivial module, ei /∈ N . Hence p = pσ by (5.8a).

(d) =⇒ (b) The Hilbert series of M(p) ∼= A/Ann(e0) is (1 − t)−1, so M(p) ∼= C[X]

has plenty of 1-dimensional quotients.

(a) =⇒ (d) We have M(p) = M(pσ
k

) ∼= M(p)≥k, so Ann(e0) annihilates every ek.

Thus Ann(e0) = AnnM(p) is a 2-sided ideal, and A/Ann(e0) ∼= C[X], the only ring with

Hilbert series (1− t)−1. �

We now return to the Sklyanin algebra, and observe that (5.9) applies to the 4 points

ei, since e
σ
i = ei.

Proposition 5.10. Let {i, j, k, ℓ} = {0, 1, 2, 3}. For each i, define Ii := Axj +Axk +

Axℓ. Then M(ei) ∼= A/Ii, and Ii = AnnM(ei).

Proof. It follows at once from the defining relations that Ii is a two-sided ideal, and

that A/Ii ∼= C[xi]. It is obvious that Ii ⊂ Ann(M(ei)0), so the result follows. �

Theorem 5.11. If τ is of infinite order, then AnnM(p) = 〈Ω1,Ω2〉 for all p ∈ E.
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Proof. Set J = AnnM(p). Since M(p) is critical, J is a prime ideal (this well known

result can be proved by combining [9, Prop. 5.6] with the argument in [22, Prop. 3.9]).

By the remarks after [21, Corollary 2.8], J ⊃ 〈Ω1,Ω2〉. Suppose the result is false.

Then A/J is prime of GK-dimension 1, so by [19], it is a finite module over its center.

By Goldie’s Theorem A/J has a simple artinian ring of fractions, Q say. Since M(p) is

a faithful A/J-module, Q ⊗A/J M(p) 6= 0, whence Q embeds in a direct sum of copies of

this. Therefore A/J embeds in a (finite) direct sum of copies of M(p). In particular, a

finite dimensional simple A/J-module is also a quotient of M(p). However, by (5.8d), the

only such module is the trivial module. Hence A/J has a unique finite dimensional simple

module. This is absurd since dim(A/J) = ∞, and A/J is a finite module over its center

(for example, it contradicts [20]). �
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§6. Annihilators of Line Modules.

Write Z2 = CΩ1⊕CΩ2 for the linear span of the two central elements in A2 described

in [21, §3.9], and in Section 1 above.

We summarize the results in this section. Theorem 6.3 proves that if p, q ∈ E, then

there exists a unique (up to scalar multiple) non-zero element of Z2 which annihilates

M(p, q). We write Ω(p, q) for this element. It is best to think of Ω(p, q) as an element of

the projective space P(Z2) ∼= P1, and we shall usually do this. Next (6.5) and (6.6) show

that Ω(p, q) depends only on p+q, so we prefer to write Ω(p, q) = Ω(p+q). It is then proved

that Ω(r) = Ω(r′) if and only if either r = r′ or r + r′ = −2τ . Finally (6.13) proves that

every element of P(Z2) is of the form Ω(r); that is every element of Z2 annihilates some

line module. It is also shown that if τ is of infinite order then AnnM(p, q) is generated by

Ω(p+ q).

Lemma 6.1. If M is a line module, then AnnZ2
M is a 1-dimensional subspace of

Z2. That is, M is annihilated by a unique (up to scalar multiples) non-zero homogeneous

central element of degree 2.

Proof. Let M = A/Au + Av. Since V(u, v) is a secant line, (4.4) shows that there

exists 0 6= a, b ∈ A, such that av − bu is a non-zero central element of A annihilating M .

Now we show that M cannot be annihilated by both Ω1 and Ω2. If it were, then M

would be a B-module. However, B is a domain of GK-dimension 2, so any cyclic B-module

of GK-dimension 2 must be isomorphic to B itself. But B and M have different Hilbert

series, so M≇B. �

Proposition 6.2. Let 0 6= Ω ∈ Z2. Then A = A/〈Ω〉 is a domain.

Proof. Suppose not. Then there are non-zero homogeneous elements a, b ∈ A such

that ab ∈ 〈Ω〉, but a /∈ 〈Ω〉 and b /∈ 〈Ω〉. Choose such a and b, such that deg(a) + deg(b) is

minimal. Choose Ω′ such that CΩ⊕ CΩ′ = CΩ1 ⊕ CΩ2.

Claim: The image of Ω′ in A is regular. Proof: If not then Ω′x = Ωy for some

x, y with x /∈ 〈Ω〉. Write Ω′ = λ1Ω1 + λ2Ω2, and Ω = µ1Ω1 + µ2Ω2. Thus (λ1Ω1 +

λ2Ω2)x = (µ1Ω1 +µ2Ω2)y =⇒ (λ1x−µ1y)Ω1 = (µ2y− λ2x)Ω2 =⇒ µ2y− λ2x = Ω1z, and

λ1x− µ1y = Ω2z for some z ∈ A, since (Ω1,Ω2) is a regular sequence in A. In particular

Ω′z = (λ1Ω1+λ2Ω2)z = λ1(µ2y−λ2x)+λ2(λ1x−µ1y) = (λ1µ2−µ1λ2)y. Since Ω and Ω′

are linearly independent,

(
λ1 λ2
µ1 µ2

)
is invertible, whence y = λΩ′z for some 0 6= λ ∈ C.

Hence Ω′x = λΩΩ′z so x = λΩz ∈ 〈Ω〉. This contradiction proves the claim.

Since A/〈Ω,Ω′〉 = A/〈Ω1,Ω2〉 is a domain, either a ∈ 〈Ω,Ω′〉 or b ∈ 〈Ω,Ω′〉. Suppose
that a = Ωc + Ω′d. By cancelling off high order terms, we can assume that deg(c) =

deg(d) = deg(a) − 2. Now Ωcb + Ω′db = ab ∈ 〈Ω〉, so Ω′db ∈ 〈Ω〉. By the previous

paragraph, db ∈ 〈Ω〉. But deg(d) + deg(b) < deg(a) + deg(b), and b /∈ 〈Ω〉, so by choice

of a, b it follows that d ∈ 〈Ω〉. Therefore, a (= Ωc + Ω′d) is also in 〈Ω〉. This again is
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a contradiction, so a /∈ 〈Ω,Ω′〉. Therefore b ∈ 〈Ω,Ω′〉. A similar argument shows that

b ∈ 〈Ω〉. This too is a contradiction, and we are forced to conclude that no such a and b

exist. Thus A is a domain. �

Remark. We will prove in (6.12) that the center of A/〈Ω〉 is a polynomial ring in

one variable when τ is of infinite order.

Theorem 6.3. Suppose that τ is of infinite order. Then the annihilator of a line

module is generated by a non-zero homogeneous central element of degree 2.

Proof. Let p, q ∈ E, and set I = AnnM(p, q). Since M(p) is a quotient of M(p, q),

and AnnM(p) = 〈Ω1,Ω2〉 by (5.9) we have I ⊂ 〈Ω1,Ω2〉. By (6.1), there exists 0 6= Ω ∈ A2

central, such that Ω ∈ I. By the uniqueness of Ω, we have I 6= 〈Ω1,Ω2〉. However, A/〈Ω〉
is prime of GK-dimension 3, and since I is also prime (because M(p, q) is critical), we

conclude that 〈Ω〉 = I. �

Write Ω(p, q) for “the” element determined by (6.3). Thus when τ is of infinite order

AnnM(p, q) = 〈Ω(p, q)〉. The rest of this section is devoted to getting more precise infor-

mation about Ω(p, q). In particular, it will be shown that it depends only on p+ q, so will

be denoted by Ω(p+ q) once that has been done.

Define non-zero central elements Ω(ωi), i = 0, 1, 2, 3, in A2 as follows:

Ω(ω0) = (1 + γ)x21 + (1 + αγ)x22 + (1− α)x23
Ω(ω1) = (1 + γ)x20 + (αγ − γ)x22 + (α+ γ)x23

Ω(ω2) = (1 + αγ)x20 + (γ − αγ)x21 − (α+ αγ)x23

Ω(ω3) = (1− α)x20 + (α+ γ)x21 + (α+ αγ)x22.

These are the only degree two central elements of “rank 3” i.e. which are linear combina-

tions of only three of the x2j .

Proposition 6.4. If ℓ is a secant line passing through ei, then Ω(ωi) annihilates the

line module M(ℓ). In particular, all line modules corresponding to lines on the singular

quadric Q(wi), are annihilated by the central element Ω(ωi).

Proof. Write ℓ = V(u, v), and let av − bu ∈ A2 be a non-zero central element

annihilatingM(ℓ). Since av−bu is central it is a linear combination of x2j with j = 0, 1, 2, 3.

Say av−bu =
∑
µjx

2
j . Then a⊗v−b⊗u−

∑
µjxj⊗xj ∈ I2. Since ei ∈ ℓ, u(ei) = v(ei) = 0.

Therefore, a ⊗ v and b ⊗ u both vanish at (ei, ei), as do all the elements of I2. Therefore

(
∑
µjxj⊗xj)(ei, ei) = 0, so µi = 0. But there is a unique (up to scalar multiple) non-zero

central element in A2, whose coefficient of x2i is zero, namely Ω(ωi). Hence av−bu = Ω(ωi),

up to a scalar multiple. �
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After (6.4), one can say, somewhat inaccurately, that the singular quadrics correspond

to the singular central elements.

Proposition 6.5. Let ℓ and ℓ′ be lines lying on a common quadric containing E,

and suppose that ℓ ∩ ℓ′ = ∅. Then there exists a non-zero central element Ω ∈ A2 which

annihilates both M(ℓ) and M(ℓ′).

Proof. Write ℓ ∩ E = {p, q} and ℓ′ ∩ E = {p′, q′}. By (3.4d), Q is smooth, so

by (3.10c) p + q = p′ + q′. Choose any x, y, z, w ∈ E such that {x, y} 6= {z, w} and

x+ y+ p+ q = z +w+ p+ q = 0. Then there exist linear forms u, v, u′, v′ ∈ A1 such that

(u)0 = (x) + (y) + (p) + (q)

(v)0 = (z) + (w) + (p) + (q)

(u′)0 = (x) + (y) + (p′) + (q′)

(v′)0 = (z) + (w) + (p′) + (q′)

Thus ℓ = ℓpq = V(u, v) and ℓ′ = ℓp′q′ = V(u′, v′).
Choose r ∈ E, such that r /∈ {p, q} + E2, and such that r is not a zero of u, v, u′ or

v′. Replace u′ and v′ by non-zero scalar multiples of themselves such that (u − u′)(r) =
(v− v′)(r) = 0. Then (u− u′)0 = (x)+ (y)+ (r)+ (r̂) and (v− v′)0 = (z)+ (w)+ (r)+ (r̂)

for some r̂ ∈ E. In particular, V(u − u′, v − v′) = ℓrr̂ is secant line of E, and since

r + r̂ = −(x+ y) = p+ q, this line also lies on Q by (3.10d).

Apply (4.4) to ℓrr̂. There exist 0 6= a, b ∈ A1 such that (a⊗ (v − v′)− b⊗ (u− u′)) (Γ) =
0. In fact, we must have (a)0 = (x − τ) + (y − τ) + (r + τ) + (r̂ + τ), and (b)0 =

(z − τ) + (w − τ) + (r + τ) + (r̂ + τ). In particular, av − bu = av′ − bu′ in A.
Now apply (4.2) to V(u, v) = ℓpq. There exists λ ∈ C such that (a ⊗ v − λb ⊗

u)(∆τ ) = 0. Similarly there exists λ′ ∈ C such that (a ⊗ v′ − λ′b ⊗ u′)(∆τ ) = 0. Hence

b⊗ ((λ− 1)u− (λ′ − 1)u′) vanishes on ∆τ . Thus (λ− 1)u− (λ′ − 1)u′ vanishes on E, and

since E spans P3, (λ − 1)u = (λ′ − 1)u′. However, (u)0 6= (u′)0 since ℓ 6= ℓ′. Therefore

λ = λ′ = 1.

Therefore (a ⊗ v − b ⊗ u)(∆τ ) = (a ⊗ v′ − b ⊗ u′)(∆τ ) = 0, so av − bu is central in

A. Since V(u, v) = ℓpq and r + τ /∈ {p + τ, q + τ} it follows from (4.4) that av − bu 6= 0.

Therefore av − bu is a non-zero central element of A. Hence the result. �

Corollary 6.6. Let z ∈ E. Then there exists a non-zero element, Ω(z) say, in Z2,

such that Ω(z).M(p, q) = 0 whenever p+q = z. In particular, Ω(p+q) annihilatesM(p, q).

Proof. Suppose that z = p + q = r + s. Set ℓ = ℓpq and ℓ′ = ℓrs. If z = ωi, then

ℓ and ℓ′ both pass through ei, so (6.4) shows that there exists 0 6= Ω ∈ Z2 such that

Ω.M(ℓ) = Ω.M(ℓ′) = 0. If z ∈ E2, then ℓ and ℓ′ lie on the smooth quadric Q(z),

and by (3.10) do not intersect. Hence by (6.5), there exists 0 6= Ω ∈ Z2 such that

Ω.M(ℓ) = Ω.M(ℓ′) = 0. The notational definitions give Ω(p+ q).M(p, q) = 0. �
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We now turn to the problem of deciding exactly when two line modules are annihilated

by the same homogeneous degree two central element. The result we prove in (6.9d) is

that M(p, q) and M(p′, q′) have the same homogeneous degree two central annihilator if

and only if either p + q = p′ + q′ or (p + q) + (p′ + q′) = −2τ . The proof begins with a

lemma which contains most of the technicalities.

Lemma 6.7. Let r, r′ ∈ E. Pick ωi ∈ E2 such that r 6= ωi and r
′ 6= ωi. Suppose that

r+ r′ 6= 0. Let p ∈ E be such that 2p /∈ {2r+ r′, r+2r′, r+ r′ +ωi, r− 2τ, r′− 2τ}. Define

q = x′ = r − p
x = q′ = r′ − p
y = y′ = p− (r + r′)

w = w′ = ωi − p
z = p+ ωi − r
z′ = p+ ωi − r′.

Then

(i) w /∈ {x, y, q}
(ii) y /∈ {p, q, x, z}
(iii) z′ /∈ {q, y}
(iv) q − τ /∈ {p+ τ, q + τ}
(v) q′ − τ /∈ {p+ τ, q′ + τ}
(vi) 0 = p+ q + x+ y = p+ q′ + x′ + y′ = p+ q + w + z = p+ q′ + w′ + z′.

Proof. All the following conclusions contradict the hypotheses

(i) w = x =⇒ r′ = ωi.

w = y =⇒ 2p = r + r′ + ωi.

w = q =⇒ r = ωi.

(ii) y = p =⇒ r + r′ = 0.

y = q =⇒ 2p = 2r + r′.

y = z =⇒ r′ = ωi.

y = x =⇒ 2p = 2r′ + r.

(iii) z′ = q =⇒ 2p = r + r′ + ωi.

z′ = y =⇒ r = wi.

(iv) q − τ = p+ τ =⇒ 2p = r − 2τ .

q − τ = q + τ =⇒ 2τ = 0.

(v) q′ − τ = p+ τ =⇒ 2p = r′ − 2τ .

q′ − τ = q′ + τ =⇒ 2τ = 0.

(vi) This is straightforward. �

Proposition 6.8. Let r, r′ ∈ E. Suppose that r 6= r′ and r + r′ 6= 0. Then

Ω(r) = Ω(r′) (up to scalar multiple) ⇐⇒ r + r′ = −2τ .
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Proof. Choose ωi, p, q, x, y, w, z, q
′, x′, y′, w′, z′ ∈ E as in (6.7). Thus Ω(r) = Ω(p+ q)

and Ω(r′) = Ω(p+ q′).

By (6.7(vi)) we can pick u = u′, v, v′ ∈ A1 such that

(u)0 = p+ q + x+ y

(v)0 = p+ q + w + z

(u′)0 = p+ q′ + x′ + y′

(v′)0 = p+ x+ w′ + z′.

Each of these linear forms is determined up to a scalar multiple. By (6.7(i)), the planes

u = 0 and v = 0 are distinct. Thus ℓ = V(u, v) and ℓ′ = V(u′, v′) so Ω(r) ∈ A1v + A1u

and Ω(r′) ∈ A1v
′ +A1u

′.

By (6.7(ii)), v(y) 6= 0 and by (6.7(i),(ii),(iii)), v′(y) 6= 0. Hence we can, and do, pick

v and v′ such that (v − v′)(y) = 0. Therefore u and v − v′ have two (distinct) common

zeroes on E, namely y and p. However v(ei) = v′(ei) = 0 since p + w = p′ + w′ = ωi.

Therefore (v− v′)(ei) = 0. In contrast u(ei) 6= 0 because w = ωi− p /∈ {x, y, q}. Therefore
V(u, v − v′) = ℓpy is a secant line of E.

Let a = a′ ∈ A1 be chosen such that (a)0 = (a′)0 = (x−τ)+(y−τ)+(q−τ)+(p+3τ).

By (6.7) q − τ /∈ {p+ τ, q + τ} so by (4.2) and (4.4) applied to V(u, v) = ℓpq, there exists

b ∈ A1 such that Ω(r) = av−bu. Similarly there exists b′ ∈ A1 such that Ω(r′) = a′v′−b′u′.
Therefore Ω(r) − Ω(r′) = a(v − v′) − (b − b′)u, since u = u′, so Ω(r) = Ω(r′) if and

only if (a⊗ (v − v′)− (b− b′)⊗ u) (Γ) = 0. However (a⊗ (v− v′)− (b− b′)⊗ u)(∆τ ) = 0,

since av − bu and a′v′ − b′u′ are both central. Consideration of (a)0, together with (4.4)

applied to V(u, v) = ℓpy, shows that (a ⊗ (v − v′) − (b − b′) ⊗ u)(Γ) = 0 if and only if

y − τ ∈ {p + τ, y + τ}. Since τ /∈ E2, it follows that av − bu = a′v′ − b′u′ if and only if

−2τ = p− y. Equivalently Ω(r) = Ω(r′) if and only if r + r′ = −2τ . �

Corollary 6.9. Let r, r′ ∈ E.

(a) If r + r′ = −2τ , then Ω(r) = Ω(r′).

(b) If r ∈ E\E2, then Ω(r) 6= Ω(−r).
(c) If Ω(r) = Ω(r′), then either r = r′, or r + r′ = −2τ .
(d) Ω(r) = Ω(r′) if and only if either r = r′ or r + r′ = −2τ.

Proof. (a) The result is true if r = r′, so suppose that r 6= r′. Since τ /∈ E2, r+r
′ 6= 0,

so (6.8) applies. Hence Ω(r) = Ω(r′).

(b) Set s = −2τ − r, and s′ = −2τ + r. Thus s + s′ = −4τ 6= 0, and s 6= s′ because

τ /∈ E2, so by (6.8) Ω(s) 6= Ω(s′). However, by (a) Ω(s) = Ω(r) and Ω(s′) = Ω(−r), hence
the result.

(c) Suppose that Ω(r) = Ω(r′) and r 6= r′. If r + r′ 6= 0, then (6.8) applies, proving

that r + r′ = −2τ . On the other hand, if r + r′ = 0, then r ∈ E2 by (b). This in turn

implies that r = r′, a contradiction.
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(d) This follows from (a) and (c). �

Theorem 6.10. Let p, q, p′, q′ ∈ E. If τ is of infinite order then AnnM(p, q) =

AnnM(p′, q′) if and only if either p+ q = p′ + q′ or (p+ q) + (p′ + q′) = −2τ .
Proof. This is a consequence of (6.3) and (6.9d). �

For completeness we also describe the annihilator of a plane module when τ is of

infinite order.

Proposition 6.11. Suppose that τ is of infinite order. Let M(p, q, r, s) be a plane

module. Then AnnM(p, q, r, s) = 0.

Proof. Set M = M(p, q, r, s), and J = Ann(M). Let I = 〈Ω(p + q)〉. Then J ⊆ I,

since M(p, q) is a quotient of M . Since A/J is prime, and GKdim(A/I) = 3, either J = 0

or J = I. If J = 0 we are finished, so suppose that J = I. By (6.2) A/J is a domain. But

M is a quotient of A/J of GK-dimension 3, so A/J ∼= M . However, A/J = A/ΩA with

Ω ∈ A2, so HA/J(t) = (1 − t2). HA(t) 6= (1 − t)−3 = HM (t). This contradiction shows

that J = 0. �

The next result answers a question of Sklyanin [17, p.269].

Proposition 6.12. Suppose that τ is of infinite order. Then the center of A is

Z(A) = C[Ω1,Ω2].

Proof. Consider B = A/〈Ω1,Ω2〉. By [21], B is a noetherian domain of GK-dimension

2. Hence if the center of B is strictly larger than C, then B satisfies a polynomial identity

by [20]. Hence by [9,§10.3] GKdim(A/AnnM(p)) = GKdimM(p) = 1, which contradicts

(5.11). Hence the center of A is contained in C+ 〈Ω1,Ω2〉.
First we show that the center of A = A/〈Ω1〉 is C[Ω2]. Suppose not. Pick a homoge-

neous w ∈ A of minimal degree such that w is central, but w /∈ C[Ω2]. By the previous

paragraph the center of A is contained in C + 〈Ω2〉, so we can write w = Ω2w
′. But A is

a domain by (6.2), so w′ is also central in A. However, deg(w′) < deg(w), so w′ ∈ C[Ω2].

Hence w ∈ C[Ω2] also.

Suppose the result is false. Pick a homogeneous central element z of minimal de-

gree such that z /∈ C[Ω1,Ω2]. Since z ∈ 〈Ω1,Ω2〉 we can write z = Ω1a1 + Ω2a2.

Moreover, since (Ω1,Ω2) is a regular sequence on A, we may choose a1, a2 such that

deg(z) = max{deg(a1), deg(a2)}. The image of z is central in A/〈Ω1〉, so a2 ∈ C[Ω2]+〈Ω1〉.
Hence we can write a2 = b2+Ω1c2 where b2 ∈ C[Ω2]. Similarly, we can write a1 = b1+Ω2c1
where b1 ∈ C[Ω1]. Therefore z = Ω1b1+Ω2b2+Ω1Ω2(c1+ c2). But Ωibi ∈ C[Ωi] is central,

and since A is a domain, it follows that c1 + c2 is central. However, deg(ai) > deg(ci), so

deg(c1 + c2) < deg(z). Therefore c1 + c2 ∈ C[Ω1,Ω2]. Hence z ∈ C[Ω1,Ω2] also, which

contradicts our choice of z. �
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Our final result, which completes the circle of ideas in this section, shows that every

non-zero element of Z2 annihilates some line module. The proof is rather unsatisfactory,

because it does not show the real reason this happens. It would be good to find another

proof. One possibility is to describe the action of A on a generalM(p, q) in an explicit way

using the basis in (5.6). That would then allow one to explicitly calculate the action of the

central elements Ωi on the generator e00, and thus determine the annihilator Ω(p+ q).

The key technical points in the proof of (6.13) are as follows. Firstly, the Grassmannian

of d-planes in the vector spaceW is denoted by G(d,W ). The map G(d,W )→ G(dimW −
d,W ∗) given by U 7→ U⊥ is an isomorphism of varieties. If m ∈ N, and V is a fixed

subspace of W , and Y is the subset of G(d,W ) consisting of those subspaces U such that

dim(U ∩ V ) = m, then the map Y → G(m,V ) given by U 7→ U ∩ V is continuous. If

m ∈ N, and Y is the subspace of G(d,W ) × G(d,W ) consisting of pairs (U1, U2) such

that dim(U1 + U2) = m, then the map Y → G(m,W ) given by (U1, U2) 7→ U1 + U2 is

continuous.

We will denote the linear span of points p, q, r ∈ P3 by pqr.

Theorem 6.13. Every element of Z2 annihilates some line module.

Proof. We must show that the map E → P(Z2) ∼= P1 given by z 7→ Ω(z) is surjective.

Define an equivalence relation on E by z∼z′ if either z = z′ or z+z′ = −2τ. The projection
from e0 to a general hyperplane in P3 sends the singular quadric Q0, and hence E, to a

smooth conic. By (3.4) and (3.6), the fibres are ±z. Identifying the conic with P1, gives

a morphism g : E → P1. Hence the map z 7→ g(z + τ) is a morphism whose fibres are

precisely the equivalence classes. Thus E/∼∼= P1.

By (6.10) there is an injective map f : E/∼→ P(Z2) given by f(z) = Ω(z). Since

we are working over C, P1 is homeomorphic to the 2-sphere S2, so we have an injective

map f : S2 → S2 which we wish to show is surjective. If f is continuous, then f must be

surjective. To see this, first recall that a continuous bijective map from a compact space to

a Hausdorff space is a homeomorphism. If f is not surjective, then its image is contained

in a disc S2−{p} so there would be a copy of S2 inside the disc. This is impossible. Hence

the rest of the proof is devoted to showing that f : E/∼→ P(Z2) is continuous.

Let z, z′ ∈ E. Our goal is to show that if z′ is ‘close to z’ then Ω(z′) is ‘close’ to Ω(z).

Fix some p, q, r, s ∈ E in general position, such that p + q = z. Fix u, v ∈ A1 such that

Cu = pqr⊥, Cv = pqs⊥ and V(u, v) = ℓpq. Since the addition law on E is continuous, there

exist p′, q′ ∈ E which are close to p and q respectively, and p′ + q′ = z′. It follows that the

lines Cu′ = p′q′r
⊥

and Cv′ = p′q′s
⊥

are close to Cu and Cv respectively in P(A1).

Since V(u, v) and V(u′, v′) are secant lines dim(A1u+A1v) = dim(A1u
′ +A1v

′) = 7.

Therefore A1u + A1v and A1u
′ + A1v

′ are close to each other in G(7, A2). The fact that

these are secant lines also implies Z2∩(A1u+A1v) and Z2∩(A1u
′+A1v

′) are lines in P(Z2)

which are close to each other. But these lines are precisely Ω(z) and Ω(z′) respectively.

Hence the result. �
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