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1. Introduction and Applications

Let g be a reductive complex Lie algebra, with adjoint group G, Cartan subal-
gebra h and Weyl group W . Then G acts naturally on the algebra of polynomial
functions O(g) and hence on the ring of differential operators with polynomial coef-
ficients, D(g). Similarly, W acts on h and hence on D(h). In [HC2], Harish-Chandra
defined an algebra homomorphism δ : D(g)G → D(h)W . Recently, Wallach proved
that, if g has no factors of type E6, E7 or E8, then this map δ is surjective [Wa,
Theorem 3.1]. The significance of Wallach’s result is that it enables him to give an
easy proof of an important theorem of Harish-Chandra about invariant distributions
and to give an elegant new approach to the Springer correspondence.

The main aim of this paper is to give an elementary proof of [Wa, Theorem 3.1]
that also works for all reductive Lie algebras. Set

I = {D ∈ D(g)G : D(p) = 0 for all p ∈ O(g)G}.

Then, we prove:

Theorem 1. The sequence 0 −→ I −→ D(g)G
δ

−→ D(h)W −→ 0 is exact.

This theorem follows immediately from an abstract result that describes the fixed
rings, under a finite group action, of rings of differential operators (see Theorem 5
and the comments thereafter). Before discussing that result, however, we wish to
explain the significance of Theorem 1, for which we need some notation.

Fix a real form g0 of g and assume that Ω is a fixed, open, completely invariant
subset of g0. Let N denote the cone of nilpotent elements in g0. Write D′

N (Ω)G0 for
the set of distributions on Ω that are invariant under the action of the adjoint group
G0 of g0 and supported in N . One of the key ideas in [Wa] is to relate invariant
distributions to Weyl group representations. While Wallach is able to make this
translation without use of Theorem 1, the result becomes simpler and more natural
with that result to hand. This is summarized by the following result, which is
obtained by combining Theorem 1 with [Wa, Theorems 2.7, 6.1 and Proposition 5.5]:
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Theorem 2. Assume that g0 is semisimple and let T ∈ D′
N (Ω)G0 . Then, D(g)GT

is killed by I. Thus, by Theorem 1 we may regard D(g)GT as a module over D(h)W .

As such, D(g)GT ∈ C ′
W , the category of all finitely generated D(h)W -modules on

which S(h∗)W+ acts locally nilpotently. Moreover, C ′
W is equivalent to the category of

finite dimensional representations of W . Under this equivalence, D′
N (g0)

G0 becomes

a finite W -module.

By taking T to be the orbital integral corresponding to a nilpotent element X
of a semisimple Lie algebra g, Wallach associates, in much this way, an irreducible
representation of W to the G-orbit of X (see [Wa, Theorem 6.9]). This leads to
his construction of the Springer correspondence. Wallach’s proof can be further
simplified since, by Theorem 1 and [Wa, Corollary 1.4], the categories CW and ČW
of [Wa, Section 2] are equal. Thus, [Wa, Theorem 2.4] and [Wa, Theorem 2.6] are
now trivial consequences of [Wa, Theorem 1.4], respectively [Wa, Theorem 1.6],
while [Wa, Lemma 2.5] is vacuously true.

In [Wa], Wallach also gives a relatively easy proof of a fundamental result of
Harish-Chandra. Using Theorem 1, one can further simplify his argument. In-
deed, by combining Theorem 1 with the first two paragraphs of the proof of [Wa,
Theorem 5.4] one obtains an easy proof of the following result:

Theorem 3. (see [HC3, Theorem 5]) I = {D ∈ D(g)G : DD′(Ω)G0 = 0}.

Moreover, the argument given at the end of [Wa, Section 5] shows that this, in
turn, easily implies a second result from [HC3]:

Theorem 4. Let g′ denote the set of all generic elements of g. Suppose that

T ∈ D′(Ω)G0 satisfies dimS(g)GT < ∞ and T∣
∣Ω∩g′

= 0. Then T = 0.

We end the introduction by discussing the proof of Theorem 1. This is based
on a structure theorem for rings of differential operators fixed by an arbitrary
finite group, that is of independent interest. Let V be an ℓ-dimensional vector
space over a field k of characteristic zero and W ⊂ GL(V ) a finite group. Let
O(V ) ∼= k[x1, . . . , xℓ] denote the ring of polynomial functions on V and write
D(V ) =

{
∑

fi(∂/∂x1)
i1 · · · (∂/∂xℓ)

iℓ : fi ∈ O(V )
}

for the ring of k-linear differ-
ential operators on O(V ). We may identify the symmetric algebra S(V ∗) with
O(V ) and the algebra S(V ) with the ring of constant coefficient differential oper-
ators on V . This provides a natural identification of left S(V ∗)-modules: D(V ) =
S(V ∗) ⊗k S(V ) (see, for example, [HC2, Section 3, Corollary 4]). The diagonal
action of W on S(V ∗)⊗k S(V ) now identifies with the usual action of W on D(V )
given by g(θ)(f) = g · (θ(g−1 · f)), for g ∈ W , θ ∈ D(V ) and f ∈ O(V ) (see, for
example, [HC2, pp.234-5]).

Now consider D(V )W . Two obvious subspaces are the W -invariant polynomial
functions, O(V )W = S(V ∗)W , and the W -invariant, constant coefficient differential
operators, S(V )W . Remarkably, these suffice to generate D(V )W :

Theorem 5. Let B be the k-subalgebra of D(V ) generated by S(V ∗)W and S(V )W .

Then, B = D(V )W .

If W is a Weyl group with no factors of type E6, E7 or E8, then this theorem is
proved in [Wa], by means of a case by case analysis. The relevance of Theorem 5
is that, as is shown in [Wa], it has Theorem 1 as an immediate corollary. The
argument is as follows:
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Proof of Theorem 1 from Theorem 5. Inside D(g)G one has the natural subrings
S(g∗)G and S(g)G. Let A be the subalgebra C〈S(g∗)G, S(g)G〉 that they generate.
Then the restriction of Harish-Chandra’s homomorphism δ to S(g)G is just the

Chevalley isomorphism S(g)G
∼
−→S(h)W . Similarly, the restriction of δ to S(g∗)G

is the Chevalley isomorphism S(g∗)G
∼
−→S(h∗)W (see [HC1, Theorem 1]). Thus,

with V = h and W the Weyl group, Theorem 5 implies that δ maps A surjectively
onto B = C〈S(h∗)W , S(h)W 〉 = D(h)W . Since I = Ker(δ) (see [HC2, Theorem 1])
this completes the proof of Theorem 1, modulo proving Theorem 5. Note that this
argument also shows that D(g)G = A+ I. �

2. The Proof of Theorem Five

We will continue to use the identifications described in the introduction; in
particular we will always make the identification S(V ∗) ⊗k S(V ) = D(V ). Let
S(V ) =

⊕

i≥0 S
i(V ) be the usual graded structure of S(V ) and write {S(V )n =

⊕

i≤n S
i(V )} for the corresponding filtration of S(V ). This induces a filtered struc-

ture D(V ) =
⋃

D(V )n on D(V ) by defining D(V )n = S(V ∗) ⊗k S(V )n. Since
S(V ) has been identified with the constant coefficient differential operators, this
filtration is nothing more than the filtration of D(V ) by degree of differential op-
erators and so, in particular, is a filtration of D(V ) as a k-algebra. Given any
subalgebra, or even subspace, R ⊆ D(V ), we will always filter R by the induced
filtration: {Rn = R∩D(V )n}. The associated graded object gr(R) is defined to be
gr(R) =

⊕

grnR, where grnR = Rn/Rn−1. Observe that

grnD(V ) =
(

S(V ∗)⊗ S(V )n
)/(

S(V ∗)⊗ S(V )n−1

)

∼= S(V ∗)⊗ Sn(V ). (†)

Thus, gr(D(V )) is isomorphic to the commutative ring S(V ∗) ⊗ S(V ). Moreover,
for any subalgebra R ⊆ D(V ), the associated graded ring gr(R) is isomorphic to

⊕

(R ∩ D(V )n +D(V )n−1)/D(V )n−1 ⊆ gr(D(V )).

Lemma 6. Let W ⊂ GL(V ) be a finite group and write B = k〈S(V ∗)W , S(V )W 〉
for the subalgebra of D(V )W generated by S(V ∗)W and S(V )W . Then, B is a

Noetherian domain and D(V )W is finitely generated as both a left and a right B-
module.

Proof. Observe that S(V ∗)⊗kS(V ) =
⊕

S(V ∗)⊗kS
n(V ) is a decomposition of W -

modules. Thus, (†) is also an isomorphism of W -modules. Indeed, the identification
D(V ) = S(V ∗)⊗S(V ) gives an action of W ×W on D(V ) by (w1, w2) ◦ (s1⊗ s2) =
w1(s1)⊗w2(s2). Although this is not an action ofW×W by algebra automorphisms,
(†) is still an isomorphism of W ×W modules. Now consider B and its natural k-
subspace L = S(V ∗)W ⊗S(V )W . Then (†) ensures that gr(L) = S(V ∗)W ⊗S(V )W

as a subspace of gr(D(V )) = S(V ∗)⊗ S(V ). Thus, gr(L) is a ring; indeed gr(L) =

{S(V ∗)⊗ S(V )}W×W
. In particular, gr(L) is a Noetherian domain and gr(D(V ))

is a finitely generated gr(L)-module.
Clearly, gr(L) ⊆ gr(B) ⊆ gr(D(V )W ) ⊆ gr(D(V )). Thus, gr(B) is Noetherian

and so, by [MR, Lemma 7.6.11], B is a Noetherian ring. Next, as B is a filtered
subalgebra ofD(V )W , D(V )W is a filtered (left or right) B-module and its associated
graded module is just gr(D(V )W ). But, by the last paragraph, gr(D(V )W ) is a
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finitely generated (right or left) gr(B)-module. Thus, by [MR, Lemma 7.6.11],
again, D(V )W is finitely generated as both a left and a right B-module. �

Let C be a commutative ring that is a localisation of a finitely generated k-
algebra. The ring of k-linear differential operators D(C) is defined to be D(C) =
⋃

n≥0 D(C)n, where D(C)0 = C and, inductively,

D(C)n = {θ ∈ Endk(C) : θc− cθ ∈ D(C)n−1 for all c ∈ C}.

The ring D(C) is filtered by the D(C)n and, when C = S(V ∗), this does agree with
the earlier definition. Now assume that F is a finitely generated field extension of
k of transcendence degree ℓ and pick a transcendence basis, say {u1, . . . , uℓ}, for
F/k. Then, by [MR, Corollaries 15.1.12(iv) and 15.2.5] the derivations ∂i = ∂

∂ui

extend to derivations on F and D(F ) ∼= F 〈∂1, . . . , ∂ℓ〉. Given I = (i1, . . . , iℓ) ∈ N
ℓ,

let ∂I = ∂i1
1 · · · ∂iℓ

ℓ . Then, as a left F -module, D(F ) has basis {∂I : I ∈ N
ℓ} ([MR,

Proposition 15.3.2]). If I = (i1, . . . , iℓ) ∈ N
ℓ, write |I| =

∑

j ij . We totally order Nℓ

by I = (i1, . . . , iℓ) > J = (j1, . . . , jℓ) if either |I| > |J | or |I| = |J | and there exists
1 ≤ m ≤ ℓ such that in = jn for n < m but im > jm. Given a k-algebra R and
r ∈ R, let ad(r) ∈ Endk(R) be defined by ad(r)(s) = [r, s] = rs− sr, for s ∈ R.

Lemma 7. Keep the above notation. Then:

(i) If J = (j1, . . . , jℓ) ∈ N
ℓ, define ad(u)J = ad(u1)

j1 · · · ad(uℓ)
jℓ . Then,

ad(u)J (∂I) = λ∂I−J , for some λ ∈ Z \ {0}. By convention, if I < J ,
then ∂I−J = 0.

(ii) Let f ∈ D(F ) \ F and write f = fI∂
I +

∑

J<I fJ∂
J , with fI 6= 0. Suppose

that I = (i1, . . . , iℓ), with ir > 0 and set I ′ = (i1, . . . , ir − 1, . . . , iℓ). Then,

∂r + fr+1∂r+1 + · · ·+ fℓ∂ℓ + f0 ∈ F · ad(u)I
′

(f), for some fj ∈ F .

Proof. (i) By construction, ad(uj)(∂i) = −δij and

ad(uj)(∂
I) = −(ij)∂

i1
1 · · · ∂

ij−1
j · · · ∂iℓ

ℓ .

The result now follows from the obvious induction.
(ii) Let 1r = (0, . . . , 0, 1, 0, . . . , 0) ∈ N

ℓ, where the 1 occurs in the rth position.

By part (i), ad(u)I
′

(f) = µfI∂r +
∑

K<1r
gK∂K , for some non-zero integer µ and

some gK ∈ F . This is equivalent to the assertion of the lemma. �

Suppose that K = k(u1, . . . , uℓ) is a field of rational functions and let R be the

subalgebra of D(K) generated by K and one operator ∂i1
1 · · · ∂iℓ

ℓ , for which ij > 0,
for each j. Then an easy exercise using Lemma 7 shows that R = D(K). The same
basic idea leads to the following curious result.

Lemma 8. Let F be a finitely generated field extension of k of transcendence degree

ℓ. Let R ⊆ D(F ) be a subalgebra such that F ⊆ R and give R the induced filtration

{Rn = R ∩ D(F )n}. Assume that

lim sup
n→∞

{logn(dimF grn(R))} > ℓ− 2. (8.1)

Then, R = D(F ).



INVARIANT DIFFERENTIAL OPERATORS 5

Remark. By [KL, Theorem 4.5] the condition (8.1) holds, in particular, if gr(R)
contains a finitely generated, graded F -subalgebra of Krull dimension ℓ.

Proof. Let di = (∂i + F )/F denote the image of ∂i in gr(D(F )). By [MR, Propo-
sition 15.3.2], gr(D(F )) ∼= F [d1, . . . , dℓ], the (commutative) polynomial ring in
the dj . In particular, grn(D(F )) ∼= F [d1, . . . , dℓ]

n, the vector space of homo-
geneous polynomials of degree n. Now, F [d2, . . . , dℓ]

n has dimension O(nℓ−2).
Thus, by (8.1), there exists n such that, for any 1 ≤ r ≤ ℓ, one has dim grnR >
dimF [d1, . . . , dr−1, dr+1, . . . , dℓ]

n.
For n chosen as in the last paragraph, pick an F -basis {t1, . . . , tν} for grnR. As

F ⊆ R, we may choose this basis such that, for 1 ≤ λ ≤ ν,

tλ = dI(λ) +
∑

{

fJ(λ)d
J(λ) : J(λ) < I(λ) and fJ(λ) ∈ F

}

and
if λ 6= µ then dI(λ) 6= dI(µ).

Now pick 1 ≤ r ≤ ℓ. By the choice of n, and the fact that ν = dimF (grnR), there
exists 1 ≤ λ ≤ ν such that dI(λ) 6∈ F [d1, . . . , dr−1, dr+1, . . . , dℓ]. For this λ, pick
f ∈ Rn such that (f + Rn−1)/Rn−1 = tλ. Then f = ∂I(λ) +

∑

J<I(λ) fJ∂
J and

I(λ) = (i1, . . . , iℓ) with ir 6= 0. Since each uj ∈ F ⊂ R, we may apply Lemma 7(ii)
to conclude that there exist fj = fjr ∈ F such that

∆r = ∂r + fr+1∂r+1 + · · ·+ fℓ∂ℓ ∈ R.

But D(F ) = F 〈∂1, . . . , ∂ℓ〉 = F 〈∆1, . . . ,∆ℓ〉. Thus, R = D(F ). �

The next result is proved in [LS, Lemma IV.1.3] but, since it is crucial to this
paper, we will reprove it here. In the case of Weyl groups, it is the only ingredient
of our proof of Theorem 5 that is not implicit in [Wa].

Lemma 9. Let R ⊆ S be Noetherian domains, with the same division ring of

fractions. Assume that S is a simple ring and that S is finitely generated as a left

and a right R-module. Then, R = S.

Proof. We may write S =
∑m

i=1 siR, for some si ∈ S. As S ⊂ Q(R), the quotient
ring of R, we may write each si over a common denominator; say si = c−1ri, for
some c, ri ∈ R. Thus, c ∈ ℓ-annR(S) = {r ∈ R : rS ⊆ R} and so N = ℓ-annR(S) 6=
0. Observe that N is a right ideal of S. Similarly, as S is a finitely generated left
R-module, M = r-annR(S) 6= 0 and M is a left ideal of S. Thus, as S is a domain,
MN is a non-zero two-sided ideal of S. Since S is a simple, S = MN ⊆ R. �

Finally, we may combine these lemmas to prove Theorem 5 of introduction:

Theorem 5. Let B be the k-subalgebra of D(V ) generated by S(V ∗)W and S(V )W .

Then, B = D(V )W .

Proof. Recall that O(V ) = S(V ∗) and that ℓ = dimk V . Let C = O(V )W \ {0}.
By the definition of differential operators, C is an ad-nilpotent set of elements
of D(V ) and hence of the subalgebras B and D(V )W . Thus, by [KL, Theorem
4.9], C is a (left and right) Ore set in each of these rings. Let F denote the
field of fractions of O(V )W and K the field of fractions of O(V ). Since O(V )
is a finite O(V )W -module, O(V )C = K and hence, by [MR, Theorem 15.5.5],
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D(V )C = D(K). Similarly, D(O(V )W )C = D(F ). Next, pick ℓ algebraically in-
dependent elements ui ∈ O(V )W ⊂ F and set ∂i = ∂/∂ui, as before. Then
D(F ) = F 〈∂1, . . . , ∂ℓ〉 ⊂ D(K) = K〈∂1, . . . , ∂ℓ〉. We also have an homomorphism
D(V )W → D(O(V )W ), given by restriction of differential operators. Since D(V )W

is simple (see, for example, [Mo, Theorem 2.15, p.32] or [Wa, Lemma 1.2]) this map
must be an injection. Thus, there is a chain of inclusions

F = O(V )WC ⊂ BC ⊆ D(V )WC ⊆ D(O(V )W )C = D(F ) ⊆ D(V )C = D(K).

Notice that the various filtrations on these rings are compatible. To see this, filter
D(K) by degree of differential operator. Then the original filtrations on D(V ) and
hence on B are just the restrictions of that on D(K); in particular, Bn = B∩D(K)n.
Similarly, for example by the choice of {∂j}, D(F )n = D(F ) ∩ D(K)n. Hence, the
filtrations on BC induced from D(F ) and B do indeed coincide. Now, consider
gr(BC). Since B ⊃ S(V )W , certainly gr(BC) ⊇ F ⊗k S(V )W . Since F ⊗k S(V ) is a
finitely generated F ⊗k S(V )W -module, Kdim(F ⊗k S(V )W ) = ℓ. Thus, by Lemma
8 and the remark thereafter, BC = D(F ). Therefore, BC = D(V )WC and so B and
D(V )W have the same quotient division ring. By Lemma 8, both B and D(V )W are
Noetherian domains and D(V )W is finitely generated as a left or right B-module.
Thus, as D(V )W is a simple ring, all the hypotheses of Lemma 9 are satisfied and
B = D(V )W . �

Wallach’s version of Theorem 5 for Weyl groups with no factors of type En is
obtained as a corollary of a theorem about Poisson algebras and we end the paper
by discussing the connections between his results and the techniques of this paper.
Let { , } denote the usual Poisson bracket on S(V ∗) ⊗ S(V ) and let W ⊂ GL(V )
be a finite group. Following [Wa], the pair (V, W ) is called good if, whenever C is a
subalgebra of S(V ∗)⊗k S(V ) that contains S(V ∗)W ⊗ S(V )W and is closed under

{ , }, then C ⊇ (S(V ∗)⊗ S(V ))
W
. In [Wa], Wallach proves that (V,W ) is good in

the case when W is a Weyl group with no factors of type Em and he shows that,
whenever (V,W ) is good, the conclusion of Theorem 5 will also hold.

This raises the natural question of whether (V,W ) is good for any finite group
W . However, it is easy to construct counterexamples, even in the case where W
is generated by pseudo-reflections. For example, let V be 1-dimensional complex
vector space and W = 〈σ〉 ∼= Z3 acting by σ(v) = ωv, where ω is a primitive
third root of unity. We may identify S(V ∗)⊗ S(V ) = S(V ∗ × V ) = C[x, ξ], which
we grade by total degree in x and ξ. It is easy to check that R = (S(V ∗) ⊗
S(V ))W = C[x3, xξ, ξ3]. Let R′ be the graded subalgebra C +

⊕

n≥3 Rn of R.

Since {Rn, Rm} ⊆ Rn+m−2, certainly R′ is closed under the Poisson bracket. But,
xξ ∈ R \R′ and so the pair (V,W ) is not good.

One of the key points in the proof of Theorem 5 is the fact that D(V )W is simple.
The analogous result for Poisson algebras is false. To see this, let W ⊂ GL(V ) be
any finite group such that V W = {0}. Give S(V ∗)⊗ S(V ) the natural grading by

total degree. Then, C = (S(V ∗)⊗ S(V ))
W

will contain no homogeneous element
of degree one. Hence, the augmentation ideal

⊕

n≥1 Cn =
⊕

n≥2 Cn will be a non-
trivial Poisson ideal. It is therefore unlikely that the techniques of this paper could
be used to prove that (V,W ) is good when W is a Weyl group.
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