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Abstract. Let g be a complex, semisimple Lie algebra, with an involutive
automorphism ϑ and set k = Ker(ϑ − I), p = Ker(ϑ + I). We consider the

differential operators, D(p)K , on p that are invariant under the action of the
adjoint group K of k. Write τ : k → Der(p) for the differential of this ac-
tion. Then we prove, for the class of symmetric pairs (g, k) considered by
Sekiguchi [32], that

˘
d ∈ D(p) : d

`
O(p)K

´
= 0

¯
= D(p)τ(k).

One significance of this result is that it easily implies the following result
of Sekiguchi: Let (g0, k0) be a real form of one of these symmetric pairs (g, k),
and suppose that T is a K0-invariant eigendistribution on p0 that is supported
on the singular set. Then, T = 0. In the diagonal case (g, k) = (g′⊕ g′, g′) this
is a well-known result due to Harish-Chandra.
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1. Introduction

To begin with, assume that G is a connected, complex reductive algebraic group
with Lie algebra g and fix a Cartan subalgebra h of g with Weyl group W . Thus, G
acts on g via the adjoint action and this induces an action of G on the ring of regular
functions, O(g) ∼= S(g∗), and hence on D(g), the ring of differential operators with
coefficients in O(g). Let τ : g → Der(g) ⊂ D(g) denote the differential of the
adjoint action of G on g. In [8] Harish-Chandra defines a ring homomorphism
δ : D(g)G → D(h)W , with kernel I(g) =

{
d ∈ D(g)G : d(f) = 0 for all f ∈ O(g)G

}
.

The main results of [18, 19] show that δ is surjective, with kernel

(1.1) I(g) = D(g)τ(g) ∩ D(g)G.

One significance of these results is that they easily imply two fundamental theorems
of Harish-Chandra: Let g0 be a real form of g, with adjoint group G0 and write g′0
for the regular semisimple elements of g0. Then:

(1.2) If T is G0-invariant distribution on g0, then I(g) · T = 0;
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(1.3) The only G0-invariant eigendistribution supported on g0 r g′0 is T = 0.

In [32], Sekiguchi generalized (1.3) to a class of “nice” symmetric spaces and it is
therefore natural to ask whether the results from [18, 19] can also be generalized to
these spaces. Despite the fact that there is no analogue of Harish-Chandra’s map
δ, these generalizations do exist, and the purpose of this paper is to describe them.
Before we can state the results formally, we need some notation.

Fix a non-degenerate, G-invariant symmetric bilinear form κ on the reductive Lie
algebra g such that κ is the Killing form on the semisimple Lie algebra [g, g]. Fix an
involutive automorphism ϑ of g preserving κ and set k = Ker(ϑ−I), p = Ker(ϑ+I).
Then, g = k⊕p and the pair (g, k), or (g, ϑ), is called a symmetric pair. Recall that k
and p are orthogonal with respect to κ and that k is a reductive Lie subalgebra of g.
Denote by K the connected reductive subgroup of G with Lie algebra k. The group
K acts on p via the adjoint action and the differential of this action induces a Lie
algebra homomorphism τ : k → DerS(p∗) defined by (τ(a).f)(v) = d

dt |t=0
f(e−ta.v),

for a ∈ k, f ∈ p∗ and v ∈ p.
Let D(p) denote the algebra of differential operators on p with coefficients in

O(p) = S(p∗). Notice that K has an induced action on S(p), O(p) and D(p). Set

K(p) =
{
d ∈ D(p) : d(f) = 0 for all f ∈ O(p)K

}
and I(p) = K(p)∩D(p)K . Clearly, K(p) is a K-stable left ideal of D(p) containing
D(p)τ(k).

Consider the special case when one is in the diagonal case where G = G1 × G1

with ϑ(x, y) = (y, x) for some reductive group G1; thus (g, k) = (g1 ⊕ g1, g1). Then
K = G1 with its action adjoint action on p = g1, and (1.1) can be rephrased as
asserting that K(p) = D(p)τ(k) holds in the diagonal case. The first main aim of
this paper is to generalize this result to a class of symmetric pairs introduced by
J. Sekiguchi [32]. If g is semisimple, these are defined as follows: Let Σ be the
restricted root system associated to a Cartan subspace a ⊂ p. Then, (g, k) is nice
if dim gα + dim g2α 6 2 for all α ∈ Σ. If g is reductive, then (g, k) is nice provided
that ([g, g], k∩ [g, g]) is nice. The reader is referred to Section 2 and [32] for further
details and for a characterization of nice pairs. However, observe that the diagonal
case is obviously nice.

Theorem A. (See Theorem 4.5.) Let (g, k) a nice symmetric pair. Then K(p) =
D(p)τ(k) and, therefore, I(p) = (D(p)τ(k))K .

The key step in the proof of Theorem A is Theorem 3.8, which forms a mild
generalization of [19, Theorem 5.2]. This, in turn, is an interpretation in terms of D-
modules of the theorem of Harish-Chandra that asserts that non-zero G0-invariant
eigendistributions on g0 cannot have nilpotent support. We take this opportunity
to provide a complete algebraic proof of (our slight generalization of) this result.
The reason for restricting ourselves to nice symmetric pairs in Theorem A is that
Theorem 3.8 does not hold in general; indeed in §6 we show that it fails when (g, k)
has rank one and dim p = 2r > 4.

As an immediate corollary of Theorem A one obtains a generalization of a fun-
damental result of Harish-Chandra (see [9, Theorem 4] or (1.2)) from the diagonal
case to nice symmetric pairs:

Corollary B. (See Corollary 4.6.) Assume that the symmetric pair (g, k) is nice
and is the complexification of a real symmetric pair (g0, k0). Write K0 for the
connected Lie group satisfying Lie(K0) = k0. Let U ⊂ p0 be a K0-stable open subset
and T be a K0-invariant distribution on U . Then I(p) · T = 0.

With a little extra work we are able to generalize a second result a Harish-
Chandra (see [8, Theorem 3] or (1.3)) to nice symmetric pairs:
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Corollary C. (See Corollary 5.10.) Assume that the pair (g, k) is nice and is the
complexification of a real symmetric pair (g0, k0). Let U be an open subset of p0

and write U ′ for the set of regular semisimple elements in U . Let T be a locally
invariant eigendistribution on U such that T is supported on U rU ′. Then T = 0.

Actually, this result was proved by Sekiguchi in [32] where he was even able
to prove it for invariant eigenhyperfunctions T . Our (algebraic) proof of Corol-
lary C does not permit us to prove this stronger result, but it is conjectured [32,
Conjecture 7.1] that such a hyperfunction is already a distribution.

The proof that (1.1) implies (1.3) in [19] uses the fact that Harish-Chandra’s map
δ is surjective. Since there is no analogue of that map for general symmetric pairs,
more work is needed to deduce Corollary C from Theorem A. The required extra
facts are provided by the following result, in which the Gelfand-Kirillov dimension
of a module M is denoted by GKdimM . One should note that, in the diagonal
case, Im δ = D(h)W is a fixed ring of the Weyl algebra by a finite group and so the
conclusion of this theorem is well-known.

Theorem D. (See Theorems 5.7 and 5.8.) Let (g, k) be a nice symmetric pair and
set R(p) = D(p)K

/
I(p). Let a be a Cartan subspace of p. Then:

(1) R(p) is a simple ring with GKdimR(p) = 2 dim a;
(2) GKdimM > dim a for every non-zero finitely generated R(p)-module M .

The importance of the algebra R(p) also lies in the fact that it identifies with
the algebra of radial components of K-invariant differential operators on p. Indeed,
let W = NK(a)/ZK(a) be the Weyl group associated to a. By composing the
restriction to K-invariant functions with the Chevalley isomorphism one gets a
homomorphism, the radial component map,

rad : D(p)K −→ D(p//K) ∼−−→D(a/W )

such that Ker rad = I(p). Thus R(p) ∼= Im rad although, except in some trivial
cases, this does not equal D(a/W ). Once again, Theorem D does not hold for
general symmetric pairs; indeed, in Section 6, we give an example where R(p) has
non-zero finite dimensional modules.

The examples mentioned above are consequences of a detailed study of invariant
differential operators of rank one symmetric pairs given in Section 6. One further
consequence of this study is that there are some feasible ways in which one may
be able to generalize the results of this paper to arbitrary symmetric pairs, and to
more general representations of K. The precise conjectures are given in Section 7.

2. Orbit theory

We continue with the notation of §1. We collect here various definitions and
results needed in the subsequent sections.

If x, y ∈ g and g ∈ G, set ad(x).y = [x, y] and g.x = Ad(g).x. If x ∈ g and
V ⊂ g, let V x denote the subset of elements of V which commute with x. Recall
that x is called semisimple if ad(x) is semisimple and is called nilpotent if x ∈ [g, g]
and ad(x) is nilpotent. Following [32, 1.11] a nilpotent element 0 6= x ∈ p is
called p-distinguished, or simply distinguished, if px does not contain any non-zero
semisimple element.

Let X be an affine algebraic K-variety with structural sheaf OX . The algebraic
quotient SpecO(X)K is denoted by X//K and $X : X � X//K is the associated
surjective morphism. Recall that the algebraic variety X//K identifies with the set
of closed orbits in X. When X = p, and if there is no possible ambiguity, we will
write $p = $. Define the nilpotent cone of p by N(p) = $−1($(0)); recall that
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N(p) is the set of nilpotent elements in p and is a finite union of K-orbits [16,
Propositions 10 & 11, Theorem 2].

Recall [16, 37] the following properties of the action (K : p). It is stable (there
exists a dense open subset of closed orbits) and visible (each fibre of $ is a finite
union of K-orbits). Let ` be the rank of the symmetric pair (g, k); that is, ` = dim a
where a ⊂ p is a Cartan subspace. If W = NK(a)/ZK(a) is the associated Weyl
group, the Chevalley restriction theorem gives an isomorphism S(p∗)K ∼−→S(a∗)W ,
and these algebras are polynomial rings in ` indeterminates. Let µ : p× p → k∗ be
the moment map, µ(x, y).z = κ([x, y], z). Define the commuting variety of p by

C(p) = µ−1(0) = {(x, y) ∈ p× p : [x, y] = 0} .

Since the action (K : p) is stable, it follows from [28, Proposition 3.4] and [27, (2.3),
(2.5), (3.1)] that dim C(p) = `+ dim p.

Let b ∈ p be semisimple. Then [16, I.6] the decomposition gb = kb ⊕ pb defines a
symmetric pair (of the same rank); furthermore, N(pb) = N(p) ∩ pb and a ∈ pb is
semisimple in gb if and only if a is semisimple in g. Suppose that g is semisimple
and set g′ = [gb, gb], p′ = p ∩ g′, k′ = k ∩ g′. Then (g′, k′) is a symmetric pair with
g′ semisimple. Such a pair is called a sub-symmetric pair of (g, k) [32].

Proposition 2.1. (1) Set R = K.(a× a). Then, the inclusion R ⊂ C(p) yields the
identification R//K = C(p)//K.

(2) There exists an isomorphism p//K ∼=
(
C(p)∩ (p×N(p))

)
//K, induced by the

map a 7→ (a, 0) from p to C(p). Under this isomorphism,
(
C(p)∩(N(p)×N(p))

)
//K

identifies with {$(0)}.

Proof. (1) Since the proof is essentially contained in [27, Proof of Theorem 3.8] we
will only sketch it. Let (x, y) ∈ C(p) and x = xs + xn, y = ys + yn be the Jordan
decompositions of x and y. Then, a standard argument shows that (xs, ys) lies in
the closure of K.(x, y). Since xs ∈ p is semisimple, there exists k ∈ K such that
a = k.xs ∈ a ([16, Theorem 1]). Thus [a, k.ys] = 0 and k.ys ∈ pa is semisimple.
Since a ⊂ pa is a Cartan subspace of p [16, Remark 11], g.(k.ys) ∈ a for some
g ∈ Ka = StabK(a). Now, if K.(x, y) is closed we obtain that K.(a, gk.ys) =
K.(xs, ys) = K.(x, y), which implies that R//K = C(p)//K.

(2) Let K.(x, y) ∈
(
C(p)∩(p×N(p))

)
//K be a closed orbit with y ∈ N(p). By (1),

y is also semisimple and so y = 0. Hence, the map ı : p//K →
(
C(p)∩(p×N(p))

)
//K,

defined by K.x 7→ K.(x, 0), is a bijection. It is easily seen that its inverse is induced
by the restriction C(p) � p of the projection η1 : p×p � p onto the first component.
Thus ı is an isomorphism. The identification of

(
C(p) ∩ (N(p) ×N(p))

)
//K with

{$(0)} follows easily. �

Lemma 2.2. Let F and T be two closed K-stable subsets of p such that F is a
finite union of K-orbits. Let X ⊂ C(p)∩(F×T ) be closed, irreducible and K-stable.
Then:

(i) dimX ≤ dim p.
(ii) Let η1 : p × p � p be the projection onto the first component. Assume

that T ⊂ N(p) and that η1(X) = K.u, where u ∈ η1(X) is nilpotent but not
distinguished. Then, dimX < dim p.

Proof. (i) Set Y = η1(X) and consider η = η1|X : X → Y . Let U be a dense open
subset of Y such that

∀ v ∈ U, dimX − dimY = dim η−1(v).

Since η is K-equivariant, Y is a K-stable closed irreducible subset of F . Therefore,
Y = K.u for some u ∈ U . Let v ∈ U ∩ K.u. Identify the variety C(p) ∩ η−1

1 (v)
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with pv through the second projection; then, η−1(v) = X ∩C(p)∩η−1
1 (v) is a closed

subset of pv. Recall [16, Proposition 5] that dim pv−dim kv = dim p−dim k. Hence,

(?) dimX = dimK.v + dim η−1(v) ≤ dim k− dim kv + dim pv = dim p.

(ii) By hypothesis, the element v in the proof of (i) is not distinguished and
so there exists a non-zero, semisimple element s ∈ pv. Since T ⊂ N(p), one has
(v, s) ∈ (C(p) ∩ η−1

1 (v)) r η−1(v). Thus dim η−1(v) < dim pv and hence, as in (?),
it follows that dimX < dim p. �

Let 0 6= x ∈ N(p). Then [16] there exist y ∈ p, z ∈ k such that [x, y] = z,
[z, x] = 2x, [z, y] = −2y. The triple (z, x, y) is called a normal S-triple containing
x. Set s = Cx⊕ Cy ⊕ Cz; thus s ∼= sl(2,C). The s-module g then decomposes as
g = ⊕s

j=1E(λj), where E(λj) is a simple s-module of highest weight λj ∈ N. We
can set py = ⊕m

i=1Cvi with ad(z).vi = −λivi, and we have:

(2.1) p = [x, k] ⊕ py

Set S = x+py; it is well known ([31, Lemma 1.21], [33, III.5.1, III.7.4]) that S is
a transversal slice, in p, to the orbit K.x. Let ψ : K× py → p be the K-equivariant
morphism given by ψ((g, v)) = g.(x+v). Thus ψ is smooth on K×py (and therefore
is an open morphism).

The following result is also well known in the analytic case, see [36, Chapter 5,
Lemma 22]. For completeness, we include a proof in the algebraic case.

Proposition 2.3. There exists an affine open neighborhood U of 0 in py such that:
(1) ψ is smooth on Y = K×U , and Ω = ψ(Y ) = K.(x+U) is a K-stable open

subset of p;
(2) Ω ∩K.x = K.x and K.x ∩ {x+ U} = {x}.

Proof. Let T = S ×p K.x be the (schematic) intersection of S and K.x. From [6,
17.13.8] and (2.1), it follows that this intersection is transverse of dimension 0 at the
point x. Therefore [ibid], there exists an affine open subset 0 ∈ U0 ⊂ py such that
T is transverse on (x + U0) ∩K.x. In particular dim ((x+ U0) ∩K.x) = 0, hence
(x+U0)∩K.x is a finite set, say {x = x0, x1, . . . , xt}. For each i = 1, . . . , t, pick an
affine open subset 0 ∈ U(xi) ⊂ py such that xi /∈ x+U(xi). Set U1 = U0 ∩U(x1)∩
· · ·∩U(xt). Then, U1 is an affine open neighborhood of 0 and (x+U1)∩K.x = {x}.

Since K.x is open in its closure, we can find a K-stable open subset V ⊂ p such
that V ∩K.x = K.x. Define an open neighborhood of 0 in py by

U2 = η2ψ
−1(V ) = {s ∈ py : ∃ g ∈ K, g.(x+ s) ∈ V }

where η2 : K × py → py is the second projection. Let v ∈ U2; since ψ is K-
equivariant, we have ψ(K × {v}) ⊂ V . Hence, K × U2 ⊂ ψ−1(V ). Note that, if
0 ∈ U ⊂ U2 is any open subset, ψ(K × U) is open and ψ(K × U) ∩K.x = K.x.

Now, let U1 be as in the first paragraph and choose an affine open subset 0 ∈
U ⊂ U1 ∩ U2. Then U satisfies the required properties. �

Assume that g is semisimple. Let (z, x, y) be a normal S-triple containing x ∈
N(p). With the previous notation, we set:

(2.2) λp(x) =
m∑
j=1

(λj + 2)− dim p

Remark 2.4. The integer λp(x) is denoted by δ̃p(x) in [32, 6.1]. Let us illustrate
this number in the special case when ` = 1 and x ∈ N(p) is a regular nilpotent
element; that is, dimK.x = dim p− 1. Then x is distinguished [32, (1.9)]. However
as dimK.x = dim p − 1, [16, Proposition 5] implies that m = 1 and, since λ1 = 2,
λp(x) = 4− dim p. Thus λp(x) > 0 if, and only if, dim p < 4.
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We will be interested in symmetric pairs (g, k) such that, for all sub-symmetric
pairs (g′, k′) of (g, k), one has λp′(x) > 0 for each p′-distinguished nilpotent element
x ∈ p′. The following theorem, proved in [32, §6], provides examples of such
symmetric pairs.

Theorem 2.5. (J. Sekiguchi) Assume that g is semisimple and let (g, k) be a sym-
metric pair. Let Σ be the restricted root system associated to a Cartan subspace
a ⊂ p. Consider the following condition:

(†) dim gα + dim g2α ≤ 2 for all α ∈ Σ.

(1) The pair (g, k) satisfies (†) if and only if each of its irreducible factors is iso-
morphic to one of the following pairs:

(O) (g1 ⊕ g1, g1), g1 simple Lie algebra (the diagonal case)
(I) (sl(m,C), so(m,C))

(II) (sl(2m,C), sl(m,C)⊕ sl(m,C)⊕ C)
(III) (sp(m,C), sl(m,C)⊕ C)
(IV) (so(2m+ k,C), so(m+ k,C)⊕ so(m,C)), k = 0, 1, 2
(V) (e6, sp(4,C))

(VI) (e6, sl(6,C)⊕ sl(2,C))
(VII) (e7, sl(8,C))

(VIII) (e8, so(16,C))
(IX) (f4, sp(3,C)⊕ sl(2,C))
(X) (g2, sl(2,C)⊕ sl(2,C))

(2) Assume that (g, k) satisfies (†) and let (g′, k′) be a sub-symmetric pair of (g, k).
Then, (g′, k′) satisfies (†) and λp′(x) > 0 for each p′-distinguished nilpotent element
x ∈ p′.

Definition 2.6. The symmetric pair (g, k) is said to be nice if the semisimple,
sub-symmetric pair ([g, g], k ∩ [g, g]) satisfies condition (†) of Theorem 2.5.

Remark 2.7. Let (g, k) be a symmetric pair with g semisimple. Then, (g, k) is of
maximal rank (that is, ` = rk g) if and only if each irreducible factor of (g, k) is of
the following type

(I), (III), (IV) (k = 0, 1), (V), (VII), (VIII), (IX), (X)

in the notation of Theorem 2.5.

3. Equivariant D-modules with nilpotent support

Let X be a smooth algebraic variety with structural sheaf OX and cotangent
bundle T ∗X. Denote by ΘX the OX -module of vector fields and by DX the sheaf
of differential operators on X. The notation related to algebraic D-modules will
be as in [3] or [13]. In particular, if M is a DX -module we denote its characteristic
variety by ChM ⊂ T ∗X and its support by SuppM ⊂ X.

Assume that a reductive algebraic group K acts rationally on X and denote by
τX : k → ΘX the differential of the K-action on X. One can develop a theory of
K-equivariant DX -modules; for these notions, and related definitions, we will refer
to [3], [34, §6] and [35]. We simply recall here the definition of a K-equivariant
coherent DX -module in the case where X is affine: If M is a finitely generated
D(X)-module, then M is said to be a K-equivariant DX-module if it satisfies the
following conditions:

(i) M is endowed with a compatible action of K; that is, K acts rationally on
M and g.(dv) = (g.d)(g.v) for all g ∈ K, d ∈ D(X) and v ∈M ;

(ii) d
dt |t=0

(exp(ta).v) = τ(a)v for all a ∈ k, v ∈M .



INVARIANT DIFFERENTIAL OPERATORS 7

Let g be a reductive Lie algebra and (g, k) be a symmetric pair. Recall that theK-
invariant form κ is non-degenerate on p. Let n = dim p > 0 and fix a κ-orthonormal
basis of p. Let {xi ∈ p∗, ∂xi ∈ Θ(p)}16i6n be the associated coordinate system.
Let e ∈ S2(p∗)K be defined by e(x) = κ(x, x) and write ∂(e) ∈ S2(p)K for the
corresponding differential operator with constant coefficients. Thus, in coordinates,
e =

∑n
i=1 x

2
i and ∂(e) =

∑n
i=1 ∂

2
xi

. Let E =
∑n
i=1 xi∂xi be the Euler vector field

and set
f = − 1

4∂(e), h = E + n
2 .

Then u = Ce⊕ Cf ⊕ Ch is a Lie algebra isomorphic to sl(2,C). By construction,
u ⊂ D(p)K .

Let (z, x, y) be a normal S-triple containing the nilpotent element 0 6= x ∈ N(p)
and adopt the notation of §2. If py = ⊕m

i=1Cvi with ad(z).vi = −λivi, let {yi =
v∗i , ∂yi}16i6m denote the associated coordinate system. Let U be the affine open
neighborhood of 0 in py found in Proposition 2.3 and ψ# : Op → OY be the
comorphism of the dominant K-equivariant morphism ψ : Y = K × U → p. Since
ψ is smooth, we have a locally split exact sequence of OY -modules

(3.1) 0 → HomOY
(Ω1

Y/p,OY ) → ΘY → OY ⊗Op Θp → 0

where Ω1
Y/p is the OY -module of relative differentials.

Let θ ∈ Θ(p) and identify θ with 1⊗ θ ∈ O(Y )⊗O(p) Θ(p). Then, by (3.1), there
exists a lift ψ#(θ) ∈ Θ(Y ) of θ; such a lift satisfies

(3.2) ψ#(θ).ψ#(f) = ψ#(θ.f) or, equivalently, dbψ.ψ#(θ)b = θψ(b)

where f ∈ O(p), b ∈ Y and dbψ denotes the differential of ψ. It is easily checked that
K acts on each term of (3.1), and that (3.1) is an exact sequence of K-equivariant
OY -modules. It follows that we have a surjective morphism ΘK

Y � (OY ⊗Op Θp)K .
In particular, if θ ∈ Θ(p)K there exists a lift ψ#(θ) ∈ Θ(Y )K .

Write Ra for the left invariant vector field on K defined by a ∈ k; thus, for
all f ∈ O(K) and g ∈ K one has (Ra.f)(g) = d

dt |t=0
f(geta). The enveloping

algebra U(k) then identifies with C〈Ra ; a ∈ k〉. Thus, since K and U are affine,
we obtain that: D(K) = O(K) ⊗C U(k), D(U) = C〈O(U) ; ∂yi , 1 6 i 6 m〉, and
D(Y ) = D(K) � D(U). The group K acts on D(Y ) via left translation on D(K),
and so

D(Y )K = D(K)K �D(U) = U(k) �D(U) = (C �D(U)) ⊕ (U+(k) �D(U))

where U+(k) = kU(k). Therefore, if θ ∈ Θ(p)K , we can write

(3.3) ψ#(θ) = 1 � ∆(θ) +
∑
jRaj � ϕj

for some aj ∈ k and ϕj ∈ O(U). We call ∆(θ) ∈ Θ(U) a radial component of θ.

Lemma 3.1. The vector field
∑m
j=1(

1
2λj +1)yj∂yj + 1

2Rz is an invariant lift of the
Euler vector field E, and ∆(E) =

∑m
j=1(

1
2λj + 1)yj∂yj

is a radial component of E.

Proof. See [7, Lemma 30] or [36, Lemma 24, p. 93]. �

If M is a coherent Dp-module, denote by

M = DY→p⊗Lψ−1Dp
ψ−1M

its inverse image in the D-module sense; thus M = ψ!M [dimY − dim p] (see, for
example, [3, VI.4.2]). Since ψ is smooth the DY -module M is, as an OY -module,
the usual inverse image ψ∗M = OY ⊗Op M [13, Proposition II.4.2(i)].

Lemma 3.2. Assume that M is a K-equivariant coherent Dp-module such that
SuppM = K.x, for some 0 6= x ∈ N(p). Then:
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(1) The group K acts on M by g.(b⊗Op v) = g.b⊗Op g.v, M is a K-equivariant
DY -module, and the canonical map M →M, v 7→ 1⊗Opv, is K-equivariant.

(2) Suppose that M = Dp.v. Then, M = DY .(1⊗Op v) 6= 0.
(3) There exists k ∈ N such that M∼= (OK �Hm

[0](OU ))⊕k.
(4) MK ∼= C �Hm

[0](OU )⊕k as a (U(k) �DU )-module.
(5) Hm

[0](OU ) = ⊕α∈NmC∂α, where ∂α =
∏m
i=1 ∂

αi
yi

.

Proof. (1), (2). Recall first [34] that if φ is a K-equivariant morphism between
K-varieties, then φ! and φ+ are compatible with the K-equivariance of D-modules.
Thus M is a K-equivariant DY -module. If M = Dp.v, then SuppO(p).v = K.x and
therefore ψ(Y )∩SuppO(p).v = K.x. Also, since ψ is flat, if Imψ∩SuppO(p).v 6= ∅
then 1⊗Op v 6= 0.

Let θ ∈ Θ(p). By (3.2), there exists ψ#(θ) ∈ Θ(Y ) such that ψ#(θ).ψ#(ϕ) =
ψ#(θ.ϕ) for all ϕ ∈ O(p). Then, for all f ∈ O(Y ),

ψ#(θ).(f ⊗ v) = ψ#(θ).f ⊗ v + f
∑
iψ

#(θ).ψ#(xi)⊗ ∂xi .v

= ψ#(θ).f ⊗ v +
∑
ifψ

#(θ.xi)⊗ ∂xi .v

= ψ#(θ).f ⊗ v + f ⊗
(∑

iθ.xi∂xi

)
.v

= ψ#(θ).f ⊗ v + f ⊗ θ.v.

In particular, we have:

(3.4) ψ#(θ).(1⊗ v) = 1⊗ θ.v

It follows by an easy induction that M = DY .(1⊗Op v).
(3), (4), (5). We first compute SuppM. Since M = OY ⊗Op M as OY -modules,

SuppM ⊂ ψ−1(SuppM). Let a = (g, u) ∈ SuppM; then, Proposition 2.3(2)
implies that ψ(a) = g.(x+u) ∈ SuppM∩ψ(Y ) = K.x∩Ω = K.x. Thus x+u ∈ K.x,
forcing u = 0 by Proposition 2.3(2), again. Therefore ∅ 6= SuppM⊂ Φ = K×{0}.
Since M is K-equivariant it follows that SuppM = Φ.

Now consider the K-equivariant closed embedding  : Φ ↪→ Y . Since SuppM =
Φ, Kashiwara’s equivalence [3, VI.7.11] yields M = +

!M. Since the DΦ-module
!M is K-equivariant and Φ ∼= K, !M is a finite direct sum of copies of OΦ [3,
Proof of VII.12.11]. Setting !M = (OΦ)⊕k we obtain

M = (+OΦ)⊕k = Hm
[Φ](OY )⊕k = (OK �Hm

[0](OU ))⊕k

by [3, VI §7] or [13, I §4.2]. Observe that K acts on M via left translation on
OK . Thus MK = C � Hm

[0](OU )⊕k. To finish the proof, recall that Hm
[0](OU ) ∼=

D(U)
/(∑m

i=1D(U)yi
)
; see, for example, [13, Corollary I.5.2]. �

Lemma 3.3. Let M be as in Lemma 3.2. Let θ ∈ Θ(p)K and v ∈ MK . Then
1⊗ v ∈MK and

ψ#(θ).(1⊗ v) = 1⊗ θ.v = (1 � ∆(θ)).(1⊗ v)

where ψ#(θ) = 1 � ∆(θ) +
∑
jRaj � ϕj is defined as in (3.3).

Proof. By (3.4), we know that ψ#(θ).(1 ⊗ v) = 1 ⊗ θ.v. On the other hand, since
1⊗ v ∈MK = C �Hm

[0](OU )⊕k by Lemma 3.2, we can write 1⊗ v = 1 � ρ(v) with
ρ(v) ∈ Hm

[0](OU )⊕k. Then, (Raj � ϕj).(1 � ρ(v)) = 0 and so

ψ#(θ).(1⊗ v) = (1 � ∆(θ)).(1 � ρ(v)) +
∑
j(Raj � ϕj).(1 � ρ(v))

= (1 � ∆(θ)).(1 � ρ(v)) = 1 � ∆(θ).ρ(v).

Hence the lemma. �
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Lemma 3.4. Let M be as in Lemma 3.2. Assume that M = D(p).s with s ∈MK

such that E.s = µs, for some µ ∈ C. Then:
(1) There exists α ∈ Nm such that µ = − 1

2 (λp(x) + dim p)− 1
2

∑m
i=1(λi + 2)αi.

(2) Suppose that µ = − 1
2 (λp(x) + dim p). Then:

(i) M∼= OK �Hm
[0](OU );

(ii) if v ∈MK is an eigenvector of E for µ, there exists c ∈ C such that

SuppD(p).(v − cs) ( SuppM.

Proof. Let (z, x, y) be a normal S-triple containing x and adopt the notation of
Lemma 3.2. Set H = Hm

[0](OU ). If v ∈MK we write, as in the proof of Lemma 3.3,
v∗ = 1 ⊗Op v = 1 � ρ(v) with ρ(v) = ⊕ki=1ρi(v) ∈ H⊕k. Recall from Lemma 3.2
that M = DY .s∗ = (OK �H)⊕k; this implies in particular that ρi(s) 6= 0 for all i.

(1) The element s∗ = 1 ⊗ s is a non-zero element of MK . Therefore, by
Lemma 3.3, µs∗ = 1 ⊗ E.s = µs∗ = (1 � ∆(E)).s∗ and so ∆(E).ρ(s) = µρ(s). Thus
each ρi(s) ∈ H is an eigenvector of ∆(E) with eigenvalue µ. Now, by Lemma 3.1
and Lemma 3.2,

∆(E).∂β = −
(∑

i(
1
2λi + 1)(βi + 1)

)
∂β

for all ∂β =
∏
∂βi
yi
∈ H. Therefore the eigenvalues of ∆(E) on H are of the form

−
∑m
i=1(

1
2λi + 1)(βi + 1) = − 1

2 (λp(x) + n)− 1
2

∑m
i=1(λi + 2)βi.

The existence of α = (αi)i follows.
(2) Notice that the proof of (1) shows that µ = − 1

2 (λp(x) + n) if and only if
αi = 0 for all i; that is, if and only if ρ(s) ∈ (C∗)⊕k ⊂ H⊕k.

(i) Let {fj}j∈N be a basis of the C-vector spaceO(K). Now, D(K).1 = O(K).1 =
O(K). Thus, for all u ∈ M = (O(K) � H)⊕k there exist some Qj ∈ D(U) such
that u =

(∑
j fj � Qj

)
.(1 � ρ(s)). In particular, if u = ⊕ki=1(fi � 1), we obtain

fi�1 =
∑
j fj �Qj .ρi(s) for all i. This implies that Q1.ρ1(s) = 1 and Qj .ρ1(s) = 0

for all j > 2. But, Qj .ρ1(s) = ρ1(s)Qj .1 and ρ1(s) 6= 0. Hence, Qj .1 = 0 for all
j > 2 and therefore Qj .ρi(s) = ρi(s)Qj .1 = 0 for all i. Now, if k > 2, we get that
fi � 1 = f1 �Q1.ρi(s) for i ∈ {1, . . . , k}, a contradiction.

(ii) By the computation made in (1), ∆(E).ρ(v) = µρ(v) yields ρ(v) ∈ C =
Cρ(s) ⊂ H. Hence, ρ(v) = cρ(s) for some c ∈ C and v∗−cs∗ = 1⊗(v−cs) = 0. Since
ψ is flat, it follows that Imψ ∩SuppO(p).(v− cs) = ∅. Since, SuppD(p).(v− cs) =
SuppO(p).(v− cs) ⊂ K.x and Imψ ∩K.x = K.x, this implies that SuppD(p).(v−
cs) ( SuppM = K.x. �

Remark. Suppose that we are in the diagonal case (g, k) = (g1⊕g1, g1), where g1 is
the Lie algebra of a semisimple group G1. Then, p ∼= g1 and a module M satisfying
the hypotheses of Lemma 3.2 can be considered as a G1-equivariant coherent Dg1-
module for which SuppM = G1.x, and O = G1.x ⊂ g1 is a nilpotent orbit. As in
[14, §7], set:

λO =
1
2

dimO− dim g1 = −1
2
(dim g1 + dim gx1)

It is easily seen that λp(x) = dim gx1 and Lemma 3.4 implies that, if v is a G1-
invariant generator of M and E.s = µs, then µ 6 λO. Moreover, if µ = λO, then
the eigenspace for λO has dimension one. See [38, Lemma 6.2] for a variant of this
result.

In the sequel we will identify the cotangent bundle T ∗p = p × p∗ with p × p
through the isomorphism p ∼= p∗ induced by the form κ. We endow D(p) with the
filtration {Dk(p)}k by order of differential operators, and use the induced filtration
on its subalgebras and factors. The associated graded algebra gr(D(p)) of D(p)
identifies with O(T ∗p). We denote by σ(a) ∈ O(T ∗p) the principal symbol of the
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vector field τ(a), a ∈ k. Thus, σ(a)(b, c) = κ(a, [c, b]) for all (b, c) ∈ p × p. Let a
be the ideal of O(T ∗p) generated by {σ(a), a ∈ k}, write q for the radical ideal
defining C(p) and set b = gr(D(p)τ(k)). Write N = D(p)/D(p)τ(k). One obviously
has a ⊂ b, with

√
a = q, and so ChN ⊂ C(p). Similarly, gr(D(p)K) identifies with

O(T ∗p)K = O((T ∗p)//K) and for any finitely generated D(p)K-module Q one sets
ChQ = V(ann gr(Q)), which is the variety of zeroes, in (T ∗p)//K, of the annihilator
of the module gr(Q).

Lemma 3.5. Let M = D(p)/L be such that L ⊃ D(p)F + D(p)τ(k) where F is a
power of S+(p∗)K . Then, ChM ⊂ C(p) ∩ (N(p)× p) and any subquotient of M is
a K-equivariant holonomic Dp-module.

Proof. Since F ⊂ L and τ(k) ⊂ L, we see that ChM ⊂ (N(p) × p) ∩ C(p)
and it follows from Lemma 2.2 that M is holonomic. Since L ⊃ D(p)τ(k), [34,
Lemma 6.2.6(4)] yields the equivariance of M . If Q is a subquotient of M , then
it follows immediately that Q is holonomic while the K-equivariance of Q follows
from [34, Theorem 6.2.4] (see also [20, Lemma 6.1]). �

Remark 3.6. Let M be as in Lemma 3.5 and set λ(M) = min{λp(x) : x ∈
SuppM}. Then it can be easily deduced from Lemma 3.4 that any eigenvalue of E
on MK is less or equal to − 1

2 (λ(M) + dim p). In the diagonal case, this result can
be compared with [2, Corollary 3.9].

We now consider modules of the following form:

(3.5) M = D(p)/L such that L ⊃ D(p)F +D(p)τ(k) +D(p)F ′

where F ′ ⊂ S(p)K is an ideal of finite codimension and F is a power of S+(p∗)K .
Note that, since D(p)K contains the Lie algebra u = Ce+Cf +Ch, both M and

MK do have a natural u-module structure.

Lemma 3.7. Let M = D(p)/L be defined by (3.5). Then:
(1) ChM ⊂ C(p) ∩ (N(p)×N(p));
(2) the action of u on M is locally finite.

Proof. (1) Observe that, since F ′ ⊂ S(p)K has finite codimension, gr(F ′) contains
a power of the augmentation ideal S+(p)K ; thus ChM ⊂ (p ×N(p)). The claim
then follows from Lemma 3.5.

(2) If v ∈ D(p), write v̄ ∈ M for its class modulo L. By hypothesis, there exist
l ∈ N and a non-zero polynomial a ∈ C[T ] such that el.1̄ = a(f).1̄ = 0. Recall
that the elements of S(p∗) and S(p) act ad-nilpotently on D(p). Therefore, for
all d ∈ D(p), there exists ` ∈ N and 0 6= b ∈ C[T ] such that e`.d̄ = b(f).d̄ = 0.
It is then a classical result that U(u).d̄ is a finite dimensional u-module (see, for
example, [15, Corollary 2.4.11, Remark 2.5.2]). �

We can now prove the main result of this section.

Theorem 3.8. Let g be a semisimple Lie algebra and (g, k) be a symmetric pair
(such that n = dim p > 0). Assume that λp(x) > 0 for all distinguished nilpotent
elements x ∈ p. If M is defined by (3.5) then M = 0.

Proof. Suppose that M 6= 0. By taking a simple quotient we may assume that
M is simple; note that 0 6= 1̄ ∈ MK . Then SuppM ⊂ N(p) is irreducible, closed
and K-stable. Hence SuppM = K.x is the closure of a single nilpotent orbit.
As already observed, gr(L) contains a power of S+(p)K ; it follows that ChM ⊂
C(p) ∩ (K.x×N(p)).

Suppose that x is not distinguished. (This includes the possibility that x = 0.)
Since SuppM contains x, there exists an irreducible component X of ChM such
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that (x, ξ) ∈ X for some ξ ∈ p. Since X is K-stable, it follows, in the notation
of Lemma 2.2, that η1(X) = K.x. Thus dimX < n = dim p by Lemma 2.2(ii).
But, by Lemma 3.5, M is a non-zero holonomic Dp-module, and so each irreducible
component of ChM has dimension n (see [5], for example). Hence a contradiction.

Thus, x is distinguished. By Lemma 3.7, the action of u is locally finite on the
non-zero module MK . Therefore, we can pick 0 6= s ∈ MK which is a highest
weight vector for u. Let ν ∈ N be the weight of s; thus h.s = νs, or, equivalently,
E.s = (ν − n/2)s. By Lemma 3.5, M is a K-equivariant, coherent Dp-module and
so we may apply Lemma 3.4 to conclude that

ν = − 1
2λp(x)− 1

2

∑m
i=1(λi + 2)αi

for some α ∈ Nm. The hypothesis on λp(x) gives ν < 0 and a contradiction. �

Remarks. (1) The proof of Theorem 3.8 can be applied in a few further cases. For
example, assume that ` = 1 and that either n = 2 or n = 2m+ 1 is odd; this forces
(g, k) = (so(3,C), so(2,C)) respectively (so(2m + 2,C), so(2m + 1,C)). Then the
proof of the theorem can be used to show that any D(p)-module M that satisfies
(3.5) is actually zero. Indeed, in the notation of the proof, m = 1 and λ1 = 2 and
the final displayed equation then forces n = 2ν + 4(α + 1) for some α ∈ N, giving
the required contradiction.

(2) The theorem is, however, false without some restriction. For example, con-
sider the real symmetric pair (g0, k0) = (so(1, q + 1), so(1, q)) where q > 3 is odd.
Then the complexified pair (so(q + 2,C), so(q + 1,C)) is not nice and there exists
a non-zero Dp-module M = Dp/L satisfying the hypotheses (3.5). Specifically, if
u is the hyperfunction defined in [32, (6.2)], then M = Dp.u 6= 0 has the required
properties (see also [1, §4]). We will examine this phenomenon in greater detail
in §6.

Return, now, to the case of a general, reductive, symmetric pair (g, k). Set

(3.6) A(p) = D(p)K
/
(D(p)τ(k))K .

Notice that gr(A(p)) = (gr(D(p))/b)K is a factor of (gr(D(p))/a)K = (O(T ∗p)/a)K

and so we can identify ChA(p) = Spec gr(A(p)) with the closed subvariety ChN//K
of C(p)//K = V(aK). Set g1 = [g, g], k1 = k ∩ g1, and p1 = p ∩ g1. Let K1 be the
semisimple (connected) subgroup of K such that Lie(K1) = k1 and write z for the
centre of g. Then, p = p1 ⊕ (p∩ z), k = k1 ⊕ (z∩ k) and (g1, k1) is a symmetric pair.
We retain this notation in the next corollary.

Corollary 3.9. Let (g, k) be a symmetric pair such that p1 6= 0. Assume that
λp1(x) > 0 for all p1-distinguished nilpotent elements x ∈ p1.

(1) Let M = D(p)/(D(p)F1 + D(p)τ(k) + D(p)F ′1), where F1 is a power of
S+(p∗1)

K1 and F ′1 ⊂ S(p1)K1 is an ideal of finite codimension. Then, M =
0.

(2) Let F be a (D(p), A(p))-bimodule such that F has finite length as a left
D(p)-module. Then F = 0.

Proof. (1) Set p0 = z ∩ p. Observe that D(p) = D(p0) ⊗C D(p1) and τ(k) = τ(k1).
Thus, M ∼= D(p0) ⊗C M1, where M1 = D(p1)/(D(p1)F1 + D(p1)τ(k1) + D(p1)F ′1).
The hypotheses ensure that we can apply Theorem 3.8 to the D(p1)-module M1.
Hence M1 = 0 and, therefore, M = 0.

(2) Recall that the Euler vector field E ∈ D(p)K defines a grading D(p) =
⊕j∈ZD(p)j where D(p)j = {D ∈ D(p) : [E, D] = jD}. Since the action of K on p

is linear, the rings D(p)K , S(p∗)K and S(p)K are all graded subalgebras of D(p).
Moreover, the induced grading on S(p∗)K , or S(p)K , is the natural one given by
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the degree of polynomials. Notice also that any ideal of D(p)K is graded (see [34,
Lemma 2.3]).

Set k = EndD(p)(F) and let I be the annihilator of the right D(p)K-module
F . Note that, since F has finite length as a left D(p)-module, Dixmier’s Lemma
implies that k is a finite dimensional C-algebra. As F is a right A(p)-module, I
contains (D(p)τ(k))K and D(p)K/I is a subalgebra of k via right multiplication on
F . Thus I has finite codimension in D(p)K , which implies that F = I ∩ S(p∗)K

and F ′ = I ∩S(p)K are ideals of S(p∗)K , respectively S(p)K , of finite codimension.
From the last paragraph we know that I, F and F ′ are graded, hence F contains
a power of S+(p∗)K and F ′ contains a power of S+(p)K . Now consider the D(p)-
module M = D(p)

/
(D(p)F + D(p)τ(k) + D(p)F ′). Since K is reductive we have

MK = A(p)
/
(A(p)F + A(p)F ′); therefore, by construction, D(p)K/I is a factor of

the D(p)K-module MK . However, part (1) implies that M = 0; hence MK = 0,
I = D(p)K and F = 0. �

4. Proof of Theorem A

The idea of the proof of Theorem A is similar to that of [19, Theorem 5.5];
the main step is to show that the module L = K(p)/D(p)τ(k) is supported on the
nilpotent cone N(p), after which the result follows easily from Corollary 3.9. In
order to fix the notation, and for the convenience of the reader, we first recall the
main result of [19, §4].

We begin with the relevant notation. For simplicity we will assume that smooth
varieties are irreducible. Assume that G is an arbitrary reductive algebraic group
and that X is an affine G-variety. Set g = Lie(G) and let τX : g → D(X) be, as
usual, the Lie algebra homomorphism induced by the G-action. Set

KG(X) = {d ∈ D(X) : ∀f ∈ O(X)G, d(f) = 0}.
Notice that D(X)τX(g) ⊂ KG(X) and that KK(p) is the ideal K(p) of the introduc-
tion. As the next remark shows, the ideal KK(p) only depends on the symmetric
pair (g, k).

Remark 4.1. Let G,K be as in §1 and assume that ϑ is the differential of an
involutive automorphism θ of G; this is for example true when G = Gad is the
adjoint group of g. Then K is the connected component of the subgroup Gθ = {g ∈
G : θ(g) = g}. Moreover, if H is any algebraic subgroup such that K ⊂ H ⊂ Gθ

one has O(p)H = O(p)K . Indeed: it is easy to see that one can restrict to the
case where g is semisimple and G = Gad; in this case the claim follows from [16,
Proposition 10]. This implies in particular that KH(p) = KK(p).

Let G again be an arbitrary reductive algebraic group. Given a reductive sub-
group M ⊂ G and an affine M -variety Y , define G ×M Y = (G × Y )//M , under
the M -action m.(g, y) = (gm−1,m.y). If φ ∈ O(X), write Xφ for the principal
open subset {x ∈ X : φ(x) 6= 0}. If F is a D(X)-module, we denote by Fφ the
localization of F at the Ore set {φk : k ∈ N}. Note that D(Xφ) = D(X)φ.

The following theorem is implicit in [30] and proved explicitly in [19, Proposi-
tion 4.4]. We remark that it is an easy application of the Luna Slice Theorem,
which will also be used in Section 5.

Proposition 4.2. Let X be a smooth affine G-variety and G.b be a closed orbit
in X. Set M = Gb and let (N,M) be the slice representation at the point b. If
KM (N) = D(N)τN (m), then KG(X)φ = D(X)φτX(g) for some φ ∈ O(X)G such
that φ(b) 6= 0.

Corollary 4.3. Assume that X is a finite dimensional rational G-module such that
XG = {0} and that KM (N) = D(N)τN (m) for all slice representations (N,M) at
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non-zero closed orbits in X. Let L(X) = KG(X)/D(X)τX(g) and write N(X) =
$−1
X ($X(0)) for the null-cone in X. Then SuppL(X) ⊂ N(X).

Proof. Observe that L(X) is a rational G-module; thus SuppL(X) is a closed G-
stable subset of X. Suppose that there exists x ∈ SuppL(X) with x /∈ N(X).
Then, by definition of the null-cone, the unique closed orbit contained in G.x ⊂
SuppL(X) is of the form G.b for some b 6= 0. Set M = Gb and let (N,M) be
the slice representation at the point b. By Proposition 4.2 there exists φ ∈ O(X)G

such that φ(b) 6= 0 and L(X)φ = 0. Thus b /∈ SuppL(X), giving the required
contradiction. �

The next lemma is routine.

Lemma 4.4. Let V be a finite dimensional representation of the group G. Let
V = E ⊕ F be a G-stable decomposition of V such that E ⊂ V G. Then, KG(V ) =
D(V )KG(F ).

We are now ready to prove Theorem A from the introduction. Thus, in the
notation given there, we want to prove the following result.

Theorem 4.5. Let G be a connected complex reductive algebraic group with Lie
algebra g and (g, k) be a nice symmetric pair. Then K(p) = KK(p) = D(p)τ(k).

Proof. We may assume that G = Gad and, by Lemma 4.4, that g is semisimple. We
argue by induction on dim g, with the case dim g = 0 being obvious. (The theorem
is also immediate if p = 0; that is, if ϑ = I.)

Recall that L = K(p)/D(p)τ(k). If 0 6= b ∈ p is semisimple, then p = pb ⊕ [k, b]
and (pb,Kb) is the slice representation at the point b. It follows from Remark 4.1
that LKb(pb) = L(Kb)0(p

b), where (Kb)0 is the connected component of Kb. Thus,
by Corollary 4.3 and induction, SuppL ⊂ N(p). Since L is a factor of N =
D(p)/D(p)τ(k), we have ChL ⊂ C(p); hence ChL ⊂ C(p) ∩ (N(p) × p) and L is
holonomic by Lemma 2.2. As L is clearly a (D(p), A(p))-bimodule, Corollary 3.9
yields L = 0. �

As an immediate corollary of Theorem 4.5 one obtains the following generaliza-
tion of a fundamental result of Harish-Chandra (see [9, Theorem 4] or (1.2)) from
the diagonal case to nice symmetric pairs:

Corollary 4.6. Assume that the symmetric pair (g, k) is nice and is the complexi-
fication of a real symmetric pair (g0, k0). Write K0 for the connected Lie group
satisfying Lie(K0) = k0. Let U ⊂ p0 be a K0-stable open subset and T be a K0-
invariant distribution on U . Then I(p) · T = 0.

As observed in Remark 2.7, many of the nice irreducible symmetric pairs are of
maximal rank. We give in Proposition 4.10 another sufficient condition to ensure
that K(p) = D(p)τ(k). This result will be used in the proof of Theorem 6.6 and it
gives a proof of Theorem 4.5 when (g, k) has maximal rank. In this case the result
also follows from [30, Theorem 9.9].

Recall that n− ` = max{dimK.x : x ∈ p} and define the set of regular elements
by preg = {v ∈ p : dimK.v = n− `}. Set O(p)K = C[p1, . . . , p`], where the pi’s
are algebraically independent homogeneous elements. Then, one can identify the
quotient morphism $ : p � p//K ∼= C` with $ : x 7→ (p1(x), . . . , p`(x)). By [16,
Theorem 13] we know that rk dv$ = rk{dvp1, . . . , dvp`} = ` for all v ∈ preg. We
define the set of generic elements by p′ = {x ∈ p : x regular and semisimple}.
Recall [12, Proposition III.4.9] that there exists ζ ∈ O(p)K , called the discriminant
of (g, k), such that p′ = pζ = {x ∈ p : ζ(x) 6= 0}.
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Let x ∈ p. If mx ⊂ O(p) is the maximal ideal corresponding to x, we denote by
Mx the localization of an O(p)-module M with respect to O(p) rmx. This applies
to any D(p)-module and, when M = D(p), D(p)x is the algebra of differential
operators on the local ring O(p)x.

Lemma 4.7. Let v ∈ preg. Then:
(1) Let θ ∈ Θ(p) and suppose that θ(pi) = 0 for i = 1, . . . , `. Then, there exists

ψ ∈ O(p) such that ψ(v) 6= 0 and ψθ ∈ O(p)τ(k).
(2) There is a basis {∂1, . . . , ∂n} of the O(p)v-module Θ(p)v, such that ∂i(pj) =

δij, for all 1 6 i, j 6 `. Moreover, O(p)vτ(k) = ⊕n
i=`+1O(p)v∂i.

(3) D(p)vτ(k) = K(p)v =
∑n
i=`+1D(p)v∂i. In particular, SuppL ⊂ p r preg ⊂

p r p′.

Proof. (1) Since preg is open, there exist an affine open subset v ∈ U ⊂ preg and
elements ai ∈ k such that Tu(K.u) = Ker du$ = ⊕n−`

i=1 Cτ(ai)u for all u ∈ U .
Shrinking U if necessary, we may assume that there exist functions fi on the prin-
cipal open affine subset U = pϕ ⊂ preg such that θu =

∑n−`
i=1 fi(u)τ(ai)u for all

u ∈ U . Writing fi = φi/ψ, ψ = ϕt, φi ∈ O(p), it follows that ψθ =
∑
i φiτ(ai) on

U , and therefore on p since U is dense. Thus ψθ ∈ O(p)τ(k).
(2) Since the dvpj , 1 6 i 6 `, are linearly independent, there exist scalars λj such
that zj = pj −λj , 1 6 j 6 `, are part of a system of parameters {z1, . . . , z`, . . . , zn}
of the local ring O(p)v. Then, the module of differentials over O(p)v is free with
basis {dzj}nj=1 and we can define the (commuting) derivations ∂i by ∂i(zj) = δij ,
1 6 i, j 6 n (see [23, 15.1.12]). Observe now that if d ∈ Θ(p)v, it follows from (1)
and the definitions that

d ∈
⊕n

i=`+1O(p)v∂i ⇐⇒ d(pj) = 0 for all 1 ≤ j ≤ ` ⇐⇒ d ∈ O(p)vτ(k).

(3) By (2) we have

D(p)v = O(p)v〈∂i; 1 6 i 6 n〉 =
(∑n

j=`+1D(p)v∂j
) ⊕

O(p)v〈∂i; 1 6 i 6 `〉.

The desired assertions follow easily. �

The Gelfand-Kirillov dimension of a module M , over some C-algebra, is denoted
by GKdimM ; see [23] for details. Recall, see [24] for example, that if M is a
finitely generated module over D(p) or D(p)K , then GKdimM is the dimension of
the characteristic variety ChM ⊂ p × p, or ChM ⊂ (p × p)//K. The following
lemma will be used several times:

Lemma 4.8. ([22, Theorem I.(3.2)]) Let x be a regular element of a k-algebra D
such that the derivation δx : a 7→ ax − xa is a locally nilpotent derivation of D.
Then, Ω = {xn} is an Ore set in D and GKdimMΩ−1 6 GKdimM , for any right
D-module M . If M has no x-torsion, then GKdimMΩ−1 = GKdimM .

We remark that, whenever we apply this lemma, D will be (close to being) a
ring of differential operators D(V ) and x ∈ O(V ), in which case δx is automatically
locally nilpotent.

Lemma 4.9. The module N = D(p)/D(p)τ(k) satisfies GKdimN = dim C(p) =
n+ `.

Proof. Recall that ChN ⊂ C(p) and hence that GKdimN 6 dim C(p). Let v ∈
preg and adopt the notation of Lemma 4.7. It follows from that lemma that
Nv = D(p)v

/∑n
i=`+1D(p)v∂i, which implies that GKdimNv = 2n − (n − `) =

n+ ` = dim C(p). However, Lemma 4.8 implies that GKdimNv 6 GKdimN . Thus
GKdimN = dim C(p). �
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Proposition 4.10. Assume that C(p) is irreducible and q = a, in the notation of
Section 3. Then, K(p) = D(p)τ(k).

Proof. The hypothesis ensures that O(T ∗p)/a is a domain of dimension n + ` =
dim C(p). Since O(T ∗p)/b is a factor of O(T ∗p)/a, Lemma 4.9 shows that b = a.
This implies in particular that GKdimNζ = GKdim(O(T ∗p)/b)ζ = dim C(p). By
Lemma 4.7(3), Nζ = Nζ and therefore GKdimN > GKdimNζ = dim C(p). Now,
suppose that D(p)τ(p) ( K(p). Then gr(L) 6= 0 while gr(N) = gr(N )/ gr(L). Since
gr(N ) = O(T ∗p)/b is a domain, this forces GKdimN = GKdim gr(N) < dim C(p),
hence a contradiction. �

Corollary 4.11. Assume that (g, k) has maximal rank. Then, K(p) = D(p)τ(k).

Proof. Recall that (g, k) is of maximal rank if and only if the action (K : p) is locally
free; that is, if and only if max{dimK.x : x ∈ p} = dim k. By [27, Theorem 3.2] the
hypothesis of Proposition 4.10 are therefore satisfied. �

Remark. As we show next, it is easy to reduce the proof of Theorem 4.5 to the
case where the symmetric pair is irreducible. The significance of this is that Corol-
lary 4.11 therefore provides another proof of Theorem 4.5 whenever (g, k) is nice and
has no irreducible factors of type (O), (II), (IV) (k = 2) or (VI) (see Remark 2.7).
Thus, suppose that the pair (g, k) decomposes as (g, k) = (g1, k1) × (g2, k2) with
gi = ki ⊕ pi,K = K1 ×K2 etc. We are assuming that Theorem 4.5 holds for the
(gi, ki) and we want to prove it for (g, k). Clearly, O(p)K = O(p1)K1 ⊗ O(p2)K2 ,
D(p) = D(p1)⊗D(p2), τ(k) = τ(k1) + τ(k2) and

K(p) ⊃ D(p)K(p1) +D(p)K(p2) ⊃ D(p)τ(k).

We claim that K(p) = D(p)K(p1) + D(p)K(p2). Let D ∈ K(p). By Lemma 4.7(3),
ζsD ∈ D(p)τ(k) for some s ∈ N. Write ζ = ζ1ζ2, where ζi is the discriminant of
(gi, ki). By induction and symmetry it 5suffices to prove: if ζ1D ∈ D(p)K(p1) +
D(p)K(p2), then D ∈ D(p)K(p1) +D(p)K(p2).

Observe that

D(p)/ (D(p)K(p1) +D(p)K(p2)) ∼= (D(p1)/K(p1))⊗ (D(p2)/K(p2)) .

Let {Qj}j be a C-basis of a complement of K(p2) in D(p2). Denote by D be the
class of D in the left hand side of the previous isomorphism and write, with obvious
notation, D =

∑
j Pj ⊗ Qj with Pj ∈ D(p1). From ζ1D =

∑
j ζ1Pj ⊗ Qj = 0 we

deduce that ζ1Pj = 0 for all j. Equivalently, ζ1Pj ∈ K(p1), which forces Pj ∈ K(p1)
for all j. Thus D = 0, as desired.

5. Applications

The main aim of this section is to prove Theorem D from the introduction and
the basic inductive technique is provided by the following version of the Luna Slice
Theorem. The unexplained terminology can be found in [30].

Theorem 5.1. ([30, Theorem 1.14]) Let K be an arbitrary reductive group and X
be a smooth affine algebraic K-variety. Let K.b ⊂ X be a closed orbit, and denote
by M = Kb the centralizer of b. Then M is reductive and TbX = N ⊕ Tb(K.b) for
an M -module N . Thus (N,M) is the slice representation at the point b.

There is a locally closed smooth affine M -stable subvariety S ⊂ X containing b
such that U = K.S is a $X-saturated affine open subset of X which satisfies:

(i) There exists an excellent surjective K-morphism ϕ : K ×M S � U .
(ii) There exists f ∈ O(N)M with f(0) 6= 0, and an excellent surjective mor-

phism ψ : S � Nf , such that ψ(b) = 0 and the induced K-morphism
φ : K ×M S � K ×M Nf is excellent.
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We begin with some technical lemmas which will enable us to apply Theorem 5.1
in proving Theorem D. The notation is as in the beginning of §4. Furthermore, if
X is an irreducible affine G-variety, where G is an arbitrary reductive group, we
set:

IG(X) = KG(X)G and RG(X) = D(X)G/IG(X)

Observe that RG(X) is a C-algebra and O(X)G ⊂ RG(X).

Lemma 5.2. Let X be a smooth affine G-variety.
(1) Let φ ∈ O(X)G. Then, KG(X)φ = KG(Xφ). If KG(X) = D(X)τX(g), then

KG(Xφ) = D(Xφ)τX(g).
(2) Let U ⊂ X be a $X-saturated open affine subset and let b ∈ U such that

G.b is closed. There exists φ ∈ O(X)G such that b ∈ Xφ = Uφ. One has
KG(U) = {d ∈ D(U) : d(O(X)G) = 0}.

Proof. (1) One needs to show that, if P ∈ KG(X)φ, then P (h/φk) = 0 for all
h ∈ O(X)G and k ∈ N. This follows from the formula

[P, φ](h/φk) = P (h/φk−1)− φP (h/φk)

and induction on the order of P . The second assertion is clear.
(2) Since U is $X -saturated, $X(U) is open. Let φ ∈ O(X)G be such that

(X//G)φ ⊂ U and φ($X(b)) 6= 0. Then it is easily seen that Xφ = Uφ. From (1)
we have KG(U)φ = KG(X)φ = KG(Xφ). Hence,

{P ∈ D(X)φ : P (O(X)G) = 0} = {P ∈ D(U)φ : P (O(U)G) = 0}.

It follows that KG(U) = {d ∈ D(U) : d(O(X)G) = 0}. �

We recall the following classical result of commutative algebra (see, for example,
[10, Section II.10]).

Lemma 5.3. Let f : R → S be an étale morphism between affine commutative
C-algebras.

(1) Let M be a finitely generated R-module. Then, KdimRM = KdimS S⊗RM .
(2) If R and S are domains and J is a non-zero ideal of S, then f−1(J) 6= 0.

Lemma 5.4. Let ϕ : Z → U be an excellent surjective G-morphism of smooth
affine G-varieties.

(1) O(Z)G ⊗O(U)G RG(U) identifies with RG(Z).
(2) RG(U) is simple if and only if RG(Z) is simple.
(3) Let F be a finitely generated RG(U)-module and set G = RG(Z) ⊗RG(U) F .

Then GKdimG = GKdimF . Conversely if G is a finitely generated RG(Z)-module,
there exists a finitely generated RG(U)-module F such that G = RG(Z)⊗RG(U) F .

Proof. (1) is immediate from the proof of [30, Corollary 4.4].
For simplicity we drop the subscript G in the rest of this proof. Set A = O(U)

and B = O(Z). Notice that by the faithful flatness of BG over AG, R(U) ↪→ R(Z)
via Q 7→ 1⊗AGQ. By the definition of I(Z), R(Z) embeds in D(Z//G) = D(BG). It
follows that we may endow R(Z) with the filtration by ord, the order of differential
operators in D(Z//G).

(2) Suppose that J is a proper, non-zero ideal of R(Z) and pick 0 6= Q ∈ J . If
Q 6∈ BG, there exists b ∈ BG such that [b,Q] 6= 0 and ord [b,Q] < ordQ. Thus, by
induction, we deduce that J ∩BG 6= 0 and, by Lemma 5.3, J ∩AG 6= 0. Therefore
J ∩R(U) is a proper non-zero ideal of R(U).

Conversely, assume that R(Z) is simple and let I ⊂ R(U) be a non-zero ideal.
As in the previous paragraph, I ∩ AG 6= 0. Thus 0 6= R(U)(I ∩ AG)R(U) ⊂ I and
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we may as well assume that I = R(U)(I ∩AG)R(U). Now, we claim that IR(Z) is
an ideal of R(Z). Indeed, we have R(U)IR(Z) ⊂ IR(Z) and

BGIR(Z) = BGR(U)(I ∩AG)R(Z) = R(U)BG(I ∩AG)R(Z)

= R(U)(I ∩AG)BGR(Z) = IR(Z).

Since R(Z) = R(U)BG, this proves the claim.
As R(Z) is simple, this forces IR(Z) = R(Z) = R(U) ⊗AG BG. But, IR(Z) =

I(R(U)⊗AG BG) = I ⊗AG BG and, therefore, I = R(U) by faithful flatness.
(3) Recall [30, Proof of Corollary 4.4] that Dm(Z)G = BG⊗AG Dm(U)G, since ϕ

is excellent. Thus, when we endow R(U) and R(Z) with the filtrations induced by
{Dm(U)G}m, respectively {Dm(Z)G}m, we obtain gr(R(Z)) = BG ⊗AG gr(R(U)).

Let F be a finitely generated R(U)-module. Choose a good filtration {ΦkF}k
on F ; that is, a filtration such that the associated graded module grΦ(F) is finitely
generated over the affine commutative algebra gr(R(U)) ∼= gr(D(U)G)/ gr(I(U)).
Then, it is not difficult to see that ΦkG = BG ⊗AG ΦkF defines a good filtra-
tion on the R(Z)-module G such that grΦ(G) = BG ⊗AG grΦ(F), as a gr(R(Z))-
module. Since AG → BG is étale, so is gr(R(U)) → gr(R(Z)) = BG ⊗AG gr(R(U))
(base change for étale morphisms). Recall [24] that GKdimF = Kdim grΦ(F) and
GKdimG = Kdim grΦ(G). Since grΦ(G) = BG ⊗AG grΦ(F), Lemma 5.3 yields
GKdimF = GKdimG.

Conversely, if G is a finitely generated R(Z)-module, write G =
∑s
i=1R(Z)vi

and set F =
∑s
i=1R(U)vi. It is then clear that G = R(Z)⊗R(U) F . �

Lemma 5.5. Let M be a reductive subgroup of G, fix a smooth affine M -variety
Y and set Z = G×M Y . Then, RM (Y ) ∼= RG(Z).

Proof. As in [19, Proof of Lemma 4.3] we let L = G ×M act on V = G × Y by
(g1, h).(g2, y) = (g1g2h−1, h.y). Hence, Z = V //M , Z//G = Y //M , and O(V )L =
O(Y )M . One has an L-module decomposition D(G) = D(G)τG(g)⊕O(G), where G
acts via left translation and M acts via right translation. Taking the G-invariants
yields the M -decomposition

D(G)G = [D(G)τG(g)]G
⊕

O(G)G = [D(G)τG(g)]G
⊕

C.

Since D(V ) = D(G)⊗C D(Y ) as a G-module (where G acts via left translation on
the first factor), we obtain the decomposition

(5.1) D(V )G = [D(G)τG(g)]G ⊗C D(Y )
⊕

C⊗C D(Y ).

Since the G and M actions on V commute, (5.1) is a decomposition of M -modules.
Recall now from [19, Lemma 4.3] the decomposition of L-modules

KL(V ) = D(V )τG(g)
⊕

O(G)⊗C KM (Y )

which gives the decomposition of M -modules

(5.2) KL(V )G = [D(G)τG(g)]G ⊗C D(Y )
⊕

C⊗C KM (Y ).

Observe that the M -equivariant algebra map, D 7→ 1⊗C D, from D(Y ) to D(V ) =
D(G)⊗CD(Y ) induces theM -equivariant embedding of algebras ı : D(Y ) ↪→ D(V )G

through the second direct summand of (5.1). It is then clear from (5.2) that ı gives
an isomorphism of M -modules D(Y )/KM (Y ) ∼−→D(V )G/KL(V )G. Now, taking the
M -invariants we obtain an isomorphism of algebras

(5.3) D(Y )M/IM (Y ) = RM (Y ) ∼−−→RL(V ) = D(V )L/IL(V ).

By [30, Corollary 4.5(i)], the restriction to M -invariant functions induces a surjec-
tive algebra homomorphism γ : D(V )M � D(Z). It is easily seen, cf. [19, Proof of
Lemma 4.3], that Q ∈ KG(Z) if and only if Q = γ(Q1) for some Q1 ∈ KL(V )M . It
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follows that γ induces an isomorphism of G-modules from D(V )M/KL(V )M onto
D(Z)/KG(Z). Now, take the G-invariants to get the algebra isomorphism

(5.4) RL(V ) = D(V )L/IL(V ) ∼−−→D(Z)G/IG(Z) = RG(Z).

The lemma then follows from (5.3) and (5.4). �

Remark 5.6. Let G,K be as in §1. As in Remark 4.1 suppose that ϑ is induced
by an involution θ of G. Then we claim that:

(5.5) RK(p) = RH(p)

for any subgroup K ⊂ H ⊂ Gθ. The proof of (5.5) reduces easily to the case when
g is semisimple and G = Gad is the adjoint group of g. Denote then by A ⊂ G the
torus such that Lie(A) = a and set F = {a ∈ A : a2 = 1}. In this setting, by [16,
Proposition 8] we know that H = K o Γ with Γ = F ∩H. Thus RH(p) = RK(p)Γ.
Using the fact that F acts trivially on O(p)K (cf. [16, Proposition 10]) one can
check that a.D −D ∈ IK(p) for all a ∈ Γ, D ∈ D(p)K , and (5.5) follows.

The two next results will give a proof of Theorem D from the introduction.

Theorem 5.7. Let (g, k) be a nice symmetric pair. Then, R(p) = RK(p) =
D(p)K/K(p)K is a simple ring.

Proof. Set g1 = [g, g], p1 = p∩g1 and let z denote the centre of g. Then Lemma 4.4
implies that R(p) = D(p ∩ z)⊗C R(p1). It follows that we may restrict to the case
when g is semisimple and G = Gad. We argue by induction on dim g, with the case
dim g = 0 being obvious.

Let 0 6= b ∈ p be semisimple; thus (pb,Kb) is the slice representation of the
K-action on p at the point b. We adopt the notation of Theorem 5.1. By induction
and Remark 5.6 RM (N) is simple, and so, by Lemma 5.2, RM (N)f = RM (Nf ) is
also simple. It then follows from Lemmas 5.4 and 5.5 that RK(U) is a simple ring.
Let J̄ = J/I(p) be a non-zero ideal of R(p), for some J ⊂ D(p)K . By Lemma 5.2,
there exists φ ∈ O(p)K such that φ(b) 6= 0 and

RK(U)φ = RK(Uφ) = RK(pφ) = RK(p)φ.

Since RK(U)φ is simple and J̄φ 6= 0 (φ is a non-zero divisor in R(p)), we obtain
that J̄φ = RK(p)φ. In other words, there exists s ∈ N such that φs ∈ J .

Now, consider the D(p)-module F = D(p)/(D(p)J + D(p)τ(k)). Then F is a
compatible K-module and, by the previous paragraph, SuppF is a closed K-stable
subset of p which does not contain any non-zero semisimple element. This forces
SuppF ⊂ N(p) and therefore ChF ⊂ C(p) ∩ (N(p) × p). Thus, by Lemma 2.2, F
is holonomic, and therefore of finite length as a left D(p)-module. By Theorem 4.5,
K(p) = D(p)τ(k), and so R(p) = A(p), in the notation of (3.6). Moreover, as
J ⊂ D(p)K , F is a (D(p), A(p))-bimodule. Thus, by Corollary 3.9, F = 0 and
hence R(p)/J̄ = FK = 0. �

Theorem 5.8. Let (g, k) be a nice symmetric pair and let Q be a non-zero finitely
generated R(p)-module. Then GKdimQ > `.

Proof. As before, write p1 = p ∩ [g, g]. If p1 = 0, then p is contained in the centre
z of g and K acts trivially on p. Thus, R(p) = D(p), ` = dim p, and the result
is nothing but the “Bernstein inequality” (see, for example, [3, V.1.12]). We may
therefore assume that p1 6= 0. We prove the theorem by induction on dim g and we
adopt the notation developed prior to Corollary 3.9.

Suppose that Q is a non-zero finitely generated R(p)-module with GKdimQ < `.
Let b ∈ p be a semisimple element and suppose that b /∈ z, so that dim gb <
dim g. Then, (pb,Kb) = (N,M) is the slice representation at the point b and
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we apply Theorem 5.1, from which we retain the notation. Set Z = K ×M S
and T = K ×M Nf . Let φ ∈ O(p)K be as in Lemma 5.2; one deduces that
RK(U)φ = RK(Uφ) = RK(pφ) = RK(p)φ. Therefore Qφ = RK(U)φ ⊗RK(p) Q is
the localization of QU = RK(U)⊗RK(p)Q with respect to the Ore set {φk : k ∈ N}.
It follows that we can write Qφ = Bφ for some finitely generated RK(U)-module B
without φ-torsion. Then, by Lemma 4.8 we have

GKdimB = GKdimBφ = GKdimQφ ≤ GKdimQ < `.

Set BZ = RK(Z)⊗RK(U) B = O(Z)K ⊗O(U)K B. By Lemma 5.4 we know that
BZ = RK(Z)⊗RK(T ) P for some finitely generated RK(T )-module and we have

GKdimP = GKdimBZ = GKdimB < `.

By Lemma 5.5, RK(T ) ∼= RM (Nf ) and we can regard P as an RM (Nf )-module.
One sees as above that RM (Nf ) = RM (N)f and we can write P = Cf for some
finitely generated RM (N)-module C without f -torsion. By Lemma 4.8 again,
we have GKdimC = GKdimP < `. But, by induction applied to RM (N) =
RKb(pb) = R(Kb)0(p

b) (see Remark 5.6), this forces B = 0. Therefore, 0 = BZ =
O(Z)K ⊗O(U)K B and B = 0 by faithful flatness of O(Z)K over O(U)K . Hence
Qφ = 0.

Observe that p//K = p1//K1×z∩p and that the points $p(b) , where b ∈ prz∩p
is semisimple can be identified with the points ($p1(a), c) ∈ p1//K1 × z ∩ p such
that $p1(a) 6= $p1(0). To sum up, we have seen in the previous paragraph that
the support of the O(p//K)-module Q is contained in {$p1(0)} × z ∩ p. Since
{$p1(0)} × z ∩ p is the variety of zeroes of S+(p∗1)

K1 , we have shown that, for all
v ∈ Q, there exists a power of S+(p∗1)

K1 , say F1, such that F1.v = 0.
Now, recall that the restriction of the form κ to p induces a K-equivariant

isomorphism κ : p ∼−→ p∗ such that κ(p1) = p∗1. It is well known that one can
extends κ to a K-equivariant automorphism κ : D(p) ∼−→D(p) (the Fourier trans-
form, see [20, §7]) which satisfies: κ(τ(a)) = τ(a) for a ∈ k, κ(S(p)K) = S(p∗)K

and κ(S(p1)K1) = S(p∗1)
K1 . Since D(p)τ(k) = K(p) by Theorem 4.5, we have

κ(I(p)) = I(p) and κ induces an automorphism of R(p). Return to the module Q
and define the R(p)-module Qκ to be the abelian groupQ with action a∗v = κ(a).v,
for a ∈ R(p), v ∈ Q. One clearly has GKdimQκ = GKdimQ < `. Hence each
element of Qκ is killed by a power of S+(p∗1)

K1 . In other words, each v ∈ Q is
killed by a power, say F ′1, of S+(p1)K1 .

Thus, by the last two paragraphs, R(p).v is a factor of M1 = R(p)/(R(p)F1 +
R(p)F ′1). Set

M = D(p)/(D(p)F1 +D(p)τ(k) +D(p)F ′1).
By Corollary 3.9, M = 0. On the other hand, MK = M1, whence v = 0 and Q = 0,
as desired. �

Corollary 5.9. Let (g, k) be a nice symmetric pair, n ⊂ S(p)K be a maximal ideal
and 0 6= φ ∈ O(p)K . Then, D(p) = D(p)φ+D(p)τ(k) +D(p)n.

Proof. Set M = D(p)/(D(p)φ+D(p)τ(k)+D(p)n). It suffices to prove that MK =
R(p)/(R(p)φ + R(p)n) = 0, or, by Theorem 5.8, that GKdimMK < `. Recall
from §3 that the filtration {Dk(p)}k on D(p) induces a filtration on A(p) = R(p)
such that Spec gr(R(p)) = ChN//K ⊂ C(p)//K. Now, since gr(n) = S+(p)K , we
have

ChM ⊂ X = C(p) ∩ (p×N(p)) ∩ ({φ = 0} × p)
It follows from Proposition 2.1(2) that X//K identifies with the subvariety {φ = 0}
of p//K. Since p//K is an irreducible variety of dimension `, this implies that
GKdimMK = dim ChM//K 6 dim X//K < `. �
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We now prove Corollary C from the introduction. Let g0 be a real reductive Lie
algebra and (g0, ϑ0) be a symmetric pair with associated decomposition g0 = k0⊕p0.
Let ϑ be the extension of ϑ0 to g = C ⊗R g0; then (g, ϑ) is a symmetric pair and
g = k⊕p, where k = C⊗R k0 and p = C⊗R p0. If U is a subset of p0 we denote by U ′

the set of regular semisimple elements in U ; thus U ′ = U ∩p′ = {u ∈ U : ζ(u) 6= 0}.
Recall that a distribution T on the open subset U ⊂ p0 is locally invariant if
τ(k).T = 0, and is an eigendistribution if there exists a maximal ideal n ⊂ S(p)K

such that n.T = 0.

Corollary 5.10. Assume that (g, k) is a nice symmetric pair. Let T be a locally
invariant eigendistribution on the open subset U ⊂ p0 such that SuppT ⊂ U r U ′.
Then T = 0.

Proof. (We mimic the proof given in [38, p. 798] in the diagonal case.) Let n ⊂
S(p)K be a maximal ideal such that n.T = 0. Recall [7, Lemma 21] that, for all
u ∈ U , there exists s ∈ N and an open subset u ∈ V ⊂ U such that ζs.T|V = 0.
Let L be the annihilator in D(p) of T|V . Since T|V is locally invariant, we see that
L contains τ(k), n and ζs. Thus L = D(p) by Corollary 5.9 and therefore T|V = 0.
Hence T = 0. �

Remark. Let 0 6= φ ∈ O(p)K and set Uφ = {u ∈ U : φ(u) 6= 0}. Replacing ζ
by φ in the previous proof shows that there exists no non-zero locally invariant
eigendistribution supported on UrUφ. However, the case φ = ζ readily implies the
more general result, since any locally invariant eigendistribution is a real analytic
function on U ′, see [32, Theorem 5.3].

Now suppose thatX ( p is an algebraicK-subvariety defined by an ideal 0 6= I ⊂
O(p). Since the generic K-orbit in p is closed, one easily sees that IK 6= 0. We can
therefore also conclude that there is no non-zero locally invariant eigendistribution
supported on U ∩X.

6. The rank one case

In the case when (g, k) has rank one it is easy to calculate K(p) and R(p) =
D(p)G/K(p)G. We do so in this section, since it shows that the main results of this
paper can fail for symmetric pairs that are not nice. Curiously, these computations
also show how one may be able to modify those theorems so that they hold for all
symmetric pairs.

Thus, throughout this section, we will assume that g is semisimple and that
(g, k) is a symmetric pair of rank one, unless we explicitly say otherwise (the one
exception will be in Theorem 6.4 and the comments immediately preceding it).

Recall from §3 that the K-invariant elements
∑n
i=1 ∂

2
xi

,
∑n
i=1 x

2
i and E+ n

2 gen-
erate a Lie algebra u ∼= sl(2,C) inside D(p). In order to work with highest weight
modules, we slightly change our notation and set

e = 1
2

∑n
i=1 ∂

2
xi
, f = − 1

2

∑n
i=1 x

2
i , h = −E− n

2 .

(These elements still satisfy [e, f ] = h, [h, e] = 2e, [h, f ] = −2f .) Since the ad(u)-
action is locally finite on D(p), it induces an action of the group SL(2,C) by algebra
automorphisms on D(p) and D(p)K . Since exp(ξ).d = exp(ad(ξ)).d, for all ξ ∈ u,
and d ∈ D(p), it is then easily checked that g =

(
a b
c d

)
∈ SL(2,C) acts by the

formulas:
g.∂xi = a∂xi + cxi, g.xi = b∂xi + dxi.

In particular, the element ε =
(

0 1
−1 0

)
acts by ε.e = −f , ε.f = −e and ε.h = −h.

Recall the definition of the radial component map: The Chevalley isomorphism
S(p∗)K ∼−→S(a∗)W induces an isomorphism D(p//K) ∼−→D(a/W ); by composing
this isomorphism with the natural restriction map D(p)K → D(p//K), we obtain
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the radial component map rad : D(p)K −→ D(a/W ). Note that Ker rad = I(p)
and R(p) is isomorphic to R = Im rad . Set

ē = rad(e), f̄ = rad(f), h̄ = rad(h).

Since rad is an algebra map, the adjoint action of the Lie algebra rad(u) on R is
locally finite, and therefore induces an action of SL(2,C) on R such that rad(g.d) =
g.rad(d) for all g ∈ SL(2,C), d ∈ D(p)K . In particular, ε.ē = −f̄ , ε.f̄ = −ē and
ε.h̄ = −h̄.

Choose the coordinate system {xi, ∂xi
}i of D(p) such that t = x1 is the coor-

dinate function on a, and x2, . . . , xn are coordinate functions on a κ-orthogonal
complement of a in p. Then the Weyl group W = {±1} acts on S(a∗) = C[t]
by t 7→ −t and S(a∗)W = C[z], where z = t2. Furthermore, rad(

∑n
i=1 x

2
i ) = z,

rad(
∑n
i=1 ∂

2
xi

) = 4z∂2
z + 2n∂z, and rad(E) = 2z∂z. Hence,

(6.1) ē = 2z∂2
z + n∂z, f̄ = − 1

2z, h̄ = −2z∂z − n
2 .

Lemma 6.1. Set U = C〈ē, f̄ , h̄〉. Then,

R = U ∼= U(sl(2,C))
/(
ω − n(n−4)

4

)
where ω = h2+2h+4fe is the Casimir element of the enveloping algebra U(sl(2,C)).

Proof. Obviously, U 6= C and U is a factor of U(sl(2,C)). Since D(a/W ) is a
domain, U ∼= U(sl(2,C))/(ω − c) for some c ∈ C. Consider the D(a/W )-module
S(a∗)W = C[z] as an U -module. Then ē.1 = 0, f̄ .1 = − 1

2z,and h̄.1 = −n
2 ; hence

C[z] is a highest weight sl(2,C)-module with highest weight −n
2 . Thus, c = n(n−4)

4 .
The element f̄ = − 1

2z acts locally ad-nilpotently on U , R and D(a/W ). We may
therefore localize at the Ore set {zk : k ∈ N} to obtain

U [f̄−1] = U [z−1] ⊂ R[z−1] ⊂ D(a/W )[z−1].

Now, (6.1) shows that U [z−1] = C[z±1, ∂z], while D(a/W )[z−1] = C[z±1, ∂z]. Thus,
U [f̄−1] = R[f̄−1]. Recall that the element ε ∈ SL(2,C) interchanges f̄ and −ē, from
which it follows that U [ē−1] = R[ē−1]. Thus, R ⊂ U [ē−1] ∩ U [f̄−1]. However, it is
well known that U = U [ē−1] ∩ U [f̄−1]; thus R = U . �

Lemma 6.2. Assume that n = 2r > 4. Then, V = C[z]z1−r/C[z] is a finite
dimensional simple R-module. Indeed, V ∼= R/(Rf̄r−1 +R(h̄− r + 2) +Rē)

Proof. This is a routine computation. �

Recall that, when n > 4, the rank one symmetric pair is not nice (see Theo-
rem 2.5). The following result shows that Theorem 3.8 fails for such a pair and,
consequently, that the proof of Theorem 4.5 will also not work in this situation.
See, however, the first remark following Theorem 3.8. This result is related to the
computation of the “minimal extension” L(N(p), p), see [25, pp. 220–221].

Proposition 6.3. Assume that n = 2r > 4 and set L = D(p)fr−1 + D(p)τ(k) +
D(p)e. Then, M = D(p)/L is a non-zero module that satisfies (3.5).

Proof. Here, N(p) is the variety of zeroes, in p, of the polynomial f and S(p)K =
C[e]. Thus M does have the form of (3.5). Consider the R-module V of Lemma 6.2
as an A(p)-module. By the final assertion of that lemma, V is a factor of V ′ =
A(p)/(A(p)fr−1 +A(p)e). Now, M = N ⊗A(p)V

′ = D(p)/L and, since MK = V ′ 6=
0, we have M 6= 0. �

In order to describe the left ideal K(p) in the rank one case, we need to introduce
a Lie subalgebra of EndC(p). Since the definition can be made in the general
case, we return to the situation where (g, k) is a symmetric pair of arbitrary rank.
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Recall that any a ∈ EndC(p) defines a vector field τ̃(a) ∈ Θ(p) by the formula
(τ̃(a).ϕ)(v) = d

dt |t=0
ϕ(v − ta.v), for all ϕ ∈ O(p), v ∈ p. Since τ(a) = τ̃(ad(a)) for

all a ∈ k we may, without confusion, write τ(a) = τ̃(a) for a ∈ EndC(p). Following
[17, §4], we define a Lie subalgebra of EndC(p) by

(6.2) k̃ =
{
a ∈ EndC(p) : τ(a).ϕ = 0 for all ϕ ∈ O(p)K

}
.

We want to study the inclusions ad(k) ⊂ k̃ and D(p)τ(k) ⊂ D(p)τ(k̃) ⊂ K(p).
Obviously, we only need to work in the case where g is semisimple, which we now
assume. In the rank one case, O(p)K = C[f ], where f is the quadratic form

∑
i x

2
i ,

and the Lie algebra k̃ is isomorphic to so(n). (We drop the base field C in the
sequel.) We have the the following general result, which depends upon a case by
case analysis.

Theorem 6.4. ([21]) Assume that g is a semisimple Lie algebra and let (g, k) be a
symmetric pair (of any rank). Then, ad(k) = k̃ if and only if each irreducible, rank
one factor of (g, k) is of type (so(n+ 1), so(n)).

This says, in particular, that if (g, k) is irreducible of rank bigger than one, then
k̃ = ad(k). Conversely, if ` = 1, then ad(k) 6= k̃ except when (g, k) = (so(n +
1), so(n)).

We now look to the inclusion D(p)τ(k) ⊂ D(p)τ(k̃) when (g, k) is of rank one. In
the notation of [11, Chap. X, Table V], there are four possible cases:

(BDI) (so(n+ 1), so(n)), n > 2
(AIII) (sl(m+ 1), gl(m)), m > 2
(CII) (sp(m+ 1), sp(m)⊕ sp(1)), m > 1
(FII) (f4, so(9))

For the first three cases, H. Ochiai has determined the relationship betweenD(p)τ(k)
and D(p)τ(k̃):

Theorem 6.5. ([26]) Let (g, k) be a symmetric pair of rank one.

(1) D(p)τ(k) = D(p)τ(k̃) in cases (BDI), (AIII) (m > 3), (CII).
(2) D(p)τ(k) ( D(p)τ(k̃) in case (AIII) (m = 2).

The description of K(p) in the rank one case is given by:

Theorem 6.6. Let (g, k) be any symmetric pair of rank one with g semisimple.
Then, K(p) = D(p)τ(k̃) and, consequently, I(p) = (D(p)τ(k̃))K .

Proof. Suppose, first, that (g, k) = (so(n+ 1), so(n)). Then k̃ = ad(k) ∼= so(n) and
p = Cn with the standard SO(n)-action. In the coordinate system {xi, ∂xi}i the Lie
algebra τ(k) has basis {τ(eij) : 1 6 i < j 6 n} where τ(eij) = xi∂xj − xj∂xi . Let
yj = σ(∂xj ) ∈ O(T ∗p) be the principal symbol of ∂xj . Then, O(T ∗p) = C[xi, yi; 1 6
i 6 n] and the ideal generated by the σ(a), a ∈ k, is a = (xiyj−xjyi; 1 6 i < j 6 n).
It is easy to see that C(p) = V(a). Moreover, it is well known that a is a prime
ideal (for instance, by classical invariant theory [39], C[xi, yj ]/a ∼= C[u1, u2; vi, 1 6
i 6 n]G, where G = C∗ acts by λ.ui = λui, λ.vi = λ−1vi). It then follows from
Proposition 4.10 that K(p) = D(p)τ(k).

Now consider the general case. Notice that the k̃-module p identifies with the
standard so(n)-module Cn. Consider the symmetric pair (g̃, k̃) = (so(n+ 1), so(n))
where p̃ = Cn with standard action of K̃ = SO(n). We may identify the k̃-modules p
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and p̃ and we haveO(p)K = O(p)K̃ = O(p̃)K̃ = C[f ]. Therefore, sinceD(p) = D(p̃),

KK(p) =
{
d ∈ D(p̃) : d(O(p̃)K̃) = 0

}
= KK̃(p̃) = D(p̃)τ(k̃) (by the first case)

= D(p)τ(k̃).

Hence the result. �

Corollary 6.7. Suppose that (g, k) = (sl(3), gl(2)). Then, D(p)τ(k) is strictly
contained in K(p) = D(p)τ(k̃). In contrast, I(p) = (D(p)τ(k̃))K = (D(p)τ(k))K .

Proof. The first assertion follows from Theorems 6.5(2) and 6.6. The final claim
can be proved using [26, Theorem 2]. �

7. Questions

Theorem 4.5 and Theorem 6.6 provide the only known cases where the ideal
K(p) has been described. We have seen that in these cases K(p) = D(p)τ(k̃).
Recall from §3 and Lemma 4.9 that ChN ⊂ C(p) with dim ChN = dim C(p). Set
Ñ = D(p)/D(p)τ(k̃). We then have Ch Ñ ⊂ ChN ⊂ C(p) and dim Ñ = dim C(p).
In view of these observations, of Proposition 2.1 and of Corollary 6.7, we make the
following conjectures.

Conjectures. Let (g, k) be a symmetric pair (with g reductive) and let k̃ be the
Lie algebra defined in (6.2). Then:

(C.1) K(p) = D(p)τ(k̃)
(C.2) I(p) = (D(p)τ(k))K

(C.3) Ch Ñ = R = K.(a× a); thus Ch Ñ is an irreducible component of C(p).

Let λ ∈ a∗ and denote by nλ ⊂ S(p)K the maximal ideal
(
q − q(λ); q ∈ S(p)K

)
.

Set Nλ = D(p)
/(
D(p)τ(k) +D(p)nλ

)
.

Conjectures. Assume that the pair (g, k) is nice. Then:
(C.4) Nλ is a semisimple D(p)-module
(C.5) Nλ has no ζ-torsion.
By [20], conjectures (C.4) and (C.5) are true in the diagonal case. One sig-

nificance of (C.5) is that, if true, it ought to provide a method for proving [32,
Conjecture 7.2].

The question of describing K(p) is a particular case of the more general problem
of determining the left ideals KK(V ) (cf. §4) where (K : V ) is any finite dimensional
representation of a reductive group K, see [29, 30]. In this general setting one can
still define, as in (6.2), a Lie subalgebra

k̃ =
{
a ∈ EndC(V ) : a.ϕ = 0 for all ϕ ∈ O(V )K

}
and one again has D(V )τV (k) ⊂ D(V )τV (k̃) ⊂ KK(V ). The representations (K : p)
are particular cases of the so-called θ-groups [37] or, more generally, of orthogonal
polar representations, see [4] and [28, 8.6] (in these cases one still has a Cartan
subspace). One may generalize the previous conjectures to this wider class of rep-
resentations and the following questions arise:

Questions. Suppose that (K : V ) is a θ-group, or an orthogonal polar representa-
tion.
(Q.1) Is KK(V ) = D(V )τV (k̃)?
(Q.2) Is IK(V ) = (D(V )τV (k))K?
(Q.3) Do we have ChD(V )/D(V )τV (k̃) = K.(c× c), where c ⊂ V is a Cartan

subspace?
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[6] A. Grothendieck, Éléments de Géométrie Algébrique, Chapitre IV, Inst. Hautes Etudes Sci.

Publ. Math., 32 (1967).
[7] Harish-Chandra, Invariant distributions on Lie algebras, Amer. J. Math., 86 (1964), 271–

309.
[8] , Invariant differential operators and distributions on a semisimple Lie algebra, Amer.

J. Math., 86 (1964), 534–564.
[9] , Invariant eigendistributions on a semisimple Lie algebra, Inst. Hautes Etudes Sci.

Publ. Math., 27 (1965), 5–54.
[10] R. Hartshorne, Algebraic geometry, Graduate Texts in Math., Vol. 52, Springer-Verlag,

Berlin/New York, 1977.
[11] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press,

1978.
[12] , Groups and Geometric Analysis, Academic press, 1984.
[13] R. Hotta, Introduction to D-modules, (Lectures at the Inst. Math. Sci., Madras), Math.

Institute, Tohoku University, Sendai, 1986.
[14] R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra,

Invent. Math., 75 (1984), 327–358.
[15] A. Joseph, Quantum groups and their primitive ideals, Springer-Verlag, Berlin/New York,

1995.
[16] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces,

Amer. J. Math., 93 (1971), 753–809.
[17] A. Kowata, Spherical hyperfunctions on the tangent space of symmetric spaces, Hiroshima

Math. J., 21 (1991), 401–418.
[18] T. Levasseur and J. T. Stafford, Invariant differential operators and an homomorphism of

Harish-Chandra, J. Amer. Math. Soc., 8 (1995), 365–372.

[19] , The kernel of an homomorphism of Harish-Chandra, Ann. Scient. Éc. Norm. Sup.,
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