INVARIANT DIFFERENTIAL OPERATORS ON THE TANGENT SPACE OF SOME SYMMETRIC SPACES

T. LEVASSEUR AND J. T. STAFFORD

Abstract

Let \mathfrak{g} be a complex, semisimple Lie algebra, with an involutive automorphism ϑ and set $\mathfrak{k}=\operatorname{Ker}(\vartheta-I), \mathfrak{p}=\operatorname{Ker}(\vartheta+I)$. We consider the differential operators, $\mathcal{D}(\mathfrak{p})^{K}$, on \mathfrak{p} that are invariant under the action of the adjoint group K of \mathfrak{k}. Write $\tau: \mathfrak{k} \rightarrow \operatorname{Der}(\mathfrak{p})$ for the differential of this action. Then we prove, for the class of symmetric pairs ($\mathfrak{g}, \mathfrak{k}$) considered by Sekiguchi [32], that $\left\{d \in \mathcal{D}(\mathfrak{p}): d\left(\mathcal{O}(\mathfrak{p})^{K}\right)=0\right\}=\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$.

One significance of this result is that it easily implies the following result of Sekiguchi: Let $\left(\mathfrak{g}_{0}, \mathfrak{k}_{0}\right)$ be a real form of one of these symmetric pairs $(\mathfrak{g}, \mathfrak{k})$, and suppose that T is a K_{0}-invariant eigendistribution on \mathfrak{p}_{0} that is supported on the singular set. Then, $T=0$. In the diagonal case $(\mathfrak{g}, \mathfrak{k})=\left(\mathfrak{g}^{\prime} \oplus \mathfrak{g}^{\prime}, \mathfrak{g}^{\prime}\right)$ this is a well-known result due to Harish-Chandra.

Contents

1. Introduction 1
2. Orbit theory 3
3. Equivariant D-modules with nilpotent support 6
4. Proof of Theorem A 12
5. Applications 15
6. The rank one case 20
7. Questions 23
References 24

1. Introduction

To begin with, assume that G is a connected, complex reductive algebraic group with Lie algebra \mathfrak{g} and fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} with Weyl group W. Thus, G acts on \mathfrak{g} via the adjoint action and this induces an action of G on the ring of regular functions, $\mathcal{O}(\mathfrak{g}) \cong S\left(\mathfrak{g}^{*}\right)$, and hence on $\mathcal{D}(\mathfrak{g})$, the ring of differential operators with coefficients in $\mathcal{O}(\mathfrak{g})$. Let $\tau: \mathfrak{g} \rightarrow \operatorname{Der}(\mathfrak{g}) \subset \mathcal{D}(\mathfrak{g})$ denote the differential of the adjoint action of G on \mathfrak{g}. In [8] Harish-Chandra defines a ring homomorphism $\delta: \mathcal{D}(\mathfrak{g})^{G} \rightarrow \mathcal{D}(\mathfrak{h})^{W}$, with kernel $\mathcal{I}(\mathfrak{g})=\left\{d \in \mathcal{D}(\mathfrak{g})^{G}: d(f)=0\right.$ for all $\left.f \in \mathcal{O}(\mathfrak{g})^{G}\right\}$. The main results of $[18,19]$ show that δ is surjective, with kernel

$$
\begin{equation*}
\mathcal{I}(\mathfrak{g})=\mathcal{D}(\mathfrak{g}) \tau(\mathfrak{g}) \cap \mathcal{D}(\mathfrak{g})^{G} . \tag{1.1}
\end{equation*}
$$

One significance of these results is that they easily imply two fundamental theorems of Harish-Chandra: Let \mathfrak{g}_{0} be a real form of \mathfrak{g}, with adjoint group G_{0} and write $\mathfrak{g}_{0}^{\prime}$ for the regular semisimple elements of \mathfrak{g}_{0}. Then:

If T is G_{0}-invariant distribution on \mathfrak{g}_{0}, then $\mathcal{I}(\mathfrak{g}) \cdot T=0$;

[^0]The only G_{0}-invariant eigendistribution supported on $\mathfrak{g}_{0} \backslash \mathfrak{g}_{0}^{\prime}$ is $T=0$.
In [32], Sekiguchi generalized (1.3) to a class of "nice" symmetric spaces and it is therefore natural to ask whether the results from $[18,19]$ can also be generalized to these spaces. Despite the fact that there is no analogue of Harish-Chandra's map δ, these generalizations do exist, and the purpose of this paper is to describe them. Before we can state the results formally, we need some notation.

Fix a non-degenerate, G-invariant symmetric bilinear form κ on the reductive Lie algebra \mathfrak{g} such that κ is the Killing form on the semisimple Lie algebra $[\mathfrak{g}, \mathfrak{g}]$. Fix an involutive automorphism ϑ of \mathfrak{g} preserving κ and set $\mathfrak{k}=\operatorname{Ker}(\vartheta-I), \mathfrak{p}=\operatorname{Ker}(\vartheta+I)$. Then, $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ and the pair $(\mathfrak{g}, \mathfrak{k})$, or $(\mathfrak{g}, \vartheta)$, is called a symmetric pair. Recall that \mathfrak{k} and \mathfrak{p} are orthogonal with respect to κ and that \mathfrak{k} is a reductive Lie subalgebra of \mathfrak{g}. Denote by K the connected reductive subgroup of G with Lie algebra \mathfrak{k}. The group K acts on \mathfrak{p} via the adjoint action and the differential of this action induces a Lie algebra homomorphism $\tau: \mathfrak{k} \rightarrow \operatorname{Der} S\left(\mathfrak{p}^{*}\right)$ defined by $(\tau(a) . f)(v)=\frac{d}{d t \mid t=0} f\left(e^{-t a} \cdot v\right)$, for $a \in \mathfrak{k}, f \in \mathfrak{p}^{*}$ and $v \in \mathfrak{p}$.

Let $\mathcal{D}(\mathfrak{p})$ denote the algebra of differential operators on \mathfrak{p} with coefficients in $\mathcal{O}(\mathfrak{p})=S\left(\mathfrak{p}^{*}\right)$. Notice that K has an induced action on $S(\mathfrak{p}), \mathcal{O}(\mathfrak{p})$ and $\mathcal{D}(\mathfrak{p})$. Set

$$
\mathcal{K}(\mathfrak{p})=\left\{d \in \mathcal{D}(\mathfrak{p}): d(f)=0 \text { for all } f \in \mathcal{O}(\mathfrak{p})^{K}\right\}
$$

and $\mathcal{I}(\mathfrak{p})=\mathcal{K}(\mathfrak{p}) \cap \mathcal{D}(\mathfrak{p})^{K}$. Clearly, $\mathcal{K}(\mathfrak{p})$ is a K-stable left ideal of $\mathcal{D}(\mathfrak{p})$ containing $\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$.

Consider the special case when one is in the diagonal case where $G=G_{1} \times G_{1}$ with $\vartheta(x, y)=(y, x)$ for some reductive group G_{1}; thus $(\mathfrak{g}, \mathfrak{k})=\left(\mathfrak{g}_{1} \oplus \mathfrak{g}_{1}, \mathfrak{g}_{1}\right)$. Then $K=G_{1}$ with its action adjoint action on $\mathfrak{p}=\mathfrak{g}_{1}$, and (1.1) can be rephrased as asserting that $\mathcal{K}(\mathfrak{p})=\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$ holds in the diagonal case. The first main aim of this paper is to generalize this result to a class of symmetric pairs introduced by J. Sekiguchi [32]. If \mathfrak{g} is semisimple, these are defined as follows: Let Σ be the restricted root system associated to a Cartan subspace $\mathfrak{a} \subset \mathfrak{p}$. Then, $(\mathfrak{g}, \mathfrak{k})$ is nice if $\operatorname{dim} \mathfrak{g}^{\alpha}+\operatorname{dim} \mathfrak{g}^{2 \alpha} \leqslant 2$ for all $\alpha \in \Sigma$. If \mathfrak{g} is reductive, then $(\mathfrak{g}, \mathfrak{k})$ is nice provided that $([\mathfrak{g}, \mathfrak{g}], \mathfrak{k} \cap[\mathfrak{g}, \mathfrak{g}])$ is nice. The reader is referred to Section 2 and [32] for further details and for a characterization of nice pairs. However, observe that the diagonal case is obviously nice.
Theorem A. (See Theorem 4.5.) Let $(\mathfrak{g}, \mathfrak{k})$ a nice symmetric pair. Then $\mathcal{K}(\mathfrak{p})=$ $\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$ and, therefore, $\mathcal{I}(\mathfrak{p})=(\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k}))^{K}$.

The key step in the proof of Theorem A is Theorem 3.8, which forms a mild generalization of [19, Theorem 5.2]. This, in turn, is an interpretation in terms of \mathcal{D} modules of the theorem of Harish-Chandra that asserts that non-zero G_{0}-invariant eigendistributions on \mathfrak{g}_{0} cannot have nilpotent support. We take this opportunity to provide a complete algebraic proof of (our slight generalization of) this result. The reason for restricting ourselves to nice symmetric pairs in Theorem A is that Theorem 3.8 does not hold in general; indeed in $\S 6$ we show that it fails when ($\mathfrak{g}, \mathfrak{k}$) has rank one and $\operatorname{dim} \mathfrak{p}=2 r \geqslant 4$.

As an immediate corollary of Theorem A one obtains a generalization of a fundamental result of Harish-Chandra (see [9, Theorem 4] or (1.2)) from the diagonal case to nice symmetric pairs:
Corollary B. (See Corollary 4.6.) Assume that the symmetric pair ($\mathfrak{g}, \mathfrak{k}$) is nice and is the complexification of a real symmetric pair $\left(\mathfrak{g}_{0}, \mathfrak{k}_{0}\right)$. Write K_{0} for the connected Lie group satisfying $\operatorname{Lie}\left(K_{0}\right)=\mathfrak{k}_{0}$. Let $U \subset \mathfrak{p}_{0}$ be a K_{0}-stable open subset and T be a K_{0}-invariant distribution on U. Then $\mathcal{I}(\mathfrak{p}) \cdot T=0$.

With a little extra work we are able to generalize a second result a HarishChandra (see [8, Theorem 3] or (1.3)) to nice symmetric pairs:

Corollary C. (See Corollary 5.10.) Assume that the pair ($\mathfrak{g}, \mathfrak{k}$) is nice and is the complexification of a real symmetric pair $\left(\mathfrak{g}_{0}, \mathfrak{k}_{0}\right)$. Let U be an open subset of \mathfrak{p}_{0} and write U^{\prime} for the set of regular semisimple elements in U. Let T be a locally invariant eigendistribution on U such that T is supported on $U \backslash U^{\prime}$. Then $T=0$.

Actually, this result was proved by Sekiguchi in [32] where he was even able to prove it for invariant eigenhyperfunctions T. Our (algebraic) proof of Corollary C does not permit us to prove this stronger result, but it is conjectured [32, Conjecture 7.1] that such a hyperfunction is already a distribution.

The proof that (1.1) implies (1.3) in [19] uses the fact that Harish-Chandra's map δ is surjective. Since there is no analogue of that map for general symmetric pairs, more work is needed to deduce Corollary C from Theorem A. The required extra facts are provided by the following result, in which the Gelfand-Kirillov dimension of a module M is denoted by $\operatorname{GK} \operatorname{dim} M$. One should note that, in the diagonal case, $\operatorname{Im} \delta=\mathcal{D}(\mathfrak{h})^{W}$ is a fixed ring of the Weyl algebra by a finite group and so the conclusion of this theorem is well-known.

Theorem D. (See Theorems 5.7 and 5.8.) Let $(\mathfrak{g}, \mathfrak{k})$ be a nice symmetric pair and set $R(\mathfrak{p})=\mathcal{D}(\mathfrak{p})^{K} / \mathcal{I}(\mathfrak{p})$. Let \mathfrak{a} be a Cartan subspace of \mathfrak{p}. Then:
(1) $R(\mathfrak{p})$ is a simple ring with $G K \operatorname{dim} R(\mathfrak{p})=2 \operatorname{dim} \mathfrak{a}$;
(2) GKdim $M \geqslant \operatorname{dim} \mathfrak{a}$ for every non-zero finitely generated $R(\mathfrak{p})$-module M.

The importance of the algebra $R(\mathfrak{p})$ also lies in the fact that it identifies with the algebra of radial components of K-invariant differential operators on \mathfrak{p}. Indeed, let $W=N_{K}(\mathfrak{a}) / Z_{K}(\mathfrak{a})$ be the Weyl group associated to \mathfrak{a}. By composing the restriction to K-invariant functions with the Chevalley isomorphism one gets a homomorphism, the radial component map,

$$
\operatorname{rad}: \mathcal{D}(\mathfrak{p})^{K} \longrightarrow \mathcal{D}(\mathfrak{p} / / K) \xrightarrow{\sim} \mathcal{D}(\mathfrak{a} / W)
$$

such that Ker rad $=\mathcal{I}(\mathfrak{p})$. Thus $R(\mathfrak{p}) \cong \operatorname{Im}$ rad although, except in some trivial cases, this does not equal $\mathcal{D}(\mathfrak{a} / W)$. Once again, Theorem D does not hold for general symmetric pairs; indeed, in Section 6, we give an example where $R(\mathfrak{p})$ has non-zero finite dimensional modules.

The examples mentioned above are consequences of a detailed study of invariant differential operators of rank one symmetric pairs given in Section 6. One further consequence of this study is that there are some feasible ways in which one may be able to generalize the results of this paper to arbitrary symmetric pairs, and to more general representations of K. The precise conjectures are given in Section 7.

2. Orbit theory

We continue with the notation of $\S 1$. We collect here various definitions and results needed in the subsequent sections.

If $x, y \in \mathfrak{g}$ and $g \in G$, set $\operatorname{ad}(x) \cdot y=[x, y]$ and $g \cdot x=\operatorname{Ad}(g) . x$. If $x \in \mathfrak{g}$ and $V \subset \mathfrak{g}$, let V^{x} denote the subset of elements of V which commute with x. Recall that x is called semisimple if $\operatorname{ad}(x)$ is semisimple and is called nilpotent if $x \in[\mathfrak{g}, \mathfrak{g}]$ and $\operatorname{ad}(x)$ is nilpotent. Following [32, 1.11] a nilpotent element $0 \neq x \in \mathfrak{p}$ is called \mathfrak{p}-distinguished, or simply distinguished, if \mathfrak{p}^{x} does not contain any non-zero semisimple element.

Let X be an affine algebraic K-variety with structural sheaf \mathcal{O}_{X}. The algebraic quotient $\operatorname{Spec} \mathcal{O}(X)^{K}$ is denoted by $X / / K$ and $\varpi_{X}: X \rightarrow X / / K$ is the associated surjective morphism. Recall that the algebraic variety $X / / K$ identifies with the set of closed orbits in X. When $X=\mathfrak{p}$, and if there is no possible ambiguity, we will write $\varpi_{\mathfrak{p}}=\varpi$. Define the nilpotent cone of \mathfrak{p} by $\mathbf{N}(\mathfrak{p})=\varpi^{-1}(\varpi(0))$; recall that
$\mathbf{N}(\mathfrak{p})$ is the set of nilpotent elements in \mathfrak{p} and is a finite union of K-orbits [16, Propositions $10 \& 11$, Theorem 2].

Recall $[16,37]$ the following properties of the action ($K: \mathfrak{p}$). It is stable (there exists a dense open subset of closed orbits) and visible (each fibre of ϖ is a finite union of K-orbits). Let ℓ be the rank of the symmetric pair ($\mathfrak{g}, \mathfrak{k}$); that is, $\ell=\operatorname{dim} \mathfrak{a}$ where $\mathfrak{a} \subset \mathfrak{p}$ is a Cartan subspace. If $W=N_{K}(\mathfrak{a}) / Z_{K}(\mathfrak{a})$ is the associated Weyl group, the Chevalley restriction theorem gives an isomorphism $S\left(\mathfrak{p}^{*}\right)^{K} \xrightarrow{\sim} S\left(\mathfrak{a}^{*}\right)^{W}$, and these algebras are polynomial rings in ℓ indeterminates. Let $\mu: \mathfrak{p} \times \mathfrak{p} \rightarrow \mathfrak{k}^{*}$ be the moment map, $\mu(x, y) \cdot z=\kappa([x, y], z)$. Define the commuting variety of \mathfrak{p} by

$$
\mathcal{C}(\mathfrak{p})=\mu^{-1}(0)=\{(x, y) \in \mathfrak{p} \times \mathfrak{p}:[x, y]=0\}
$$

Since the action $(K: \mathfrak{p})$ is stable, it follows from [28, Proposition 3.4] and [27, (2.3), (2.5), (3.1)] that $\operatorname{dim} \mathcal{C}(\mathfrak{p})=\ell+\operatorname{dim} \mathfrak{p}$.

Let $b \in \mathfrak{p}$ be semisimple. Then [16, I.6] the decomposition $\mathfrak{g}^{b}=\mathfrak{k}^{b} \oplus \mathfrak{p}^{b}$ defines a symmetric pair (of the same rank); furthermore, $\mathbf{N}\left(\mathfrak{p}^{b}\right)=\mathbf{N}(\mathfrak{p}) \cap \mathfrak{p}^{b}$ and $a \in \mathfrak{p}^{b}$ is semisimple in \mathfrak{g}^{b} if and only if a is semisimple in \mathfrak{g}. Suppose that \mathfrak{g} is semisimple and set $\mathfrak{g}^{\prime}=\left[\mathfrak{g}^{b}, \mathfrak{g}^{b}\right], \mathfrak{p}^{\prime}=\mathfrak{p} \cap \mathfrak{g}^{\prime}, \mathfrak{k}^{\prime}=\mathfrak{k} \cap \mathfrak{g}^{\prime}$. Then $\left(\mathfrak{g}^{\prime}, \mathfrak{k}^{\prime}\right)$ is a symmetric pair with \mathfrak{g}^{\prime} semisimple. Such a pair is called a sub-symmetric pair of ($\mathfrak{g}, \mathfrak{k}$) [32].

Proposition 2.1. (1) Set $\mathcal{R}=\overline{K .(\mathfrak{a} \times \mathfrak{a})}$. Then, the inclusion $\mathcal{R} \subset \mathcal{C}(\mathfrak{p})$ yields the identification $\mathcal{R} / / K=\mathcal{C}(\mathfrak{p}) / / K$.
(2) There exists an isomorphism $\mathfrak{p} / / K \cong(\mathcal{C}(\mathfrak{p}) \cap(\mathfrak{p} \times \mathbf{N}(\mathfrak{p}))) / / K$, induced by the map $a \mapsto(a, 0)$ from \mathfrak{p} to $\mathcal{C}(\mathfrak{p})$. Under this isomorphism, $(\mathcal{C}(\mathfrak{p}) \cap(\mathbf{N}(\mathfrak{p}) \times \mathbf{N}(\mathfrak{p}))) / / K$ identifies with $\{\varpi(0)\}$.

Proof. (1) Since the proof is essentially contained in [27, Proof of Theorem 3.8] we will only sketch it. Let $(x, y) \in \mathcal{C}(\mathfrak{p})$ and $x=x_{s}+x_{n}, y=y_{s}+y_{n}$ be the Jordan decompositions of x and y. Then, a standard argument shows that $\left(x_{s}, y_{s}\right)$ lies in the closure of $K .(x, y)$. Since $x_{s} \in \mathfrak{p}$ is semisimple, there exists $k \in K$ such that $a=k . x_{s} \in \mathfrak{a}$ ([16, Theorem 1]). Thus $\left[a, k . y_{s}\right]=0$ and $k . y_{s} \in \mathfrak{p}^{a}$ is semisimple. Since $\mathfrak{a} \subset \mathfrak{p}^{a}$ is a Cartan subspace of \mathfrak{p} [16, Remark 11], g. $\left(k . y_{s}\right) \in \mathfrak{a}$ for some $g \in K^{a}=\operatorname{Stab}_{K}(a)$. Now, if $K .(x, y)$ is closed we obtain that $K .\left(a, g k . y_{s}\right)=$ $K .\left(x_{s}, y_{s}\right)=\overline{K .(x, y)}$, which implies that $\mathcal{R} / / K=\mathcal{C}(\mathfrak{p}) / / K$.
(2) Let $K .(x, y) \in(\mathcal{C}(\mathfrak{p}) \cap(\mathfrak{p} \times \mathbf{N}(\mathfrak{p}))) / / K$ be a closed orbit with $y \in \mathbf{N}(\mathfrak{p})$. By (1), y is also semisimple and so $y=0$. Hence, the map $\imath: \mathfrak{p} / / K \rightarrow(\mathcal{C}(\mathfrak{p}) \cap(\mathfrak{p} \times \mathbf{N}(\mathfrak{p}))) / / K$, defined by $K . x \mapsto K .(x, 0)$, is a bijection. It is easily seen that its inverse is induced by the restriction $\mathcal{C}(\mathfrak{p}) \rightarrow \mathfrak{p}$ of the projection $\eta_{1}: \mathfrak{p} \times \mathfrak{p} \rightarrow \mathfrak{p}$ onto the first component. Thus \imath is an isomorphism. The identification of $(\mathcal{C}(\mathfrak{p}) \cap(\mathbf{N}(\mathfrak{p}) \times \mathbf{N}(\mathfrak{p}))) / / K$ with $\{\varpi(0)\}$ follows easily.

Lemma 2.2. Let F and T be two closed K-stable subsets of \mathfrak{p} such that F is a finite union of K-orbits. Let $X \subset \mathcal{C}(\mathfrak{p}) \cap(F \times T)$ be closed, irreducible and K-stable. Then:
(i) $\operatorname{dim} X \leq \operatorname{dim} \mathfrak{p}$.
(ii) Let $\eta_{1}: \mathfrak{p} \times \mathfrak{p} \rightarrow \mathfrak{p}$ be the projection onto the first component. Assume that $T \subset \mathbf{N}(\mathfrak{p})$ and that $\overline{\eta_{1}(X)}=\overline{K . u}$, where $u \in \eta_{1}(X)$ is nilpotent but not distinguished. Then, $\operatorname{dim} X<\operatorname{dim} \mathfrak{p}$.

Proof. (i) Set $Y=\overline{\eta_{1}(X)}$ and consider $\eta=\eta_{1 \mid X}: X \rightarrow Y$. Let U be a dense open subset of Y such that

$$
\forall v \in U, \quad \operatorname{dim} X-\operatorname{dim} Y=\operatorname{dim} \eta^{-1}(v) .
$$

Since η is K-equivariant, Y is a K-stable closed irreducible subset of F. Therefore, $Y=\overline{K . u}$ for some $u \in U$. Let $v \in U \cap K . u$. Identify the variety $\mathcal{C}(\mathfrak{p}) \cap \eta_{1}^{-1}(v)$
with \mathfrak{p}^{v} through the second projection; then, $\eta^{-1}(v)=X \cap \mathcal{C}(\mathfrak{p}) \cap \eta_{1}^{-1}(v)$ is a closed subset of \mathfrak{p}^{v}. Recall [16, Proposition 5] that $\operatorname{dim} \mathfrak{p}^{v}-\operatorname{dim} \mathfrak{k}^{v}=\operatorname{dim} \mathfrak{p}-\operatorname{dim} \mathfrak{k}$. Hence,
(夫) $\quad \operatorname{dim} X=\operatorname{dim} K . v+\operatorname{dim} \eta^{-1}(v) \leq \operatorname{dim} \mathfrak{k}-\operatorname{dim} \mathfrak{k}^{v}+\operatorname{dim} \mathfrak{p}^{v}=\operatorname{dim} \mathfrak{p}$.
(ii) By hypothesis, the element v in the proof of (i) is not distinguished and so there exists a non-zero, semisimple element $s \in \mathfrak{p}^{v}$. Since $T \subset \mathbf{N}(\mathfrak{p})$, one has $(v, s) \in\left(\mathcal{C}(\mathfrak{p}) \cap \eta_{1}^{-1}(v)\right) \backslash \eta^{-1}(v)$. Thus $\operatorname{dim} \eta^{-1}(v)<\operatorname{dim} \mathfrak{p}^{v}$ and hence, as in (\star), it follows that $\operatorname{dim} X<\operatorname{dim} \mathfrak{p}$.

Let $0 \neq x \in \mathbf{N}(\mathfrak{p})$. Then [16] there exist $y \in \mathfrak{p}, z \in \mathfrak{k}$ such that $[x, y]=z$, $[z, x]=2 x,[z, y]=-2 y$. The triple (z, x, y) is called a normal S-triple containing x. Set $\mathfrak{s}=\mathbb{C} x \oplus \mathbb{C} y \oplus \mathbb{C} z$; thus $\mathfrak{s} \cong \mathfrak{s l}(2, \mathbb{C})$. The \mathfrak{s}-module \mathfrak{g} then decomposes as $\mathfrak{g}=\oplus_{j=1}^{s} E\left(\lambda_{j}\right)$, where $E\left(\lambda_{j}\right)$ is a simple $\mathfrak{s - m o d u l e}$ of highest weight $\lambda_{j} \in \mathbb{N}$. We can set $\mathfrak{p}^{y}=\oplus_{i=1}^{m} \mathbb{C} v_{i}$ with $\operatorname{ad}(z) \cdot v_{i}=-\lambda_{i} v_{i}$, and we have:

$$
\begin{equation*}
\mathfrak{p}=[x, \mathfrak{k}] \oplus \mathfrak{p}^{y} \tag{2.1}
\end{equation*}
$$

Set $S=x+\mathfrak{p}^{y}$; it is well known ([31, Lemma 1.21], [33, III.5.1, III.7.4]) that S is a transversal slice, in \mathfrak{p}, to the orbit $K . x$. Let $\psi: K \times \mathfrak{p}^{y} \rightarrow \mathfrak{p}$ be the K-equivariant morphism given by $\psi((g, v))=g \cdot(x+v)$. Thus ψ is smooth on $K \times \mathfrak{p}^{y}$ (and therefore is an open morphism).

The following result is also well known in the analytic case, see [36, Chapter 5, Lemma 22]. For completeness, we include a proof in the algebraic case.

Proposition 2.3. There exists an affine open neighborhood U of 0 in \mathfrak{p}^{y} such that:
(1) ψ is smooth on $Y=K \times U$, and $\Omega=\psi(Y)=K .(x+U)$ is a K-stable open subset of \mathfrak{p};
(2) $\Omega \cap \overline{K . x}=K . x$ and $K . x \cap\{x+U\}=\{x\}$.

Proof. Let $T=S \times_{\mathfrak{p}} K . x$ be the (schematic) intersection of S and $K . x$. From [6, 17.13.8] and (2.1), it follows that this intersection is transverse of dimension 0 at the point x. Therefore [ibid], there exists an affine open subset $0 \in U_{0} \subset \mathfrak{p}^{y}$ such that T is transverse on $\left(x+U_{0}\right) \cap K . x$. In particular $\operatorname{dim}\left(\left(x+U_{0}\right) \cap K . x\right)=0$, hence $\left(x+U_{0}\right) \cap K . x$ is a finite set, say $\left\{x=x_{0}, x_{1}, \ldots, x_{t}\right\}$. For each $i=1, \ldots, t$, pick an affine open subset $0 \in U\left(x_{i}\right) \subset \mathfrak{p}^{y}$ such that $x_{i} \notin x+U\left(x_{i}\right)$. Set $U_{1}=U_{0} \cap U\left(x_{1}\right) \cap$ $\cdots \cap U\left(x_{t}\right)$. Then, U_{1} is an affine open neighborhood of 0 and $\left(x+U_{1}\right) \cap K . x=\{x\}$.

Since $K . x$ is open in its closure, we can find a K-stable open subset $V \subset \mathfrak{p}$ such that $V \cap \overline{K . x}=K . x$. Define an open neighborhood of 0 in \mathfrak{p}^{y} by

$$
U_{2}=\eta_{2} \psi^{-1}(V)=\left\{s \in \mathfrak{p}^{y}: \exists g \in K, g .(x+s) \in V\right\}
$$

where $\eta_{2}: K \times \mathfrak{p}^{y} \rightarrow \mathfrak{p}^{y}$ is the second projection. Let $v \in U_{2}$; since ψ is K equivariant, we have $\psi(K \times\{v\}) \subset V$. Hence, $K \times U_{2} \subset \psi^{-1}(V)$. Note that, if $0 \in U \subset U_{2}$ is any open subset, $\psi(K \times U)$ is open and $\psi(K \times U) \cap \overline{K . x}=K . x$.

Now, let U_{1} be as in the first paragraph and choose an affine open subset $0 \in$ $U \subset U_{1} \cap U_{2}$. Then U satisfies the required properties.

Assume that \mathfrak{g} is semisimple. Let (z, x, y) be a normal S-triple containing $x \in$ $\mathbf{N}(\mathfrak{p})$. With the previous notation, we set:

$$
\begin{equation*}
\lambda_{\mathfrak{p}}(x)=\sum_{j=1}^{m}\left(\lambda_{j}+2\right)-\operatorname{dim} \mathfrak{p} \tag{2.2}
\end{equation*}
$$

Remark 2.4. The integer $\lambda_{\mathfrak{p}}(x)$ is denoted by $\tilde{\delta}_{\mathfrak{p}}(x)$ in [32, 6.1]. Let us illustrate this number in the special case when $\ell=1$ and $x \in \mathbf{N}(\mathfrak{p})$ is a regular nilpotent element; that is, $\operatorname{dim} K . x=\operatorname{dim} \mathfrak{p}-1$. Then x is distinguished [32, (1.9)]. However as $\operatorname{dim} K \cdot x=\operatorname{dim} \mathfrak{p}-1,\left[16\right.$, Proposition 5] implies that $m=1$ and, since $\lambda_{1}=2$, $\lambda_{\mathfrak{p}}(x)=4-\operatorname{dim} \mathfrak{p}$. Thus $\lambda_{\mathfrak{p}}(x)>0$ if, and only if, $\operatorname{dim} \mathfrak{p}<4$.

We will be interested in symmetric pairs ($\mathfrak{g}, \mathfrak{k}$) such that, for all sub-symmetric pairs $\left(\mathfrak{g}^{\prime}, \mathfrak{k}^{\prime}\right)$ of $(\mathfrak{g}, \mathfrak{k})$, one has $\lambda_{\mathfrak{p}^{\prime}}(x)>0$ for each \mathfrak{p}^{\prime}-distinguished nilpotent element $x \in \mathfrak{p}^{\prime}$. The following theorem, proved in [32, §6], provides examples of such symmetric pairs.

Theorem 2.5. (J. Sekiguchi) Assume that \mathfrak{g} is semisimple and let $(\mathfrak{g}, \mathfrak{k})$ be a symmetric pair. Let Σ be the restricted root system associated to a Cartan subspace $\mathfrak{a} \subset \mathfrak{p}$. Consider the following condition:

$$
\operatorname{dim} \mathfrak{g}^{\alpha}+\operatorname{dim} \mathfrak{g}^{2 \alpha} \leq 2 \quad \text { for all } \alpha \in \Sigma
$$

(1) The pair $(\mathfrak{g}, \mathfrak{k})$ satisfies (\dagger) if and only if each of its irreducible factors is isomorphic to one of the following pairs:
(O) $\left(\mathfrak{g}_{1} \oplus \mathfrak{g}_{1}, \mathfrak{g}_{1}\right), \mathfrak{g}_{1}$ simple Lie algebra (the diagonal case)
(I) $(\mathfrak{s l}(m, \mathbb{C}), \mathfrak{s o}(m, \mathbb{C}))$
(II) $(\mathfrak{s l}(2 m, \mathbb{C}), \mathfrak{s l}(m, \mathbb{C}) \oplus \mathfrak{s l}(m, \mathbb{C}) \oplus \mathbb{C})$
(III) $(\mathfrak{s p}(m, \mathbb{C}), \mathfrak{s l}(m, \mathbb{C}) \oplus \mathbb{C})$
(IV) $(\mathfrak{s o}(2 m+k, \mathbb{C}), \mathfrak{s o}(m+k, \mathbb{C}) \oplus \mathfrak{s o}(m, \mathbb{C})), k=0,1,2$
(V) $\left(\mathfrak{e}_{6}, \mathfrak{s p}(4, \mathbb{C})\right)$
(VI) $\left(\mathfrak{e}_{6}, \mathfrak{s l}(6, \mathbb{C}) \oplus \mathfrak{s l}(2, \mathbb{C})\right)$
(VII) $\left(\mathfrak{e}_{7}, \mathfrak{s l}(8, \mathbb{C})\right)$
(VIII) $\left(\mathfrak{e}_{8}, \mathfrak{s o}(16, \mathbb{C})\right)$
$\left(\right.$ IX) $\quad\left(\mathfrak{f}_{4}, \mathfrak{s p}(3, \mathbb{C}) \oplus \mathfrak{s l}(2, \mathbb{C})\right)$
(X) $\left(\mathfrak{g}_{2}, \mathfrak{s l}(2, \mathbb{C}) \oplus \mathfrak{s l}(2, \mathbb{C})\right)$
(2) Assume that $(\mathfrak{g}, \mathfrak{k})$ satisfies (\dagger) and let $\left(\mathfrak{g}^{\prime}, \mathfrak{k}^{\prime}\right)$ be a sub-symmetric pair of $(\mathfrak{g}, \mathfrak{k})$. Then, $\left(\mathfrak{g}^{\prime}, \mathfrak{k}^{\prime}\right)$ satisfies (\dagger) and $\lambda_{\mathfrak{p}^{\prime}}(x)>0$ for each \mathfrak{p}^{\prime}-distinguished nilpotent element $x \in \mathfrak{p}^{\prime}$.

Definition 2.6. The symmetric pair ($\mathfrak{g}, \mathfrak{k}$) is said to be nice if the semisimple, sub-symmetric pair $([\mathfrak{g}, \mathfrak{g}], \mathfrak{k} \cap[\mathfrak{g}, \mathfrak{g}])$ satisfies condition (\dagger) of Theorem 2.5.

Remark 2.7. Let $(\mathfrak{g}, \mathfrak{k})$ be a symmetric pair with \mathfrak{g} semisimple. Then, ($\mathfrak{g}, \mathfrak{k}$) is of maximal rank (that is, $\ell=\operatorname{rk} \mathfrak{g}$) if and only if each irreducible factor of ($\mathfrak{g}, \mathfrak{k}$) is of the following type

$$
(\mathbf{I}),(\mathbf{I I I}),(\mathbf{I V})(k=0,1),(\mathbf{V}),(\mathrm{VII}),(\mathrm{VIII}),(\mathbf{I X}),(\mathbf{X})
$$

in the notation of Theorem 2.5.

3. Equivariant D-modules with nilpotent support

Let X be a smooth algebraic variety with structural sheaf \mathcal{O}_{X} and cotangent bundle $T^{*} X$. Denote by Θ_{X} the \mathcal{O}_{X}-module of vector fields and by \mathcal{D}_{X} the sheaf of differential operators on X. The notation related to algebraic D-modules will be as in [3] or [13]. In particular, if M is a \mathcal{D}_{X}-module we denote its characteristic variety by $\operatorname{Ch} M \subset T^{*} X$ and its support by $\operatorname{Supp} M \subset X$.

Assume that a reductive algebraic group K acts rationally on X and denote by $\tau_{X}: \mathfrak{k} \rightarrow \Theta_{X}$ the differential of the K-action on X. One can develop a theory of K-equivariant \mathcal{D}_{X}-modules; for these notions, and related definitions, we will refer to $[3],[34, \S 6]$ and [35]. We simply recall here the definition of a K-equivariant coherent \mathcal{D}_{X}-module in the case where X is affine: If M is a finitely generated $\mathcal{D}(X)$-module, then M is said to be a K-equivariant \mathcal{D}_{X}-module if it satisfies the following conditions:
(i) M is endowed with a compatible action of K; that is, K acts rationally on M and $g .(d v)=(g . d)(g . v)$ for all $g \in K, d \in \mathcal{D}(X)$ and $v \in M$;
(ii) $\left.\frac{d}{d t}\right|_{t=0}(\exp (t a) \cdot v)=\tau(a) v$ for all $a \in \mathfrak{k}, v \in M$.

Let \mathfrak{g} be a reductive Lie algebra and $(\mathfrak{g}, \mathfrak{k})$ be a symmetric pair. Recall that the K invariant form κ is non-degenerate on \mathfrak{p}. Let $n=\operatorname{dim} \mathfrak{p}>0$ and fix a κ-orthonormal basis of \mathfrak{p}. Let $\left\{x_{i} \in \mathfrak{p}^{*}, \partial_{x_{i}} \in \Theta(\mathfrak{p})\right\}_{1 \leqslant i \leqslant n}$ be the associated coordinate system. Let $e \in S^{2}\left(\mathfrak{p}^{*}\right)^{K}$ be defined by $e(x)=\kappa(x, x)$ and write $\partial(e) \in S^{2}(\mathfrak{p})^{K}$ for the corresponding differential operator with constant coefficients. Thus, in coordinates, $e=\sum_{i=1}^{n} x_{i}^{2}$ and $\partial(e)=\sum_{i=1}^{n} \partial_{x_{i}}^{2}$. Let $\mathrm{E}=\sum_{i=1}^{n} x_{i} \partial_{x_{i}}$ be the Euler vector field and set

$$
f=-\frac{1}{4} \partial(e), \quad h=\mathrm{E}+\frac{n}{2} .
$$

Then $\mathfrak{u}=\mathbb{C} e \oplus \mathbb{C} f \oplus \mathbb{C} h$ is a Lie algebra isomorphic to $\mathfrak{s l}(2, \mathbb{C})$. By construction, $\mathfrak{u} \subset \mathcal{D}(\mathfrak{p})^{K}$.

Let (z, x, y) be a normal S-triple containing the nilpotent element $0 \neq x \in \mathbf{N}(\mathfrak{p})$ and adopt the notation of $\S 2$. If $\mathfrak{p}^{y}=\oplus_{i=1}^{m} \mathbb{C} v_{i}$ with $\operatorname{ad}(z) \cdot v_{i}=-\lambda_{i} v_{i}$, let $\left\{y_{i}=\right.$ $\left.v_{i}^{*}, \partial_{y_{i}}\right\}_{1 \leqslant i \leqslant m}$ denote the associated coordinate system. Let U be the affine open neighborhood of 0 in \mathfrak{p}^{y} found in Proposition 2.3 and $\psi^{\#}: \mathcal{O}_{\mathfrak{p}} \rightarrow \mathcal{O}_{Y}$ be the comorphism of the dominant K-equivariant morphism $\psi: Y=K \times U \rightarrow \mathfrak{p}$. Since ψ is smooth, we have a locally split exact sequence of \mathcal{O}_{Y}-modules

$$
\begin{equation*}
0 \rightarrow \mathcal{H o m}_{\mathcal{O}_{Y}}\left(\Omega_{Y / \mathfrak{p}}^{1}, \mathcal{O}_{Y}\right) \rightarrow \Theta_{Y} \rightarrow \mathcal{O}_{Y} \otimes_{\mathcal{O}_{\mathfrak{p}}} \Theta_{\mathfrak{p}} \rightarrow 0 \tag{3.1}
\end{equation*}
$$

where $\Omega_{Y / \mathfrak{p}}^{1}$ is the \mathcal{O}_{Y}-module of relative differentials.
Let $\theta \in \Theta(\mathfrak{p})$ and identify θ with $1 \otimes \theta \in \mathcal{O}(Y) \otimes_{\mathcal{O}(\mathfrak{p})} \Theta(\mathfrak{p})$. Then, by (3.1), there exists a lift $\psi^{\#}(\theta) \in \Theta(Y)$ of θ; such a lift satisfies

$$
\begin{equation*}
\psi^{\#}(\theta) \cdot \psi^{\#}(f)=\psi^{\#}(\theta \cdot f) \text { or, equivalently, } d_{b} \psi \cdot \psi^{\#}(\theta)_{b}=\theta_{\psi(b)} \tag{3.2}
\end{equation*}
$$

where $f \in \mathcal{O}(\mathfrak{p}), b \in Y$ and $d_{b} \psi$ denotes the differential of ψ. It is easily checked that K acts on each term of (3.1), and that (3.1) is an exact sequence of K-equivariant \mathcal{O}_{Y}-modules. It follows that we have a surjective morphism $\Theta_{Y}^{K} \rightarrow\left(\mathcal{O}_{Y} \otimes_{\mathcal{O}_{\mathfrak{p}}} \Theta_{\mathfrak{p}}\right)^{K}$. In particular, if $\theta \in \Theta(\mathfrak{p})^{K}$ there exists a lift $\psi^{\#}(\theta) \in \Theta(Y)^{K}$.

Write R_{a} for the left invariant vector field on K defined by $a \in \mathfrak{k}$; thus, for
 algebra $U(\mathfrak{k})$ then identifies with $\mathbb{C}\left\langle R_{a} ; a \in \mathfrak{k}\right\rangle$. Thus, since K and U are affine, we obtain that: $\mathcal{D}(K)=\mathcal{O}(K) \otimes_{\mathbb{C}} U(\mathfrak{k}), \mathcal{D}(U)=\mathbb{C}\left\langle\mathcal{O}(U) ; \partial_{y_{i}}, 1 \leqslant i \leqslant m\right\rangle$, and $\mathcal{D}(Y)=\mathcal{D}(K) \boxtimes \mathcal{D}(U)$. The group K acts on $\mathcal{D}(Y)$ via left translation on $\mathcal{D}(K)$, and so

$$
\mathcal{D}(Y)^{K}=\mathcal{D}(K)^{K} \boxtimes \mathcal{D}(U)=U(\mathfrak{k}) \boxtimes \mathcal{D}(U)=(\mathbb{C} \boxtimes \mathcal{D}(U)) \oplus\left(U_{+}(\mathfrak{k}) \boxtimes \mathcal{D}(U)\right)
$$

where $U_{+}(\mathfrak{k})=\mathfrak{k} U(\mathfrak{k})$. Therefore, if $\theta \in \Theta(\mathfrak{p})^{K}$, we can write

$$
\begin{equation*}
\psi^{\#}(\theta)=1 \boxtimes \Delta(\theta)+\sum_{j} R_{a_{j}} \boxtimes \varphi_{j} \tag{3.3}
\end{equation*}
$$

for some $a_{j} \in \mathfrak{k}$ and $\varphi_{j} \in \mathcal{O}(U)$. We call $\Delta(\theta) \in \Theta(U)$ a radial component of θ.
Lemma 3.1. The vector field $\sum_{j=1}^{m}\left(\frac{1}{2} \lambda_{j}+1\right) y_{j} \partial_{y_{j}}+\frac{1}{2} R_{z}$ is an invariant lift of the Euler vector field E , and $\Delta(\mathrm{E})=\sum_{j=1}^{m}\left(\frac{1}{2} \lambda_{j}+1\right) y_{j} \partial_{y_{j}}$ is a radial component of E .
Proof. See [7, Lemma 30] or [36, Lemma 24, p. 93].
If M is a coherent $\mathcal{D}_{\mathfrak{p}}$-module, denote by

$$
\mathcal{M}=\mathcal{D}_{Y \rightarrow \mathfrak{p}} \otimes_{\psi^{-1} \mathcal{D}_{\mathfrak{p}}}^{L} \psi^{-1} M
$$

its inverse image in the D-module sense; thus $\mathcal{M}=\psi^{!} M[\operatorname{dim} Y-\operatorname{dim} \mathfrak{p}]$ (see, for example, [3, VI.4.2]). Since ψ is smooth the \mathcal{D}_{Y}-module \mathcal{M} is, as an \mathcal{O}_{Y}-module, the usual inverse image $\psi^{*} M=\mathcal{O}_{Y} \otimes_{\mathcal{O}_{\mathfrak{p}}} M$ [13, Proposition II.4.2(i)].

Lemma 3.2. Assume that M is a K-equivariant coherent $\mathcal{D}_{\mathfrak{p}}$-module such that Supp $M=\overline{K . x}$, for some $0 \neq x \in \mathbf{N}(\mathfrak{p})$. Then:
(1) The group K acts on \mathcal{M} by $g .\left(b \otimes_{\mathcal{O}_{\mathfrak{p}}} v\right)=g . b \otimes_{\mathcal{O}_{\mathfrak{p}}} g . v, \mathcal{M}$ is a K-equivariant \mathcal{D}_{Y}-module, and the canonical map $M \rightarrow \mathcal{M}, v \mapsto 1 \otimes_{\mathcal{O}_{\mathfrak{p}}} v$, is K-equivariant.
(2) Suppose that $M=\mathcal{D}_{\mathfrak{p}} . v$. Then, $\mathcal{M}=\mathcal{D}_{Y} \cdot\left(1 \otimes_{\mathcal{O}_{\mathfrak{p}}} v\right) \neq 0$.
(3) There exists $k \in \mathbb{N}$ such that $\mathcal{M} \cong\left(\mathcal{O}_{K} \boxtimes H_{[0]}^{m}\left(\mathcal{O}_{U}\right)\right)^{\oplus k}$.
(4) $\mathcal{M}^{K} \cong \mathbb{C} \boxtimes H_{[0]}^{m}\left(\mathcal{O}_{U}\right)^{\oplus k}$ as a $\left(U(\mathfrak{k}) \boxtimes \mathcal{D}_{U}\right)$-module.
(5) $H_{[0]}^{m}\left(\mathcal{O}_{U}\right)=\oplus_{\alpha \in \mathbb{N}^{m}} \mathbb{C} \partial^{\alpha}$, where $\partial^{\alpha}=\prod_{i=1}^{m} \partial_{y_{i}}^{\alpha_{i}}$.

Proof. (1), (2). Recall first [34] that if ϕ is a K-equivariant morphism between K-varieties, then $\phi^{!}$and ϕ_{+}are compatible with the K-equivariance of D-modules. Thus \mathcal{M} is a K-equivariant \mathcal{D}_{Y}-module. If $M=\mathcal{D}_{\mathfrak{p}} \cdot v$, then $\operatorname{Supp} \mathcal{O}(\mathfrak{p}) \cdot v=\overline{K . x}$ and therefore $\psi(Y) \cap \operatorname{Supp} \mathcal{O}(\mathfrak{p}) . v=K . x$. Also, since ψ is flat, if $\operatorname{Im} \psi \cap \operatorname{Supp} \mathcal{O}(\mathfrak{p}) . v \neq \emptyset$ then $1 \otimes_{\mathcal{O}_{\mathfrak{p}}} v \neq 0$.

Let $\theta \in \Theta(\mathfrak{p})$. By (3.2), there exists $\psi^{\#}(\theta) \in \Theta(Y)$ such that $\psi^{\#}(\theta) \cdot \psi^{\#}(\varphi)=$ $\psi^{\#}(\theta . \varphi)$ for all $\varphi \in \mathcal{O}(\mathfrak{p})$. Then, for all $f \in \mathcal{O}(Y)$,

$$
\begin{aligned}
\psi^{\#}(\theta) \cdot(f \otimes v) & =\psi^{\#}(\theta) \cdot f \otimes v+f \sum_{i} \psi^{\#}(\theta) \cdot \psi^{\#}\left(x_{i}\right) \otimes \partial_{x_{i}} \cdot v \\
& =\psi^{\#}(\theta) \cdot f \otimes v+\sum_{i} f \psi^{\#}\left(\theta \cdot x_{i}\right) \otimes \partial_{x_{i}} \cdot v \\
& =\psi^{\#}(\theta) \cdot f \otimes v+f \otimes\left(\sum_{i} \theta \cdot x_{i} \partial_{x_{i}}\right) \cdot v \\
& =\psi^{\#}(\theta) \cdot f \otimes v+f \otimes \theta \cdot v
\end{aligned}
$$

In particular, we have:

$$
\begin{equation*}
\psi^{\#}(\theta) \cdot(1 \otimes v)=1 \otimes \theta \cdot v \tag{3.4}
\end{equation*}
$$

It follows by an easy induction that $\mathcal{M}=\mathcal{D}_{Y} \cdot\left(1 \otimes_{\mathcal{O}_{\mathfrak{p}}} v\right)$.
(3), (4), (5). We first compute $\operatorname{Supp} \mathcal{M}$. Since $\mathcal{M}=\mathcal{O}_{Y} \otimes \mathcal{O}_{p} M$ as \mathcal{O}_{Y}-modules, $\operatorname{Supp} \mathcal{M} \subset \psi^{-1}(\operatorname{Supp} M)$. Let $a=(g, u) \in \operatorname{Supp} \mathcal{M}$; then, Proposition 2.3(2) implies that $\psi(a)=g .(x+u) \in \operatorname{Supp} M \cap \psi(Y)=\overline{K . x} \cap \Omega=K . x$. Thus $x+u \in K . x$, forcing $u=0$ by Proposition 2.3(2), again. Therefore $\emptyset \neq \operatorname{Supp} \mathcal{M} \subset \Phi=K \times\{0\}$. Since \mathcal{M} is K-equivariant it follows that $\operatorname{Supp} \mathcal{M}=\Phi$.

Now consider the K-equivariant closed embedding $\jmath: \Phi \hookrightarrow Y$. Since $\operatorname{Supp} \mathcal{M}=$ Φ, Kashiwara's equivalence [3, VI.7.11] yields $\mathcal{M}=\jmath_{+} \jmath^{\prime} \mathcal{M}$. Since the \mathcal{D}_{Φ}-module $\jmath^{!} \mathcal{M}$ is K-equivariant and $\Phi \cong K, \jmath^{!} \mathcal{M}$ is a finite direct sum of copies of \mathcal{O}_{Φ} [3, Proof of VII.12.11]. Setting $\jmath^{!} \mathcal{M}=\left(\mathcal{O}_{\Phi}\right)^{\oplus k}$ we obtain

$$
\mathcal{M}=\left(\jmath_{+} \mathcal{O}_{\Phi}\right)^{\oplus k}=H_{[\Phi]}^{m}\left(\mathcal{O}_{Y}\right)^{\oplus k}=\left(\mathcal{O}_{K} \boxtimes H_{[0]}^{m}\left(\mathcal{O}_{U}\right)\right)^{\oplus k}
$$

by [3, VI $\S 7]$ or $[13, \mathrm{I} \S 4.2$]. Observe that K acts on \mathcal{M} via left translation on \mathcal{O}_{K}. Thus $\mathcal{M}^{K}=\mathbb{C} \boxtimes H_{[0]}^{m}\left(\mathcal{O}_{U}\right)^{\oplus k}$. To finish the proof, recall that $H_{[0]}^{m}\left(\mathcal{O}_{U}\right) \cong$ $\mathcal{D}(U) /\left(\sum_{i=1}^{m} \mathcal{D}(U) y_{i}\right) ;$ see, for example, [13, Corollary I.5.2].

Lemma 3.3. Let M be as in Lemma 3.2. Let $\theta \in \Theta(\mathfrak{p})^{K}$ and $v \in M^{K}$. Then $1 \otimes v \in \mathcal{M}^{K}$ and

$$
\psi^{\#}(\theta) \cdot(1 \otimes v)=1 \otimes \theta \cdot v=(1 \boxtimes \Delta(\theta)) \cdot(1 \otimes v)
$$

where $\psi^{\#}(\theta)=1 \boxtimes \Delta(\theta)+\sum_{j} R_{a_{j}} \boxtimes \varphi_{j}$ is defined as in (3.3).
Proof. By (3.4), we know that $\psi^{\#}(\theta) .(1 \otimes v)=1 \otimes \theta . v$. On the other hand, since $1 \otimes v \in \mathcal{M}^{K}=\mathbb{C} \boxtimes H_{[0]}^{m}\left(\mathcal{O}_{U}\right)^{\oplus k}$ by Lemma 3.2, we can write $1 \otimes v=1 \boxtimes \rho(v)$ with $\rho(v) \in H_{[0]}^{m}\left(\mathcal{O}_{U}\right)^{\oplus k}$. Then, $\left(R_{a_{j}} \boxtimes \varphi_{j}\right) \cdot(1 \boxtimes \rho(v))=0$ and so

$$
\begin{aligned}
\psi^{\#}(\theta) \cdot(1 \otimes v) & =(1 \boxtimes \Delta(\theta)) \cdot(1 \boxtimes \rho(v))+\sum_{j}\left(R_{a_{j}} \boxtimes \varphi_{j}\right) \cdot(1 \boxtimes \rho(v)) \\
& =(1 \boxtimes \Delta(\theta)) \cdot(1 \boxtimes \rho(v))=1 \boxtimes \Delta(\theta) \cdot \rho(v) .
\end{aligned}
$$

Hence the lemma.

Lemma 3.4. Let M be as in Lemma 3.2. Assume that $M=\mathcal{D}(\mathfrak{p})$.s with $s \in M^{K}$ such that E.s $=\mu s$, for some $\mu \in \mathbb{C}$. Then:
(1) There exists $\alpha \in \mathbb{N}^{m}$ such that $\mu=-\frac{1}{2}\left(\lambda_{\mathfrak{p}}(x)+\operatorname{dim} \mathfrak{p}\right)-\frac{1}{2} \sum_{i=1}^{m}\left(\lambda_{i}+2\right) \alpha_{i}$.
(2) Suppose that $\mu=-\frac{1}{2}\left(\lambda_{\mathfrak{p}}(x)+\operatorname{dim} \mathfrak{p}\right)$. Then:
(i) $\mathcal{M} \cong \mathcal{O}_{K} \boxtimes H_{[0]}^{m}\left(\mathcal{O}_{U}\right)$;
(ii) if $v \in M^{K}$ is an eigenvector of E for μ, there exists $c \in \mathbb{C}$ such that

$$
\operatorname{Supp} \mathcal{D}(\mathfrak{p}) \cdot(v-c s) \subsetneq \operatorname{Supp} M
$$

Proof. Let (z, x, y) be a normal S-triple containing x and adopt the notation of Lemma 3.2. Set $H=H_{[0]}^{m}\left(\mathcal{O}_{U}\right)$. If $v \in M^{K}$ we write, as in the proof of Lemma 3.3, $v^{*}=1 \otimes_{\mathcal{O}_{\mathfrak{p}}} v=1 \boxtimes \rho(v)$ with $\rho(v)=\oplus_{i=1}^{k} \rho_{i}(v) \in H^{\oplus k}$. Recall from Lemma 3.2 that $\mathcal{M}=\mathcal{D}_{Y} \cdot s^{*}=\left(\mathcal{O}_{K} \boxtimes H\right)^{\oplus k}$; this implies in particular that $\rho_{i}(s) \neq 0$ for all i.
(1) The element $s^{*}=1 \otimes s$ is a non-zero element of \mathcal{M}^{K}. Therefore, by Lemma 3.3, $\mu s^{*}=1 \otimes \mathrm{E} . s=\mu s^{*}=(1 \boxtimes \Delta(\mathrm{E})) \cdot s^{*}$ and so $\Delta(\mathrm{E}) \cdot \rho(s)=\mu \rho(s)$. Thus each $\rho_{i}(s) \in H$ is an eigenvector of $\Delta(\mathrm{E})$ with eigenvalue μ. Now, by Lemma 3.1 and Lemma 3.2,

$$
\Delta(\mathrm{E}) \cdot \partial^{\beta}=-\left(\sum_{i}\left(\frac{1}{2} \lambda_{i}+1\right)\left(\beta_{i}+1\right)\right) \partial^{\beta}
$$

for all $\partial^{\beta}=\prod \partial_{y_{i}}^{\beta_{i}} \in H$. Therefore the eigenvalues of $\Delta(\mathrm{E})$ on H are of the form

$$
-\sum_{i=1}^{m}\left(\frac{1}{2} \lambda_{i}+1\right)\left(\beta_{i}+1\right)=-\frac{1}{2}\left(\lambda_{\mathfrak{p}}(x)+n\right)-\frac{1}{2} \sum_{i=1}^{m}\left(\lambda_{i}+2\right) \beta_{i} .
$$

The existence of $\alpha=\left(\alpha_{i}\right)_{i}$ follows.
(2) Notice that the proof of (1) shows that $\mu=-\frac{1}{2}\left(\lambda_{\mathfrak{p}}(x)+n\right)$ if and only if $\alpha_{i}=0$ for all i; that is, if and only if $\rho(s) \in\left(\mathbb{C}^{*}\right)^{\oplus k} \subset H^{\oplus k}$.
(i) Let $\left\{f_{j}\right\}_{j \in \mathbb{N}}$ be a basis of the \mathbb{C}-vector space $\mathcal{O}(K)$. Now, $\mathcal{D}(K) .1=\mathcal{O}(K) .1=$ $\mathcal{O}(K)$. Thus, for all $u \in \mathcal{M}=(\mathcal{O}(K) \boxtimes H)^{\oplus k}$ there exist some $Q_{j} \in \mathcal{D}(U)$ such that $u=\left(\sum_{j} f_{j} \boxtimes Q_{j}\right) \cdot(1 \boxtimes \rho(s))$. In particular, if $u=\oplus_{i=1}^{k}\left(f_{i} \boxtimes 1\right)$, we obtain $f_{i} \boxtimes 1=\sum_{j} f_{j} \boxtimes Q_{j} . \rho_{i}(s)$ for all i. This implies that $Q_{1} . \rho_{1}(s)=1$ and $Q_{j} . \rho_{1}(s)=0$ for all $j \geqslant 2$. But, $Q_{j} . \rho_{1}(s)=\rho_{1}(s) Q_{j} .1$ and $\rho_{1}(s) \neq 0$. Hence, $Q_{j} .1=0$ for all $j \geqslant 2$ and therefore $Q_{j} . \rho_{i}(s)=\rho_{i}(s) Q_{j} .1=0$ for all i. Now, if $k \geqslant 2$, we get that $f_{i} \boxtimes 1=f_{1} \boxtimes Q_{1} . \rho_{i}(s)$ for $i \in\{1, \ldots, k\}$, a contradiction.
(ii) By the computation made in (1), $\Delta(\mathrm{E}) . \rho(v)=\mu \rho(v)$ yields $\rho(v) \in \mathbb{C}=$ $\mathbb{C} \rho(s) \subset H$. Hence, $\rho(v)=c \rho(s)$ for some $c \in \mathbb{C}$ and $v^{*}-c s^{*}=1 \otimes(v-c s)=0$. Since ψ is flat, it follows that $\operatorname{Im} \psi \cap \operatorname{Supp} \mathcal{O}(\mathfrak{p}) \cdot(v-c s)=\emptyset$. Since, Supp $\mathcal{D}(\mathfrak{p}) \cdot(v-c s)=$ $\operatorname{Supp} \mathcal{O}(\mathfrak{p}) .(v-c s) \subset \overline{K . x}$ and $\operatorname{Im} \psi \cap \overline{K . x}=K . x$, this implies that $\operatorname{Supp} \mathcal{D}(\mathfrak{p}) .(v-$ $c s) \subsetneq \operatorname{Supp} M=\overline{K . x}$.
Remark. Suppose that we are in the diagonal case $(\mathfrak{g}, \mathfrak{k})=\left(\mathfrak{g}_{1} \oplus \mathfrak{g}_{1}, \mathfrak{g}_{1}\right)$, where \mathfrak{g}_{1} is the Lie algebra of a semisimple group G_{1}. Then, $\mathfrak{p} \cong \mathfrak{g}_{1}$ and a module M satisfying the hypotheses of Lemma 3.2 can be considered as a G_{1}-equivariant coherent $\mathcal{D}_{\mathfrak{g}_{1}}$ module for which $\operatorname{Supp} M=\overline{G_{1} \cdot x}$, and $\mathbf{O}=G_{1} \cdot x \subset \mathfrak{g}_{1}$ is a nilpotent orbit. As in [14, §7], set:

$$
\lambda_{\mathbf{O}}=\frac{1}{2} \operatorname{dim} \mathbf{O}-\operatorname{dim} \mathfrak{g}_{1}=-\frac{1}{2}\left(\operatorname{dim} \mathfrak{g}_{1}+\operatorname{dim} \mathfrak{g}_{1}^{x}\right)
$$

It is easily seen that $\lambda_{\mathfrak{p}}(x)=\operatorname{dim} \mathfrak{g}_{1}^{x}$ and Lemma 3.4 implies that, if v is a $G_{1^{-}}$ invariant generator of M and E. $s=\mu s$, then $\mu \leqslant \lambda_{\mathbf{O}}$. Moreover, if $\mu=\lambda_{\mathbf{O}}$, then the eigenspace for $\lambda_{\mathbf{O}}$ has dimension one. See [38, Lemma 6.2] for a variant of this result.

In the sequel we will identify the cotangent bundle $T^{*} \mathfrak{p}=\mathfrak{p} \times \mathfrak{p}^{*}$ with $\mathfrak{p} \times \mathfrak{p}$ through the isomorphism $\mathfrak{p} \cong \mathfrak{p}^{*}$ induced by the form κ. We endow $\mathcal{D}(\mathfrak{p})$ with the filtration $\left\{\mathcal{D}^{k}(\mathfrak{p})\right\}_{k}$ by order of differential operators, and use the induced filtration on its subalgebras and factors. The associated graded algebra $\operatorname{gr}(\mathcal{D}(\mathfrak{p}))$ of $\mathcal{D}(\mathfrak{p})$ identifies with $\mathcal{O}\left(T^{*} \mathfrak{p}\right)$. We denote by $\sigma(a) \in \mathcal{O}\left(T^{*} \mathfrak{p}\right)$ the principal symbol of the
vector field $\tau(a), a \in \mathfrak{k}$. Thus, $\sigma(a)(b, c)=\kappa(a,[c, b])$ for all $(b, c) \in \mathfrak{p} \times \mathfrak{p}$. Let a be the ideal of $\mathcal{O}\left(T^{*} \mathfrak{p}\right)$ generated by $\{\sigma(a), a \in \mathfrak{k}\}$, write \mathbf{q} for the radical ideal defining $\mathcal{C}(\mathfrak{p})$ and set $\mathbf{b}=\operatorname{gr}(\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k}))$. Write $\mathcal{N}=\mathcal{D}(\mathfrak{p}) / \mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$. One obviously has $\mathbf{a} \subset \mathbf{b}$, with $\sqrt{\mathbf{a}}=\mathbf{q}$, and so $\operatorname{Ch} \mathcal{N} \subset \mathcal{C}(\mathfrak{p})$. Similarly, $\operatorname{gr}\left(\mathcal{D}(\mathfrak{p})^{K}\right)$ identifies with $\mathcal{O}\left(T^{*} \mathfrak{p}\right)^{K}=\mathcal{O}\left(\left(T^{*} \mathfrak{p}\right) / / K\right)$ and for any finitely generated $\mathcal{D}(\mathfrak{p})^{K}$-module Q one sets $\operatorname{Ch} Q=\mathcal{V}(\operatorname{ann} \operatorname{gr}(Q))$, which is the variety of zeroes, in $\left(T^{*} \mathfrak{p}\right) / / K$, of the annihilator of the module $\operatorname{gr}(Q)$.

Lemma 3.5. Let $M=\mathcal{D}(\mathfrak{p}) / L$ be such that $L \supset \mathcal{D}(\mathfrak{p}) F+\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$ where F is a power of $S_{+}\left(\mathfrak{p}^{*}\right)^{K}$. Then, Ch $M \subset \mathcal{C}(\mathfrak{p}) \cap(\mathbf{N}(\mathfrak{p}) \times \mathfrak{p})$ and any subquotient of M is a K-equivariant holonomic $\mathcal{D}_{\mathfrak{p}}$-module.

Proof. Since $F \subset L$ and $\tau(\mathfrak{k}) \subset L$, we see that $\operatorname{Ch} M \subset(\mathbf{N}(\mathfrak{p}) \times \mathfrak{p}) \cap \mathcal{C}(\mathfrak{p})$ and it follows from Lemma 2.2 that M is holonomic. Since $L \supset \mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$, [34, Lemma 6.2.6(4)] yields the equivariance of M. If Q is a subquotient of M, then it follows immediately that Q is holonomic while the K-equivariance of Q follows from [34, Theorem 6.2.4] (see also [20, Lemma 6.1]).

Remark 3.6. Let M be as in Lemma 3.5 and set $\lambda(M)=\min \left\{\lambda_{\mathfrak{p}}(x): x \in\right.$ $\operatorname{Supp} M\}$. Then it can be easily deduced from Lemma 3.4 that any eigenvalue of E on M^{K} is less or equal to $-\frac{1}{2}(\lambda(M)+\operatorname{dim} \mathfrak{p})$. In the diagonal case, this result can be compared with [2, Corollary 3.9].

We now consider modules of the following form:

$$
\begin{equation*}
M=\mathcal{D}(\mathfrak{p}) / L \text { such that } L \supset \mathcal{D}(\mathfrak{p}) F+\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})+\mathcal{D}(\mathfrak{p}) F^{\prime} \tag{3.5}
\end{equation*}
$$

where $F^{\prime} \subset S(\mathfrak{p})^{K}$ is an ideal of finite codimension and F is a power of $S_{+}\left(\mathfrak{p}^{*}\right)^{K}$.
Note that, since $\mathcal{D}(\mathfrak{p})^{K}$ contains the Lie algebra $\mathfrak{u}=\mathbb{C} e+\mathbb{C} f+\mathbb{C} h$, both M and M^{K} do have a natural \mathfrak{u}-module structure.

Lemma 3.7. Let $M=\mathcal{D}(\mathfrak{p}) / L$ be defined by (3.5). Then:
(1) $\operatorname{Ch} M \subset \mathcal{C}(\mathfrak{p}) \cap(\mathbf{N}(\mathfrak{p}) \times \mathbf{N}(\mathfrak{p}))$;
(2) the action of \mathfrak{u} on M is locally finite.

Proof. (1) Observe that, since $F^{\prime} \subset S(\mathfrak{p})^{K}$ has finite codimension, $\operatorname{gr}\left(F^{\prime}\right)$ contains a power of the augmentation ideal $S_{+}(\mathfrak{p})^{K}$; thus Ch $M \subset(\mathfrak{p} \times \mathbf{N}(\mathfrak{p}))$. The claim then follows from Lemma 3.5.
(2) If $v \in \mathcal{D}(\mathfrak{p})$, write $\bar{v} \in M$ for its class modulo L. By hypothesis, there exist $l \in \mathbb{N}$ and a non-zero polynomial $a \in \mathbb{C}[T]$ such that $e^{l} \cdot \overline{1}=a(f) \cdot \overline{1}=0$. Recall that the elements of $S\left(\mathfrak{p}^{*}\right)$ and $S(\mathfrak{p})$ act ad-nilpotently on $\mathcal{D}(\mathfrak{p})$. Therefore, for all $d \in \mathcal{D}(\mathfrak{p})$, there exists $\ell \in \mathbb{N}$ and $0 \neq b \in \mathbb{C}[T]$ such that $e^{\ell} \cdot \bar{d}=b(f) \cdot \bar{d}=0$. It is then a classical result that $U(\mathfrak{u}) \cdot \bar{d}$ is a finite dimensional \mathfrak{u}-module (see, for example, [15, Corollary 2.4.11, Remark 2.5.2]).

We can now prove the main result of this section.
Theorem 3.8. Let \mathfrak{g} be a semisimple Lie algebra and ($\mathfrak{g}, \mathfrak{k}$) be a symmetric pair (such that $n=\operatorname{dim} \mathfrak{p}>0$). Assume that $\lambda_{\mathfrak{p}}(x)>0$ for all distinguished nilpotent elements $x \in \mathfrak{p}$. If M is defined by (3.5) then $M=0$.

Proof. Suppose that $M \neq 0$. By taking a simple quotient we may assume that M is simple; note that $0 \neq \overline{1} \in M^{K}$. Then $\operatorname{Supp} M \subset \mathbf{N}(\mathfrak{p})$ is irreducible, closed and K-stable. Hence $\operatorname{Supp} M=\overline{K . x}$ is the closure of a single nilpotent orbit. As already observed, $\operatorname{gr}(L)$ contains a power of $S_{+}(\mathfrak{p})^{K}$; it follows that $\mathrm{Ch} M \subset$ $\mathcal{C}(\mathfrak{p}) \cap(\overline{K . x} \times \mathbf{N}(\mathfrak{p}))$.

Suppose that x is not distinguished. (This includes the possibility that $x=0$.) Since Supp M contains x, there exists an irreducible component X of $\mathrm{Ch} M$ such
that $(x, \xi) \in X$ for some $\xi \in \mathfrak{p}$. Since X is K-stable, it follows, in the notation of Lemma 2.2, that $\overline{\eta_{1}(X)}=\overline{K . x}$. Thus $\operatorname{dim} X<n=\operatorname{dimp}$ by Lemma 2.2(ii). But, by Lemma 3.5, M is a non-zero holonomic $\mathcal{D}_{\mathfrak{p}}$-module, and so each irreducible component of $\mathrm{Ch} M$ has dimension n (see [5], for example). Hence a contradiction.

Thus, x is distinguished. By Lemma 3.7, the action of \mathfrak{u} is locally finite on the non-zero module M^{K}. Therefore, we can pick $0 \neq s \in M^{K}$ which is a highest weight vector for \mathfrak{u}. Let $\nu \in \mathbb{N}$ be the weight of s; thus $h . s=\nu s$, or, equivalently, E. $s=(\nu-n / 2) s$. By Lemma 3.5, M is a K-equivariant, coherent $\mathcal{D}_{\mathfrak{p}}$-module and so we may apply Lemma 3.4 to conclude that

$$
\nu=-\frac{1}{2} \lambda_{\mathfrak{p}}(x)-\frac{1}{2} \sum_{i=1}^{m}\left(\lambda_{i}+2\right) \alpha_{i}
$$

for some $\alpha \in \mathbb{N}^{m}$. The hypothesis on $\lambda_{\mathfrak{p}}(x)$ gives $\nu<0$ and a contradiction.
Remarks. (1) The proof of Theorem 3.8 can be applied in a few further cases. For example, assume that $\ell=1$ and that either $n=2$ or $n=2 m+1$ is odd; this forces $(\mathfrak{g}, \mathfrak{k})=(\mathfrak{s o}(3, \mathbb{C}), \mathfrak{s o}(2, \mathbb{C}))$ respectively $(\mathfrak{s o}(2 m+2, \mathbb{C}), \mathfrak{s o}(2 m+1, \mathbb{C}))$. Then the proof of the theorem can be used to show that any $\mathcal{D}(\mathfrak{p})$-module M that satisfies (3.5) is actually zero. Indeed, in the notation of the proof, $m=1$ and $\lambda_{1}=2$ and the final displayed equation then forces $n=2 \nu+4(\alpha+1)$ for some $\alpha \in \mathbb{N}$, giving the required contradiction.
(2) The theorem is, however, false without some restriction. For example, consider the real symmetric pair $\left(\mathfrak{g}_{0}, \mathfrak{k}_{0}\right)=(\mathfrak{s o}(1, q+1), \mathfrak{s o}(1, q))$ where $q \geqslant 3$ is odd. Then the complexified pair $(\mathfrak{s o}(q+2, \mathbb{C}), \mathfrak{s o}(q+1, \mathbb{C}))$ is not nice and there exists a non-zero $\mathcal{D}_{\mathfrak{p}}$-module $M=\mathcal{D}_{\mathfrak{p}} / L$ satisfying the hypotheses (3.5). Specifically, if u is the hyperfunction defined in [32, (6.2)], then $M=\mathcal{D}_{\mathfrak{p}} . u \neq 0$ has the required properties (see also [1, §4]). We will examine this phenomenon in greater detail in §6.

Return, now, to the case of a general, reductive, symmetric pair ($\mathfrak{g}, \mathfrak{k}$). Set

$$
\begin{equation*}
A(\mathfrak{p})=\mathcal{D}(\mathfrak{p})^{K} /(\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k}))^{K} \tag{3.6}
\end{equation*}
$$

Notice that $\operatorname{gr}(A(\mathfrak{p}))=(\operatorname{gr}(\mathcal{D}(\mathfrak{p})) / \mathbf{b})^{K}$ is a factor of $(\operatorname{gr}(\mathcal{D}(\mathfrak{p})) / \mathbf{a})^{K}=\left(\mathcal{O}\left(T^{*} \mathfrak{p}\right) / \mathbf{a}\right)^{K}$ and so we can identify $\operatorname{Ch} A(\mathfrak{p})=\operatorname{Spec} \operatorname{gr}(A(\mathfrak{p}))$ with the closed subvariety $\operatorname{Ch} \mathcal{N} / / K$ of $\mathcal{C}(\mathfrak{p}) / / K=\mathcal{V}\left(\mathbf{a}^{K}\right)$. Set $\mathfrak{g}_{1}=[\mathfrak{g}, \mathfrak{g}], \mathfrak{k}_{1}=\mathfrak{k} \cap \mathfrak{g}_{1}$, and $\mathfrak{p}_{1}=\mathfrak{p} \cap \mathfrak{g}_{1}$. Let K_{1} be the semisimple (connected) subgroup of K such that $\operatorname{Lie}\left(K_{1}\right)=\mathfrak{k}_{1}$ and write \mathfrak{z} for the centre of \mathfrak{g}. Then, $\mathfrak{p}=\mathfrak{p}_{1} \oplus(\mathfrak{p} \cap \mathfrak{z}), \mathfrak{k}=\mathfrak{k}_{1} \oplus(\mathfrak{z} \cap \mathfrak{k})$ and $\left(\mathfrak{g}_{1}, \mathfrak{k}_{1}\right)$ is a symmetric pair. We retain this notation in the next corollary.

Corollary 3.9. Let $(\mathfrak{g}, \mathfrak{k})$ be a symmetric pair such that $\mathfrak{p}_{1} \neq 0$. Assume that $\lambda_{\mathfrak{p}_{1}}(x)>0$ for all \mathfrak{p}_{1}-distinguished nilpotent elements $x \in \mathfrak{p}_{1}$.
(1) Let $M=\mathcal{D}(\mathfrak{p}) /\left(\mathcal{D}(\mathfrak{p}) F_{1}+\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})+\mathcal{D}(\mathfrak{p}) F_{1}^{\prime}\right)$, where F_{1} is a power of $S_{+}\left(\mathfrak{p}_{1}^{*}\right)^{K_{1}}$ and $F_{1}^{\prime} \subset S\left(\mathfrak{p}_{1}\right)^{K_{1}}$ is an ideal of finite codimension. Then, $M=$ 0.
(2) Let \mathcal{F} be a $(\mathcal{D}(\mathfrak{p}), A(\mathfrak{p}))$-bimodule such that \mathcal{F} has finite length as a left $\mathcal{D}(\mathfrak{p})$-module. Then $\mathcal{F}=0$.

Proof. (1) Set $\mathfrak{p}_{0}=\mathfrak{z} \cap \mathfrak{p}$. Observe that $\mathcal{D}(\mathfrak{p})=\mathcal{D}\left(\mathfrak{p}_{0}\right) \otimes_{\mathbb{C}} \mathcal{D}\left(\mathfrak{p}_{1}\right)$ and $\tau(\mathfrak{k})=\tau\left(\mathfrak{k}_{1}\right)$. Thus, $M \cong \mathcal{D}\left(\mathfrak{p}_{0}\right) \otimes_{\mathbb{C}} M_{1}$, where $M_{1}=\mathcal{D}\left(\mathfrak{p}_{1}\right) /\left(\mathcal{D}\left(\mathfrak{p}_{1}\right) F_{1}+\mathcal{D}\left(\mathfrak{p}_{1}\right) \tau\left(\mathfrak{k}_{1}\right)+\mathcal{D}\left(\mathfrak{p}_{1}\right) F_{1}^{\prime}\right)$. The hypotheses ensure that we can apply Theorem 3.8 to the $\mathcal{D}\left(\mathfrak{p}_{1}\right)$-module M_{1}. Hence $M_{1}=0$ and, therefore, $M=0$.
(2) Recall that the Euler vector field $\mathrm{E} \in \mathcal{D}(\mathfrak{p})^{K}$ defines a grading $\mathcal{D}(\mathfrak{p})=$ $\oplus_{j \in \mathbb{Z}} \mathcal{D}(\mathfrak{p})_{j}$ where $\mathcal{D}(\mathfrak{p})_{j}=\{D \in \mathcal{D}(\mathfrak{p}):[\mathrm{E}, D]=j D\}$. Since the action of K on \mathfrak{p} is linear, the rings $\mathcal{D}(\mathfrak{p})^{K}, S\left(\mathfrak{p}^{*}\right)^{K}$ and $S(\mathfrak{p})^{K}$ are all graded subalgebras of $\mathcal{D}(\mathfrak{p})$. Moreover, the induced grading on $S\left(\mathfrak{p}^{*}\right)^{K}$, or $S(\mathfrak{p})^{K}$, is the natural one given by
the degree of polynomials. Notice also that any ideal of $\mathcal{D}(\mathfrak{p})^{K}$ is graded (see [34, Lemma 2.3]).

Set $\mathbb{k}=\operatorname{End}_{\mathcal{D}(\mathfrak{p})}(\mathcal{F})$ and let I be the annihilator of the right $\mathcal{D}(\mathfrak{p})^{K}$-module \mathcal{F}. Note that, since \mathcal{F} has finite length as a left $\mathcal{D}(\mathfrak{p})$-module, Dixmier's Lemma implies that \mathbb{k} is a finite dimensional \mathbb{C}-algebra. As \mathcal{F} is a right $A(\mathfrak{p})$-module, I contains $(\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k}))^{K}$ and $\mathcal{D}(\mathfrak{p})^{K} / I$ is a subalgebra of \mathbb{k} via right multiplication on \mathcal{F}. Thus I has finite codimension in $\mathcal{D}(\mathfrak{p})^{K}$, which implies that $F=I \cap S\left(\mathfrak{p}^{*}\right)^{K}$ and $F^{\prime}=I \cap S(\mathfrak{p})^{K}$ are ideals of $S\left(\mathfrak{p}^{*}\right)^{K}$, respectively $S(\mathfrak{p})^{K}$, of finite codimension. From the last paragraph we know that I, F and F^{\prime} are graded, hence F contains a power of $S_{+}\left(\mathfrak{p}^{*}\right)^{K}$ and F^{\prime} contains a power of $S_{+}(\mathfrak{p})^{K}$. Now consider the $\mathcal{D}(\mathfrak{p})$ module $M=\mathcal{D}(\mathfrak{p}) /\left(\mathcal{D}(\mathfrak{p}) F+\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})+\mathcal{D}(\mathfrak{p}) F^{\prime}\right)$. Since K is reductive we have $M^{K}=A(\mathfrak{p}) /\left(A(\mathfrak{p}) F+A(\mathfrak{p}) F^{\prime}\right)$; therefore, by construction, $\mathcal{D}(\mathfrak{p})^{K} / I$ is a factor of the $\mathcal{D}(\mathfrak{p})^{K}$-module M^{K}. However, part (1) implies that $M=0$; hence $M^{K}=0$, $I=\mathcal{D}(\mathfrak{p})^{K}$ and $\mathcal{F}=0$.

4. Proof of Theorem A

The idea of the proof of Theorem A is similar to that of [19, Theorem 5.5]; the main step is to show that the module $\mathcal{L}=\mathcal{K}(\mathfrak{p}) / \mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$ is supported on the nilpotent cone $\mathbf{N}(\mathfrak{p})$, after which the result follows easily from Corollary 3.9. In order to fix the notation, and for the convenience of the reader, we first recall the main result of $[19, \S 4]$.

We begin with the relevant notation. For simplicity we will assume that smooth varieties are irreducible. Assume that G is an arbitrary reductive algebraic group and that X is an affine G-variety. Set $\mathfrak{g}=\operatorname{Lie}(G)$ and let $\tau_{X}: \mathfrak{g} \rightarrow \mathcal{D}(X)$ be, as usual, the Lie algebra homomorphism induced by the G-action. Set

$$
\mathcal{K}_{G}(X)=\left\{d \in \mathcal{D}(X): \forall f \in \mathcal{O}(X)^{G}, d(f)=0\right\}
$$

Notice that $\mathcal{D}(X) \tau_{X}(\mathfrak{g}) \subset \mathcal{K}_{G}(X)$ and that $\mathcal{K}_{K}(\mathfrak{p})$ is the ideal $\mathcal{K}(\mathfrak{p})$ of the introduction. As the next remark shows, the ideal $\mathcal{K}_{K}(\mathfrak{p})$ only depends on the symmetric pair ($\mathfrak{g}, \mathfrak{k}$).
Remark 4.1. Let G, K be as in $\S 1$ and assume that ϑ is the differential of an involutive automorphism θ of G; this is for example true when $G=G_{\text {ad }}$ is the adjoint group of \mathfrak{g}. Then K is the connected component of the subgroup $G^{\theta}=\{g \in$ $G: \theta(g)=g\}$. Moreover, if H is any algebraic subgroup such that $K \subset H \subset G^{\theta}$ one has $\mathcal{O}(\mathfrak{p})^{H}=\mathcal{O}(\mathfrak{p})^{K}$. Indeed: it is easy to see that one can restrict to the case where \mathfrak{g} is semisimple and $G=G_{\text {ad }}$; in this case the claim follows from [16, Proposition 10]. This implies in particular that $\mathcal{K}_{H}(\mathfrak{p})=\mathcal{K}_{K}(\mathfrak{p})$.

Let G again be an arbitrary reductive algebraic group. Given a reductive subgroup $M \subset G$ and an affine M-variety Y, define $G \times{ }^{M} Y=(G \times Y) / / M$, under the M-action $m .(g, y)=\left(g m^{-1}, m . y\right)$. If $\phi \in \mathcal{O}(X)$, write X_{ϕ} for the principal open subset $\{x \in X: \phi(x) \neq 0\}$. If \mathcal{F} is a $\mathcal{D}(X)$-module, we denote by \mathcal{F}_{ϕ} the localization of \mathcal{F} at the Ore set $\left\{\phi^{k}: k \in \mathbb{N}\right\}$. Note that $\mathcal{D}\left(X_{\phi}\right)=\mathcal{D}(X)_{\phi}$.

The following theorem is implicit in [30] and proved explicitly in [19, Proposition 4.4]. We remark that it is an easy application of the Luna Slice Theorem, which will also be used in Section 5 .

Proposition 4.2. Let X be a smooth affine G-variety and G.b be a closed orbit in X. Set $M=G^{b}$ and let (N, M) be the slice representation at the point b. If $\mathcal{K}_{M}(N)=\mathcal{D}(N) \tau_{N}(\mathfrak{m})$, then $\mathcal{K}_{G}(X)_{\phi}=\mathcal{D}(X)_{\phi} \tau_{X}(\mathfrak{g})$ for some $\phi \in \mathcal{O}(X)^{G}$ such that $\phi(b) \neq 0$.
Corollary 4.3. Assume that X is a finite dimensional rational G-module such that $X^{G}=\{0\}$ and that $\mathcal{K}_{M}(N)=\mathcal{D}(N) \tau_{N}(\mathfrak{m})$ for all slice representations (N, M) at
non-zero closed orbits in X. Let $\mathcal{L}(X)=\mathcal{K}_{G}(X) / \mathcal{D}(X) \tau_{X}(\mathfrak{g})$ and write $\mathbf{N}(X)=$ $\varpi_{X}^{-1}\left(\varpi_{X}(0)\right)$ for the null-cone in X. Then $\operatorname{Supp} \mathcal{L}(X) \subset \mathbf{N}(X)$.

Proof. Observe that $\mathcal{L}(X)$ is a rational G-module; thus $\operatorname{Supp} \mathcal{L}(X)$ is a closed G stable subset of X. Suppose that there exists $x \in \operatorname{Supp} \mathcal{L}(X)$ with $x \notin \mathbf{N}(X)$. Then, by definition of the null-cone, the unique closed orbit contained in $\overline{G . x} \subset$ $\operatorname{Supp} \mathcal{L}(X)$ is of the form $G . b$ for some $b \neq 0$. Set $M=G^{b}$ and let (N, M) be the slice representation at the point b. By Proposition 4.2 there exists $\phi \in \mathcal{O}(X)^{G}$ such that $\phi(b) \neq 0$ and $\mathcal{L}(X)_{\phi}=0$. Thus $b \notin \operatorname{Supp} \mathcal{L}(X)$, giving the required contradiction.

The next lemma is routine.
Lemma 4.4. Let V be a finite dimensional representation of the group G. Let $V=E \oplus F$ be a G-stable decomposition of V such that $E \subset V^{G}$. Then, $\mathcal{K}_{G}(V)=$ $\mathcal{D}(V) \mathcal{K}_{G}(F)$.

We are now ready to prove Theorem A from the introduction. Thus, in the notation given there, we want to prove the following result.

Theorem 4.5. Let G be a connected complex reductive algebraic group with Lie algebra \mathfrak{g} and $(\mathfrak{g}, \mathfrak{k})$ be a nice symmetric pair. Then $\mathcal{K}(\mathfrak{p})=\mathcal{K}_{K}(\mathfrak{p})=\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$.

Proof. We may assume that $G=G_{\text {ad }}$ and, by Lemma 4.4, that \mathfrak{g} is semisimple. We argue by induction on $\operatorname{dim} \mathfrak{g}$, with the case $\operatorname{dim} \mathfrak{g}=0$ being obvious. (The theorem is also immediate if $\mathfrak{p}=0$; that is, if $\vartheta=I$.)

Recall that $\mathcal{L}=\mathcal{K}(\mathfrak{p}) / \mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$. If $0 \neq b \in \mathfrak{p}$ is semisimple, then $\mathfrak{p}=\mathfrak{p}^{b} \oplus[\mathfrak{k}, b]$ and $\left(\mathfrak{p}^{b}, K^{b}\right)$ is the slice representation at the point b. It follows from Remark 4.1 that $\mathcal{L}_{K^{b}}\left(\mathfrak{p}^{b}\right)=\mathcal{L}_{\left(K^{b}\right)_{0}}\left(\mathfrak{p}^{b}\right)$, where $\left(K^{b}\right)_{0}$ is the connected component of K^{b}. Thus, by Corollary 4.3 and induction, $\operatorname{Supp} \mathcal{L} \subset \mathbf{N}(\mathfrak{p})$. Since \mathcal{L} is a factor of $\mathcal{N}=$ $\mathcal{D}(\mathfrak{p}) / \mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$, we have $\operatorname{Ch} \mathcal{L} \subset \mathcal{C}(\mathfrak{p})$; hence $\operatorname{Ch} \mathcal{L} \subset \mathcal{C}(\mathfrak{p}) \cap(\mathbf{N}(\mathfrak{p}) \times \mathfrak{p})$ and \mathcal{L} is holonomic by Lemma 2.2. As \mathcal{L} is clearly a $(\mathcal{D}(\mathfrak{p}), A(\mathfrak{p}))$-bimodule, Corollary 3.9 yields $\mathcal{L}=0$.

As an immediate corollary of Theorem 4.5 one obtains the following generalization of a fundamental result of Harish-Chandra (see [9, Theorem 4] or (1.2)) from the diagonal case to nice symmetric pairs:

Corollary 4.6. Assume that the symmetric pair $(\mathfrak{g}, \mathfrak{k})$ is nice and is the complexification of a real symmetric pair $\left(\mathfrak{g}_{0}, \mathfrak{k}_{0}\right)$. Write K_{0} for the connected Lie group satisfying $\operatorname{Lie}\left(K_{0}\right)=\mathfrak{k}_{0}$. Let $U \subset \mathfrak{p}_{0}$ be a K_{0}-stable open subset and T be a K_{0} invariant distribution on U. Then $\mathcal{I}(\mathfrak{p}) \cdot T=0$.

As observed in Remark 2.7, many of the nice irreducible symmetric pairs are of maximal rank. We give in Proposition 4.10 another sufficient condition to ensure that $\mathcal{K}(\mathfrak{p})=\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$. This result will be used in the proof of Theorem 6.6 and it gives a proof of Theorem 4.5 when $(\mathfrak{g}, \mathfrak{k})$ has maximal rank. In this case the result also follows from [30, Theorem 9.9].

Recall that $n-\ell=\max \{\operatorname{dim} K . x: x \in \mathfrak{p}\}$ and define the set of regular elements by $\mathfrak{p}^{\text {reg }}=\{v \in \mathfrak{p}: \operatorname{dim} K \cdot v=n-\ell\}$. Set $\mathcal{O}(\mathfrak{p})^{K}=\mathbb{C}\left[p_{1}, \ldots, p_{\ell}\right]$, where the p_{i} 's are algebraically independent homogeneous elements. Then, one can identify the quotient morphism $\varpi: \mathfrak{p} \rightarrow \mathfrak{p} / / K \cong \mathbb{C}^{\ell}$ with $\varpi: x \mapsto\left(p_{1}(x), \ldots, p_{\ell}(x)\right)$. By [16, Theorem 13] we know that $\operatorname{rk} d_{v} \varpi=\operatorname{rk}\left\{d_{v} p_{1}, \ldots, d_{v} p_{\ell}\right\}=\ell$ for all $v \in \mathfrak{p}^{\text {reg }}$. We define the set of generic elements by $\mathfrak{p}^{\prime}=\{x \in \mathfrak{p}: x$ regular and semisimple $\}$. Recall [12, Proposition III.4.9] that there exists $\zeta \in \mathcal{O}(\mathfrak{p})^{K}$, called the discriminant of ($\mathfrak{g}, \mathfrak{k}$), such that $\mathfrak{p}^{\prime}=\mathfrak{p}_{\zeta}=\{x \in \mathfrak{p}: \zeta(x) \neq 0\}$.

Let $x \in \mathfrak{p}$. If $\mathbf{m}_{x} \subset \mathcal{O}(\mathfrak{p})$ is the maximal ideal corresponding to x, we denote by M_{x} the localization of an $\mathcal{O}(\mathfrak{p})$-module M with respect to $\mathcal{O}(\mathfrak{p}) \backslash \mathbf{m}_{x}$. This applies to any $\mathcal{D}(\mathfrak{p})$-module and, when $M=\mathcal{D}(\mathfrak{p}), \mathcal{D}(\mathfrak{p})_{x}$ is the algebra of differential operators on the local ring $\mathcal{O}(\mathfrak{p})_{x}$.
Lemma 4.7. Let $v \in \mathfrak{p}^{\text {reg }}$. Then:
(1) Let $\theta \in \Theta(\mathfrak{p})$ and suppose that $\theta\left(p_{i}\right)=0$ for $i=1, \ldots, \ell$. Then, there exists $\psi \in \mathcal{O}(\mathfrak{p})$ such that $\psi(v) \neq 0$ and $\psi \theta \in \mathcal{O}(\mathfrak{p}) \tau(\mathfrak{k})$.
(2) There is a basis $\left\{\partial_{1}, \ldots, \partial_{n}\right\}$ of the $\mathcal{O}(\mathfrak{p})_{v}$-module $\Theta(\mathfrak{p})_{v}$, such that $\partial_{i}\left(p_{j}\right)=$ $\delta_{i j}$, for all $1 \leqslant i, j \leqslant \ell$. Moreover, $\mathcal{O}(\mathfrak{p})_{v} \tau(\mathfrak{k})=\oplus_{i=\ell+1}^{n} \mathcal{O}(\mathfrak{p})_{v} \partial_{i}$.
(3) $\mathcal{D}(\mathfrak{p})_{v} \tau(\mathfrak{k})=\mathcal{K}(\mathfrak{p})_{v}=\sum_{i=\ell+1}^{n} \mathcal{D}(\mathfrak{p})_{v} \partial_{i}$. In particular, Supp $\mathcal{L} \subset \mathfrak{p} \backslash \mathfrak{p}^{\text {reg }} \subset$ $\mathfrak{p} \backslash \mathfrak{p}^{\prime}$.
Proof. (1) Since $\mathfrak{p}^{\text {reg }}$ is open, there exist an affine open subset $v \in U \subset \mathfrak{p}^{\text {reg }}$ and elements $a_{i} \in \mathfrak{k}$ such that $T_{u}(K . u)=\operatorname{Ker} d_{u} \varpi=\oplus_{i=1}^{n-\ell} \mathbb{C} \tau\left(a_{i}\right)_{u}$ for all $u \in U$. Shrinking U if necessary, we may assume that there exist functions f_{i} on the principal open affine subset $U=\mathfrak{p}_{\varphi} \subset \mathfrak{p}^{\text {reg }}$ such that $\theta_{u}=\sum_{i=1}^{n-\ell} f_{i}(u) \tau\left(a_{i}\right)_{u}$ for all $u \in U$. Writing $f_{i}=\phi_{i} / \psi, \psi=\varphi^{t}, \phi_{i} \in \mathcal{O}(\mathfrak{p})$, it follows that $\psi \theta=\sum_{i} \phi_{i} \tau\left(a_{i}\right)$ on U, and therefore on \mathfrak{p} since U is dense. Thus $\psi \theta \in \mathcal{O}(\mathfrak{p}) \tau(\mathfrak{k})$.
(2) Since the $d_{v} p_{j}, 1 \leqslant i \leqslant \ell$, are linearly independent, there exist scalars λ_{j} such that $z_{j}=p_{j}-\lambda_{j}, 1 \leqslant j \leqslant \ell$, are part of a system of parameters $\left\{z_{1}, \ldots, z_{\ell}, \ldots, z_{n}\right\}$ of the local ring $\mathcal{O}(\mathfrak{p})_{v}$. Then, the module of differentials over $\mathcal{O}(\mathfrak{p})_{v}$ is free with basis $\left\{d z_{j}\right\}_{j=1}^{n}$ and we can define the (commuting) derivations ∂_{i} by $\partial_{i}\left(z_{j}\right)=\delta_{i j}$, $1 \leqslant i, j \leqslant n$ (see [23, 15.1.12]). Observe now that if $d \in \Theta(\mathfrak{p})_{v}$, it follows from (1) and the definitions that

$$
d \in \bigoplus_{i=\ell+1}^{n} \mathcal{O}(\mathfrak{p})_{v} \partial_{i} \Longleftrightarrow d\left(p_{j}\right)=0 \text { for all } 1 \leq j \leq \ell \Longleftrightarrow d \in \mathcal{O}(\mathfrak{p})_{v} \tau(\mathfrak{k})
$$

(3) By (2) we have

$$
\mathcal{D}(\mathfrak{p})_{v}=\mathcal{O}(\mathfrak{p})_{v}\left\langle\partial_{i} ; 1 \leqslant i \leqslant n\right\rangle=\left(\sum_{j=\ell+1}^{n} \mathcal{D}(\mathfrak{p})_{v} \partial_{j}\right) \bigoplus \mathcal{O}(\mathfrak{p})_{v}\left\langle\partial_{i} ; 1 \leqslant i \leqslant \ell\right\rangle
$$

The desired assertions follow easily.
The Gelfand-Kirillov dimension of a module M, over some \mathbb{C}-algebra, is denoted by GKdim M; see [23] for details. Recall, see [24] for example, that if M is a finitely generated module over $\mathcal{D}(\mathfrak{p})$ or $\mathcal{D}(\mathfrak{p})^{K}$, then GKdim M is the dimension of the characteristic variety $\operatorname{Ch} M \subset \mathfrak{p} \times \mathfrak{p}$, or $\operatorname{Ch} M \subset(\mathfrak{p} \times \mathfrak{p}) / / K$. The following lemma will be used several times:

Lemma 4.8. ([22, Theorem I.(3.2)]) Let x be a regular element of a k-algebra D such that the derivation $\delta_{x}: a \mapsto a x-x a$ is a locally nilpotent derivation of D. Then, $\Omega=\left\{x^{n}\right\}$ is an Ore set in D and GKdim $M \Omega^{-1} \leqslant \operatorname{GKdim} M$, for any right D-module M. If M has no x-torsion, then $G K \operatorname{dim} M \Omega^{-1}=G K \operatorname{dim} M$.

We remark that, whenever we apply this lemma, D will be (close to being) a ring of differential operators $\mathcal{D}(V)$ and $x \in \mathcal{O}(V)$, in which case δ_{x} is automatically locally nilpotent.

Lemma 4.9. The module $\mathcal{N}=\mathcal{D}(\mathfrak{p}) / \mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$ satisfies $G K \operatorname{dim} \mathcal{N}=\operatorname{dim} \mathcal{C}(\mathfrak{p})=$ $n+\ell$.

Proof. Recall that $\operatorname{Ch} \mathcal{N} \subset \mathcal{C}(\mathfrak{p})$ and hence that $G K \operatorname{dim} \mathcal{N} \leqslant \operatorname{dim} \mathcal{C}(\mathfrak{p})$. Let $v \in$ $\mathfrak{p}^{\text {reg }}$ and adopt the notation of Lemma 4.7. It follows from that lemma that $\mathcal{N}_{v}=\mathcal{D}(\mathfrak{p})_{v} / \sum_{i=\ell+1}^{n} \mathcal{D}(\mathfrak{p})_{v} \partial_{i}$, which implies that $\operatorname{GKdim} \mathcal{N}_{v}=2 n-(n-\ell)=$ $n+\ell=\operatorname{dim} \mathcal{C}(\mathfrak{p})$. However, Lemma 4.8 implies that $\operatorname{GKdim} \mathcal{N}_{v} \leqslant \operatorname{GKdim} \mathcal{N}$. Thus $\operatorname{GK} \operatorname{dim} \mathcal{N}=\operatorname{dim} \mathcal{C}(\mathfrak{p})$.

Proposition 4.10. Assume that $\mathcal{C}(\mathfrak{p})$ is irreducible and $\mathbf{q}=\mathbf{a}$, in the notation of Section 3. Then, $\mathcal{K}(\mathfrak{p})=\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$.
Proof. The hypothesis ensures that $\mathcal{O}\left(T^{*} \mathfrak{p}\right) / \mathbf{a}$ is a domain of dimension $n+\ell=$ $\operatorname{dim} \mathcal{C}(\mathfrak{p})$. Since $\mathcal{O}\left(T^{*} \mathfrak{p}\right) / \mathbf{b}$ is a factor of $\mathcal{O}\left(T^{*} \mathfrak{p}\right) / \mathbf{a}$, Lemma 4.9 shows that $\mathbf{b}=\mathbf{a}$. This implies in particular that $\operatorname{GKdim} \mathcal{N}_{\zeta}=\operatorname{GKdim}\left(\mathcal{O}\left(T^{*} \mathfrak{p}\right) / \mathbf{b}\right)_{\zeta}=\operatorname{dim} \mathcal{C}(\mathfrak{p})$. By Lemma 4.7(3), $\mathcal{N}_{\zeta}=N_{\zeta}$ and therefore $\operatorname{GKdim} N \geqslant \operatorname{GKdim} N_{\zeta}=\operatorname{dim} \mathcal{C}(\mathfrak{p})$. Now, suppose that $\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{p}) \subsetneq \mathcal{K}(\mathfrak{p})$. Then $\operatorname{gr}(\mathcal{L}) \neq 0$ while $\operatorname{gr}(N)=\operatorname{gr}(\mathcal{N}) / \operatorname{gr}(\mathcal{L})$. Since $\operatorname{gr}(\mathcal{N})=\mathcal{O}\left(T^{*} \mathfrak{p}\right) / \mathbf{b}$ is a domain, this forces GKdim $N=\operatorname{GKdim} \operatorname{gr}(N)<\operatorname{dim} \mathcal{C}(\mathfrak{p})$, hence a contradiction.

Corollary 4.11. Assume that $(\mathfrak{g}, \mathfrak{k})$ has maximal rank. Then, $\mathcal{K}(\mathfrak{p})=\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$.
Proof. Recall that $(\mathfrak{g}, \mathfrak{k})$ is of maximal rank if and only if the action $(K: \mathfrak{p})$ is locally free; that is, if and only if $\max \{\operatorname{dim} K . x: x \in \mathfrak{p}\}=\operatorname{dim} \mathfrak{k}$. By [27, Theorem 3.2] the hypothesis of Proposition 4.10 are therefore satisfied.

Remark. As we show next, it is easy to reduce the proof of Theorem 4.5 to the case where the symmetric pair is irreducible. The significance of this is that Corollary 4.11 therefore provides another proof of Theorem 4.5 whenever $(\mathfrak{g}, \mathfrak{k})$ is nice and has no irreducible factors of type (O), (II), (IV) $(k=2)$ or (VI) (see Remark 2.7). Thus, suppose that the pair $(\mathfrak{g}, \mathfrak{k})$ decomposes as $(\mathfrak{g}, \mathfrak{k})=\left(\mathfrak{g}_{1}, \mathfrak{k}_{1}\right) \times\left(\mathfrak{g}_{2}, \mathfrak{k}_{2}\right)$ with $\mathfrak{g}_{i}=\mathfrak{k}_{i} \oplus \mathfrak{p}_{i}, K=K_{1} \times K_{2}$ etc. We are assuming that Theorem 4.5 holds for the $\left(\mathfrak{g}_{i}, \mathfrak{k}_{i}\right)$ and we want to prove it for $(\mathfrak{g}, \mathfrak{k})$. Clearly, $\mathcal{O}(\mathfrak{p})^{K}=\mathcal{O}\left(\mathfrak{p}_{1}\right)^{K_{1}} \otimes \mathcal{O}\left(\mathfrak{p}_{2}\right)^{K_{2}}$, $\mathcal{D}(\mathfrak{p})=\mathcal{D}\left(\mathfrak{p}_{1}\right) \otimes \mathcal{D}\left(\mathfrak{p}_{2}\right), \tau(\mathfrak{k})=\tau\left(\mathfrak{k}_{1}\right)+\tau\left(\mathfrak{k}_{2}\right)$ and

$$
\mathcal{K}(\mathfrak{p}) \supset \mathcal{D}(\mathfrak{p}) \mathcal{K}\left(\mathfrak{p}_{1}\right)+\mathcal{D}(\mathfrak{p}) \mathcal{K}\left(\mathfrak{p}_{2}\right) \supset \mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k}) .
$$

We claim that $\mathcal{K}(\mathfrak{p})=\mathcal{D}(\mathfrak{p}) \mathcal{K}\left(\mathfrak{p}_{1}\right)+\mathcal{D}(\mathfrak{p}) \mathcal{K}\left(\mathfrak{p}_{2}\right)$. Let $D \in \mathcal{K}(\mathfrak{p})$. By Lemma 4.7(3), $\zeta^{s} D \in \mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$ for some $s \in \mathbb{N}$. Write $\zeta=\zeta_{1} \zeta_{2}$, where ζ_{i} is the discriminant of $\left(\mathfrak{g}_{i}, \mathfrak{k}_{i}\right)$. By induction and symmetry it 5suffices to prove: if $\zeta_{1} D \in \mathcal{D}(\mathfrak{p}) \mathcal{K}\left(\mathfrak{p}_{1}\right)+$ $\mathcal{D}(\mathfrak{p}) \mathcal{K}\left(\mathfrak{p}_{2}\right)$, then $D \in \mathcal{D}(\mathfrak{p}) \mathcal{K}\left(\mathfrak{p}_{1}\right)+\mathcal{D}(\mathfrak{p}) \mathcal{K}\left(\mathfrak{p}_{2}\right)$.

Observe that

$$
\mathcal{D}(\mathfrak{p}) /\left(\mathcal{D}(\mathfrak{p}) \mathcal{K}\left(\mathfrak{p}_{1}\right)+\mathcal{D}(\mathfrak{p}) \mathcal{K}\left(\mathfrak{p}_{2}\right)\right) \cong\left(\mathcal{D}\left(\mathfrak{p}_{1}\right) / \mathcal{K}\left(\mathfrak{p}_{1}\right)\right) \otimes\left(\mathcal{D}\left(\mathfrak{p}_{2}\right) / \mathcal{K}\left(\mathfrak{p}_{2}\right)\right)
$$

Let $\left\{Q_{j}\right\}_{j}$ be a \mathbb{C}-basis of a complement of $\mathcal{K}\left(\mathfrak{p}_{2}\right)$ in $\mathcal{D}\left(\mathfrak{p}_{2}\right)$. Denote by \bar{D} be the class of D in the left hand side of the previous isomorphism and write, with obvious notation, $\bar{D}=\sum_{j} \overline{P_{j}} \otimes \overline{Q_{j}}$ with $P_{j} \in \mathcal{D}\left(\mathfrak{p}_{1}\right)$. From $\zeta_{1} \bar{D}=\sum_{j} \zeta_{1} \overline{P_{j}} \otimes \overline{Q_{j}}=0$ we deduce that $\zeta_{1} \overline{P_{j}}=0$ for all j. Equivalently, $\zeta_{1} P_{j} \in \mathcal{K}\left(\mathfrak{p}_{1}\right)$, which forces $P_{j} \in \mathcal{K}\left(\mathfrak{p}_{1}\right)$ for all j. Thus $\bar{D}=0$, as desired.

5. Applications

The main aim of this section is to prove Theorem D from the introduction and the basic inductive technique is provided by the following version of the Luna Slice Theorem. The unexplained terminology can be found in [30].

Theorem 5.1. ([30, Theorem 1.14]) Let K be an arbitrary reductive group and X be a smooth affine algebraic K-variety. Let $K . b \subset X$ be a closed orbit, and denote by $M=K^{b}$ the centralizer of b. Then M is reductive and $T_{b} X=N \oplus T_{b}(K . b)$ for an M-module N. Thus (N, M) is the slice representation at the point b.

There is a locally closed smooth affine M-stable subvariety $S \subset X$ containing b such that $U=K . S$ is a ϖ_{X}-saturated affine open subset of X which satisfies:
(i) There exists an excellent surjective K-morphism $\varphi: K \times{ }^{M} S \rightarrow U$.
(ii) There exists $f \in \mathcal{O}(N)^{M}$ with $f(0) \neq 0$, and an excellent surjective morphism $\psi: S \rightarrow N_{f}$, such that $\psi(b)=0$ and the induced K-morphism $\phi: K \times{ }^{M} S \rightarrow K \times{ }^{M} N_{f}$ is excellent.

We begin with some technical lemmas which will enable us to apply Theorem 5.1 in proving Theorem D. The notation is as in the beginning of $\S 4$. Furthermore, if X is an irreducible affine G-variety, where G is an arbitrary reductive group, we set:

$$
\mathcal{I}_{G}(X)=\mathcal{K}_{G}(X)^{G} \quad \text { and } \quad R_{G}(X)=\mathcal{D}(X)^{G} / \mathcal{I}_{G}(X)
$$

Observe that $R_{G}(X)$ is a \mathbb{C}-algebra and $\mathcal{O}(X)^{G} \subset R_{G}(X)$.
Lemma 5.2. Let X be a smooth affine G-variety.
(1) Let $\phi \in \mathcal{O}(X)^{G}$. Then, $\mathcal{K}_{G}(X)_{\phi}=\mathcal{K}_{G}\left(X_{\phi}\right)$. If $\mathcal{K}_{G}(X)=\mathcal{D}(X) \tau_{X}(\mathfrak{g})$, then $\mathcal{K}_{G}\left(X_{\phi}\right)=\mathcal{D}\left(X_{\phi}\right) \tau_{X}(\mathfrak{g})$.
(2) Let $U \subset X$ be $a \varpi_{X}$-saturated open affine subset and let $b \in U$ such that $G . b$ is closed. There exists $\phi \in \mathcal{O}(X)^{G}$ such that $b \in X_{\phi}=U_{\phi}$. One has $\mathcal{K}_{G}(U)=\left\{d \in \mathcal{D}(U): d\left(\mathcal{O}(X)^{G}\right)=0\right\}$.

Proof. (1) One needs to show that, if $P \in \mathcal{K}_{G}(X)_{\phi}$, then $P\left(h / \phi^{k}\right)=0$ for all $h \in \mathcal{O}(X)^{G}$ and $k \in \mathbb{N}$. This follows from the formula

$$
[P, \phi]\left(h / \phi^{k}\right)=P\left(h / \phi^{k-1}\right)-\phi P\left(h / \phi^{k}\right)
$$

and induction on the order of P. The second assertion is clear.
(2) Since U is ϖ_{X}-saturated, $\varpi_{X}(U)$ is open. Let $\phi \in \mathcal{O}(X)^{G}$ be such that $(X / / G)_{\phi} \subset U$ and $\phi\left(\varpi_{X}(b)\right) \neq 0$. Then it is easily seen that $X_{\phi}=U_{\phi}$. From (1) we have $\mathcal{K}_{G}(U)_{\phi}=\mathcal{K}_{G}(X)_{\phi}=\mathcal{K}_{G}\left(X_{\phi}\right)$. Hence,

$$
\left\{P \in \mathcal{D}(X)_{\phi}: P\left(\mathcal{O}(X)^{G}\right)=0\right\}=\left\{P \in \mathcal{D}(U)_{\phi}: P\left(\mathcal{O}(U)^{G}\right)=0\right\}
$$

It follows that $\mathcal{K}_{G}(U)=\left\{d \in \mathcal{D}(U): d\left(\mathcal{O}(X)^{G}\right)=0\right\}$.
We recall the following classical result of commutative algebra (see, for example, [10, Section II.10]).

Lemma 5.3. Let $f: R \rightarrow S$ be an étale morphism between affine commutative \mathbb{C}-algebras.
(1) Let M be a finitely generated R-module. Then, $\operatorname{Kdim}_{R} M=\operatorname{Kdim}_{S} S \otimes_{R} M$.
(2) If R and S are domains and J is a non-zero ideal of S, then $f^{-1}(J) \neq 0$.

Lemma 5.4. Let $\varphi: Z \rightarrow U$ be an excellent surjective G-morphism of smooth affine G-varieties.
(1) $\mathcal{O}(Z)^{G} \otimes_{\mathcal{O}(U)^{G}} R_{G}(U)$ identifies with $R_{G}(Z)$.
(2) $R_{G}(U)$ is simple if and only if $R_{G}(Z)$ is simple.
(3) Let \mathcal{F} be a finitely generated $R_{G}(U)$-module and set $\mathcal{G}=R_{G}(Z) \otimes_{R_{G}(U)} \mathcal{F}$. Then $\operatorname{GK} \operatorname{dim} \mathcal{G}=G K \operatorname{dim} \mathcal{F}$. Conversely if \mathcal{G} is a finitely generated $R_{G}(Z)$-module, there exists a finitely generated $R_{G}(U)$-module \mathcal{F} such that $\mathcal{G}=R_{G}(Z) \otimes_{R_{G}(U)} \mathcal{F}$.

Proof. (1) is immediate from the proof of [30, Corollary 4.4].
For simplicity we drop the subscript G in the rest of this proof. Set $A=\mathcal{O}(U)$ and $B=\mathcal{O}(Z)$. Notice that by the faithful flatness of B^{G} over $A^{G}, R(U) \hookrightarrow R(Z)$ via $Q \mapsto 1 \otimes_{A^{G}} Q$. By the definition of $\mathcal{I}(Z), R(Z)$ embeds in $\mathcal{D}(Z / / G)=\mathcal{D}\left(B^{G}\right)$. It follows that we may endow $R(Z)$ with the filtration by ord, the order of differential operators in $\mathcal{D}(Z / / G)$.
(2) Suppose that J is a proper, non-zero ideal of $R(Z)$ and pick $0 \neq Q \in J$. If $Q \notin B^{G}$, there exists $b \in B^{G}$ such that $[b, Q] \neq 0$ and ord $[b, Q]<\operatorname{ord} Q$. Thus, by induction, we deduce that $J \cap B^{G} \neq 0$ and, by Lemma $5.3, J \cap A^{G} \neq 0$. Therefore $J \cap R(U)$ is a proper non-zero ideal of $R(U)$.

Conversely, assume that $R(Z)$ is simple and let $I \subset R(U)$ be a non-zero ideal. As in the previous paragraph, $I \cap A^{G} \neq 0$. Thus $0 \neq R(U)\left(I \cap A^{G}\right) R(U) \subset I$ and
we may as well assume that $I=R(U)\left(I \cap A^{G}\right) R(U)$. Now, we claim that $I R(Z)$ is an ideal of $R(Z)$. Indeed, we have $R(U) I R(Z) \subset I R(Z)$ and

$$
\begin{aligned}
B^{G} I R(Z) & =B^{G} R(U)\left(I \cap A^{G}\right) R(Z)=R(U) B^{G}\left(I \cap A^{G}\right) R(Z) \\
& =R(U)\left(I \cap A^{G}\right) B^{G} R(Z)=I R(Z) .
\end{aligned}
$$

Since $R(Z)=R(U) B^{G}$, this proves the claim.
As $R(Z)$ is simple, this forces $I R(Z)=R(Z)=R(U) \otimes_{A^{G}} B^{G}$. But, $I R(Z)=$ $I\left(R(U) \otimes_{A^{G}} B^{G}\right)=I \otimes_{A^{G}} B^{G}$ and, therefore, $I=R(U)$ by faithful flatness.
(3) Recall [30, Proof of Corollary 4.4] that $\mathcal{D}^{m}(Z)^{G}=B^{G} \otimes_{A^{G}} \mathcal{D}^{m}(U)^{G}$, since φ is excellent. Thus, when we endow $R(U)$ and $R(Z)$ with the filtrations induced by $\left\{\mathcal{D}^{m}(U)^{G}\right\}_{m}$, respectively $\left\{\mathcal{D}^{m}(Z)^{G}\right\}_{m}$, we obtain $\operatorname{gr}(R(Z))=B^{G} \otimes_{A^{G}} \operatorname{gr}(R(U))$.

Let \mathcal{F} be a finitely generated $R(U)$-module. Choose a good filtration $\left\{\Phi_{k} \mathcal{F}\right\}_{k}$ on \mathcal{F}; that is, a filtration such that the associated graded module $\operatorname{gr}_{\Phi}(\mathcal{F})$ is finitely generated over the affine commutative algebra $\operatorname{gr}(R(U)) \cong \operatorname{gr}\left(\mathcal{D}(U)^{G}\right) / \operatorname{gr}(\mathcal{I}(U))$. Then, it is not difficult to see that $\Phi_{k} \mathcal{G}=B^{G} \otimes_{A^{G}} \Phi_{k} \mathcal{F}$ defines a good filtration on the $R(Z)$-module \mathcal{G} such that $\operatorname{gr}_{\Phi}(\mathcal{G})=B^{G} \otimes_{A^{G}} \operatorname{gr}_{\Phi}(\mathcal{F})$, as a $\operatorname{gr}(R(Z))$ module. Since $A^{G} \rightarrow B^{G}$ is étale, so is $\operatorname{gr}(R(U)) \rightarrow \operatorname{gr}(R(Z))=B^{G} \otimes_{A^{G}} \operatorname{gr}(R(U))$ (base change for étale morphisms). Recall [24] that $\operatorname{GKdim} \mathcal{F}=\operatorname{Kdim} \operatorname{gr}_{\Phi}(\mathcal{F})$ and $\operatorname{GKdim} \mathcal{G}=\operatorname{Kdim} \operatorname{gr}_{\Phi}(\mathcal{G})$. Since $\operatorname{gr}_{\Phi}(\mathcal{G})=B^{G} \otimes_{A^{G}} \operatorname{gr}_{\Phi}(\mathcal{F})$, Lemma 5.3 yields $G K \operatorname{dim} \mathcal{F}=G K \operatorname{dim} \mathcal{G}$.

Conversely, if \mathcal{G} is a finitely generated $R(Z)$-module, write $\mathcal{G}=\sum_{i=1}^{s} R(Z) v_{i}$ and set $\mathcal{F}=\sum_{i=1}^{s} R(U) v_{i}$. It is then clear that $\mathcal{G}=R(Z) \otimes_{R(U)} \mathcal{F}$.

Lemma 5.5. Let M be a reductive subgroup of G, fix a smooth affine M-variety Y and set $Z=G \times{ }^{M} Y$. Then, $R_{M}(Y) \cong R_{G}(Z)$.
Proof. As in [19, Proof of Lemma 4.3] we let $L=G \times M$ act on $V=G \times Y$ by $\left(g_{1}, h\right) \cdot\left(g_{2}, y\right)=\left(g_{1} g_{2} h^{-1}, h . y\right)$. Hence, $Z=V / / M, Z / / G=Y / / M$, and $\mathcal{O}(V)^{L}=$ $\mathcal{O}(Y)^{M}$. One has an L-module decomposition $\mathcal{D}(G)=\mathcal{D}(G) \tau_{G}(\mathfrak{g}) \oplus \mathcal{O}(G)$, where G acts via left translation and M acts via right translation. Taking the G-invariants yields the M-decomposition

$$
\mathcal{D}(G)^{G}=\left[\mathcal{D}(G) \tau_{G}(\mathfrak{g})\right]^{G} \bigoplus \mathcal{O}(G)^{G}=\left[\mathcal{D}(G) \tau_{G}(\mathfrak{g})\right]^{G} \bigoplus \mathbb{C}
$$

Since $\mathcal{D}(V)=\mathcal{D}(G) \otimes_{\mathbb{C}} \mathcal{D}(Y)$ as a G-module (where G acts via left translation on the first factor), we obtain the decomposition

$$
\begin{equation*}
\mathcal{D}(V)^{G}=\left[\mathcal{D}(G) \tau_{G}(\mathfrak{g})\right]^{G} \otimes_{\mathbb{C}} \mathcal{D}(Y) \bigoplus \mathbb{C} \otimes_{\mathbb{C}} \mathcal{D}(Y) \tag{5.1}
\end{equation*}
$$

Since the G and M actions on V commute, (5.1) is a decomposition of M-modules. Recall now from [19, Lemma 4.3] the decomposition of L-modules

$$
\mathcal{K}_{L}(V)=\mathcal{D}(V) \tau_{G}(\mathfrak{g}) \bigoplus \mathcal{O}(G) \otimes_{\mathbb{C}} \mathcal{K}_{M}(Y)
$$

which gives the decomposition of M-modules

$$
\begin{equation*}
\mathcal{K}_{L}(V)^{G}=\left[\mathcal{D}(G) \tau_{G}(\mathfrak{g})\right]^{G} \otimes_{\mathbb{C}} \mathcal{D}(Y) \bigoplus \mathbb{C} \otimes_{\mathbb{C}} \mathcal{K}_{M}(Y) \tag{5.2}
\end{equation*}
$$

Observe that the M-equivariant algebra map, $D \mapsto 1 \otimes_{\mathbb{C}} D$, from $\mathcal{D}(Y)$ to $\mathcal{D}(V)=$ $\mathcal{D}(G) \otimes_{\mathbb{C}} \mathcal{D}(Y)$ induces the M-equivariant embedding of algebras $\imath: \mathcal{D}(Y) \hookrightarrow \mathcal{D}(V)^{G}$ through the second direct summand of (5.1). It is then clear from (5.2) that \imath gives an isomorphism of M-modules $\mathcal{D}(Y) / \mathcal{K}_{M}(Y) \xrightarrow{\sim} \mathcal{D}(V)^{G} / \mathcal{K}_{L}(V)^{G}$. Now, taking the M-invariants we obtain an isomorphism of algebras

$$
\begin{equation*}
\mathcal{D}(Y)^{M} / \mathcal{I}_{M}(Y)=R_{M}(Y) \xrightarrow{\sim} R_{L}(V)=\mathcal{D}(V)^{L} / \mathcal{I}_{L}(V) \tag{5.3}
\end{equation*}
$$

By [30, Corollary 4.5(i)], the restriction to M-invariant functions induces a surjective algebra homomorphism $\gamma: \mathcal{D}(V)^{M} \rightarrow \mathcal{D}(Z)$. It is easily seen, cf. [19, Proof of Lemma 4.3], that $Q \in \mathcal{K}_{G}(Z)$ if and only if $Q=\gamma\left(Q_{1}\right)$ for some $Q_{1} \in \mathcal{K}_{L}(V)^{M}$. It
follows that γ induces an isomorphism of G-modules from $\mathcal{D}(V)^{M} / \mathcal{K}_{L}(V)^{M}$ onto $\mathcal{D}(Z) / \mathcal{K}_{G}(Z)$. Now, take the G-invariants to get the algebra isomorphism

$$
\begin{equation*}
R_{L}(V)=\mathcal{D}(V)^{L} / \mathcal{I}_{L}(V) \xrightarrow{\sim} \mathcal{D}(Z)^{G} / \mathcal{I}_{G}(Z)=R_{G}(Z) . \tag{5.4}
\end{equation*}
$$

The lemma then follows from (5.3) and (5.4).
Remark 5.6. Let G, K be as in $\S 1$. As in Remark 4.1 suppose that ϑ is induced by an involution θ of G. Then we claim that:

$$
\begin{equation*}
R_{K}(\mathfrak{p})=R_{H}(\mathfrak{p}) \tag{5.5}
\end{equation*}
$$

for any subgroup $K \subset H \subset G^{\theta}$. The proof of (5.5) reduces easily to the case when \mathfrak{g} is semisimple and $G=G_{\text {ad }}$ is the adjoint group of \mathfrak{g}. Denote then by $A \subset G$ the torus such that $\operatorname{Lie}(A)=\mathfrak{a}$ and set $F=\left\{a \in A: a^{2}=1\right\}$. In this setting, by [16, Proposition 8] we know that $H=K \rtimes \Gamma$ with $\Gamma=F \cap H$. Thus $R_{H}(\mathfrak{p})=R_{K}(\mathfrak{p})^{\Gamma}$. Using the fact that F acts trivially on $\mathcal{O}(\mathfrak{p})^{K}$ (cf. [16, Proposition 10]) one can check that $a . D-D \in I_{K}(\mathfrak{p})$ for all $a \in \Gamma, D \in \mathcal{D}(\mathfrak{p})^{K}$, and (5.5) follows.

The two next results will give a proof of Theorem D from the introduction.
Theorem 5.7. Let $(\mathfrak{g}, \mathfrak{k})$ be a nice symmetric pair. Then, $R(\mathfrak{p})=R_{K}(\mathfrak{p})=$ $\mathcal{D}(\mathfrak{p})^{K} / \mathcal{K}(\mathfrak{p})^{K}$ is a simple ring.

Proof. Set $\mathfrak{g}_{1}=[\mathfrak{g}, \mathfrak{g}], \mathfrak{p}_{1}=\mathfrak{p} \cap \mathfrak{g}_{1}$ and let \mathfrak{z} denote the centre of \mathfrak{g}. Then Lemma 4.4 implies that $R(\mathfrak{p})=\mathcal{D}(\mathfrak{p} \cap \mathfrak{z}) \otimes_{\mathbb{C}} R\left(\mathfrak{p}_{1}\right)$. It follows that we may restrict to the case when \mathfrak{g} is semisimple and $G=G_{\text {ad }}$. We argue by induction on $\operatorname{dim} \mathfrak{g}$, with the case $\operatorname{dim} \mathfrak{g}=0$ being obvious.

Let $0 \neq b \in \mathfrak{p}$ be semisimple; thus $\left(\mathfrak{p}^{b}, K^{b}\right)$ is the slice representation of the K-action on \mathfrak{p} at the point b. We adopt the notation of Theorem 5.1. By induction and Remark $5.6 R_{M}(N)$ is simple, and so, by Lemma 5.2, $R_{M}(N)_{f}=R_{M}\left(N_{f}\right)$ is also simple. It then follows from Lemmas 5.4 and 5.5 that $R_{K}(U)$ is a simple ring. Let $\bar{J}=J / \mathcal{I}(\mathfrak{p})$ be a non-zero ideal of $R(\mathfrak{p})$, for some $J \subset \mathcal{D}(\mathfrak{p})^{K}$. By Lemma 5.2, there exists $\phi \in \mathcal{O}(\mathfrak{p})^{K}$ such that $\phi(b) \neq 0$ and

$$
R_{K}(U)_{\phi}=R_{K}\left(U_{\phi}\right)=R_{K}\left(\mathfrak{p}_{\phi}\right)=R_{K}(\mathfrak{p})_{\phi} .
$$

Since $R_{K}(U)_{\phi}$ is simple and $\bar{J}_{\phi} \neq 0(\phi$ is a non-zero divisor in $R(\mathfrak{p})$), we obtain that $\bar{J}_{\phi}=R_{K}(\mathfrak{p})_{\phi}$. In other words, there exists $s \in \mathbb{N}$ such that $\phi^{s} \in J$.

Now, consider the $\mathcal{D}(\mathfrak{p})$-module $\mathcal{F}=\mathcal{D}(\mathfrak{p}) /(\mathcal{D}(\mathfrak{p}) J+\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k}))$. Then \mathcal{F} is a compatible K-module and, by the previous paragraph, $\operatorname{Supp} \mathcal{F}$ is a closed K-stable subset of \mathfrak{p} which does not contain any non-zero semisimple element. This forces Supp $\mathcal{F} \subset \mathbf{N}(\mathfrak{p})$ and therefore $\operatorname{Ch} \mathcal{F} \subset \mathcal{C}(\mathfrak{p}) \cap(\mathbf{N}(\mathfrak{p}) \times \mathfrak{p})$. Thus, by Lemma 2.2, \mathcal{F} is holonomic, and therefore of finite length as a left $\mathcal{D}(\mathfrak{p})$-module. By Theorem 4.5, $\mathcal{K}(\mathfrak{p})=\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$, and so $R(\mathfrak{p})=A(\mathfrak{p})$, in the notation of (3.6). Moreover, as $J \subset \mathcal{D}(\mathfrak{p})^{K}, \mathcal{F}$ is a $(\mathcal{D}(\mathfrak{p}), A(\mathfrak{p})$)-bimodule. Thus, by Corollary 3.9, $\mathcal{F}=0$ and hence $R(\mathfrak{p}) / \bar{J}=\mathcal{F}^{K}=0$.

Theorem 5.8. Let $(\mathfrak{g}, \mathfrak{k})$ be a nice symmetric pair and let Q be a non-zero finitely generated $R(\mathfrak{p})$-module. Then $\operatorname{GKdim} Q \geqslant \ell$.

Proof. As before, write $\mathfrak{p}_{1}=\mathfrak{p} \cap[\mathfrak{g}, \mathfrak{g}]$. If $\mathfrak{p}_{1}=0$, then \mathfrak{p} is contained in the centre \mathfrak{z} of \mathfrak{g} and K acts trivially on \mathfrak{p}. Thus, $R(\mathfrak{p})=\mathcal{D}(\mathfrak{p}), \ell=\operatorname{dim} \mathfrak{p}$, and the result is nothing but the "Bernstein inequality" (see, for example, [3, V.1.12]). We may therefore assume that $\mathfrak{p}_{1} \neq 0$. We prove the theorem by induction on $\operatorname{dim} \mathfrak{g}$ and we adopt the notation developed prior to Corollary 3.9.

Suppose that Q is a non-zero finitely generated $R(\mathfrak{p})$-module with $\operatorname{GK} \operatorname{dim} Q<\ell$. Let $b \in \mathfrak{p}$ be a semisimple element and suppose that $b \notin \mathfrak{z}$, so that $\operatorname{dim} \mathfrak{g}^{b}<$ $\operatorname{dim} \mathfrak{g}$. Then, $\left(\mathfrak{p}^{b}, K^{b}\right)=(N, M)$ is the slice representation at the point b and
we apply Theorem 5.1, from which we retain the notation. Set $Z=K \times{ }^{M} S$ and $T=K \times{ }^{M} N_{f}$. Let $\phi \in \mathcal{O}(\mathfrak{p})^{K}$ be as in Lemma 5.2; one deduces that $R_{K}(U)_{\phi}=R_{K}\left(U_{\phi}\right)=R_{K}\left(\mathfrak{p}_{\phi}\right)=R_{K}(\mathfrak{p})_{\phi}$. Therefore $Q_{\phi}=R_{K}(U)_{\phi} \otimes_{R_{K}(\mathfrak{p})} Q$ is the localization of $Q_{U}=R_{K}(U) \otimes_{R_{K}(\mathfrak{p})} Q$ with respect to the Ore set $\left\{\phi^{k}: k \in \mathbb{N}\right\}$. It follows that we can write $Q_{\phi}=B_{\phi}$ for some finitely generated $R_{K}(U)$-module B without ϕ-torsion. Then, by Lemma 4.8 we have

$$
\operatorname{GKdim} B=\operatorname{GKdim} B_{\phi}=\operatorname{GKdim} Q_{\phi} \leq \operatorname{GKdim} Q<\ell .
$$

Set $B_{Z}=R_{K}(Z) \otimes_{R_{K}(U)} B=\mathcal{O}(Z)^{K} \otimes_{\mathcal{O}(U)^{K}} B$. By Lemma 5.4 we know that $B_{Z}=R_{K}(Z) \otimes_{R_{K}(T)} P$ for some finitely generated $R_{K}(T)$-module and we have

$$
\mathrm{GK} \operatorname{dim} P=\mathrm{GKdim} B_{Z}=\mathrm{GKdim} B<\ell .
$$

By Lemma $5.5, R_{K}(T) \cong R_{M}\left(N_{f}\right)$ and we can regard P as an $R_{M}\left(N_{f}\right)$-module. One sees as above that $R_{M}\left(N_{f}\right)=R_{M}(N)_{f}$ and we can write $P=C_{f}$ for some finitely generated $R_{M}(N)$-module C without f-torsion. By Lemma 4.8 again, we have GKdim $C=G K \operatorname{dim} P<\ell$. But, by induction applied to $R_{M}(N)=$ $R_{K^{b}}\left(\mathfrak{p}^{b}\right)=R_{\left(K^{b}\right)_{0}}\left(\mathfrak{p}^{b}\right)$ (see Remark 5.6), this forces $B=0$. Therefore, $0=B_{Z}=$ $\mathcal{O}(Z)^{K} \otimes_{\mathcal{O}(U)^{K}} B$ and $B=0$ by faithful flatness of $\mathcal{O}(Z)^{K}$ over $\mathcal{O}(U)^{K}$. Hence $Q_{\phi}=0$.

Observe that $\mathfrak{p} / / K=\mathfrak{p}_{1} / / K_{1} \times \mathfrak{z} \cap \mathfrak{p}$ and that the points $\varpi_{\mathfrak{p}}(b)$, where $b \in \mathfrak{p} \backslash \mathfrak{z} \cap \mathfrak{p}$ is semisimple can be identified with the points $\left(\varpi_{\mathfrak{p}_{1}}(a), c\right) \in \mathfrak{p}_{1} / / K_{1} \times \mathfrak{z} \cap \mathfrak{p}$ such that $\varpi_{\mathfrak{p}_{1}}(a) \neq \varpi_{\mathfrak{p}_{1}}(0)$. To sum up, we have seen in the previous paragraph that the support of the $\mathcal{O}(\mathfrak{p} / / K)$-module Q is contained in $\left\{\varpi_{\mathfrak{p}_{1}}(0)\right\} \times \mathfrak{z} \cap \mathfrak{p}$. Since $\left\{\varpi_{\mathfrak{p}_{1}}(0)\right\} \times \mathfrak{z} \cap \mathfrak{p}$ is the variety of zeroes of $S_{+}\left(\mathfrak{p}_{1}^{*}\right)^{K_{1}}$, we have shown that, for all $v \in Q$, there exists a power of $S_{+}\left(\mathfrak{p}_{1}^{*}\right)^{K_{1}}$, say F_{1}, such that $F_{1} . v=0$.

Now, recall that the restriction of the form κ to \mathfrak{p} induces a K-equivariant isomorphism $\kappa: \mathfrak{p} \xrightarrow{\sim} \mathfrak{p}^{*}$ such that $\kappa\left(\mathfrak{p}_{1}\right)=\mathfrak{p}_{1}^{*}$. It is well known that one can extends κ to a K-equivariant automorphism $\varkappa: \mathcal{D}(\mathfrak{p}) \xrightarrow{\sim} \mathcal{D}(\mathfrak{p})$ (the Fourier transform, see $[20, \S 7]$) which satisfies: $\varkappa(\tau(a))=\tau(a)$ for $a \in \mathfrak{k}, \varkappa\left(S(\mathfrak{p})^{K}\right)=S\left(\mathfrak{p}^{*}\right)^{K}$ and $\varkappa\left(S\left(\mathfrak{p}_{1}\right)^{K_{1}}\right)=S\left(\mathfrak{p}_{1}^{*}\right)^{K_{1}}$. Since $\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})=\mathcal{K}(\mathfrak{p})$ by Theorem 4.5, we have $\varkappa(\mathcal{I}(\mathfrak{p}))=\mathcal{I}(\mathfrak{p})$ and \varkappa induces an automorphism of $R(\mathfrak{p})$. Return to the module Q and define the $R(\mathfrak{p})$-module Q^{\varkappa} to be the abelian group Q with action $a * v=\varkappa(a) \cdot v$, for $a \in R(\mathfrak{p}), v \in Q$. One clearly has $\operatorname{GK} \operatorname{dim} Q^{\varkappa}=\operatorname{GKdim} Q<\ell$. Hence each element of Q^{\varkappa} is killed by a power of $S_{+}\left(\mathfrak{p}_{1}^{*}\right)^{K_{1}}$. In other words, each $v \in Q$ is killed by a power, say F_{1}^{\prime}, of $S_{+}\left(\mathfrak{p}_{1}\right)^{K_{1}}$.

Thus, by the last two paragraphs, $R(\mathfrak{p}) . v$ is a factor of $M_{1}=R(\mathfrak{p}) /\left(R(\mathfrak{p}) F_{1}+\right.$ $\left.R(\mathfrak{p}) F_{1}^{\prime}\right)$. Set

$$
M=\mathcal{D}(\mathfrak{p}) /\left(\mathcal{D}(\mathfrak{p}) F_{1}+\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})+\mathcal{D}(\mathfrak{p}) F_{1}^{\prime}\right)
$$

By Corollary $3.9, M=0$. On the other hand, $M^{K}=M_{1}$, whence $v=0$ and $Q=0$, as desired.

Corollary 5.9. Let $(\mathfrak{g}, \mathfrak{k})$ be a nice symmetric pair, $\mathbf{n} \subset S(\mathfrak{p})^{K}$ be a maximal ideal and $0 \neq \phi \in \mathcal{O}(\mathfrak{p})^{K}$. Then, $\mathcal{D}(\mathfrak{p})=\mathcal{D}(\mathfrak{p}) \phi+\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})+\mathcal{D}(\mathfrak{p}) \mathbf{n}$.

Proof. Set $M=\mathcal{D}(\mathfrak{p}) /(\mathcal{D}(\mathfrak{p}) \phi+\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})+\mathcal{D}(\mathfrak{p}) \mathbf{n})$. It suffices to prove that $M^{K}=$ $R(\mathfrak{p}) /(R(\mathfrak{p}) \phi+R(\mathfrak{p}) \mathbf{n})=0$, or, by Theorem 5.8, that GKdim $M^{K}<\ell$. Recall from $\S 3$ that the filtration $\left\{\mathcal{D}^{k}(\mathfrak{p})\right\}_{k}$ on $\mathcal{D}(\mathfrak{p})$ induces a filtration on $A(\mathfrak{p})=R(\mathfrak{p})$ such that $\operatorname{Spec} \operatorname{gr}(R(\mathfrak{p}))=\operatorname{Ch} \mathcal{N} / / K \subset \mathcal{C}(\mathfrak{p}) / / K$. Now, since $\operatorname{gr}(\mathbf{n})=S_{+}(\mathfrak{p})^{K}$, we have

$$
\text { Ch } M \subset \mathcal{X}=\mathcal{C}(\mathfrak{p}) \cap(\mathfrak{p} \times \mathbf{N}(\mathfrak{p})) \cap(\{\phi=0\} \times \mathfrak{p})
$$

It follows from Proposition $2.1(2)$ that $X / / K$ identifies with the subvariety $\{\phi=0\}$ of $\mathfrak{p} / / K$. Since $\mathfrak{p} / / K$ is an irreducible variety of dimension ℓ, this implies that GKdim $M^{K}=\operatorname{dim} \operatorname{Ch} M / / K \leqslant \operatorname{dim} \mathcal{X} / / K<\ell$.

We now prove Corollary C from the introduction. Let \mathfrak{g}_{0} be a real reductive Lie algebra and $\left(\mathfrak{g}_{0}, \vartheta_{0}\right)$ be a symmetric pair with associated decomposition $\mathfrak{g}_{0}=\mathfrak{k}_{0} \oplus \mathfrak{p}_{0}$. Let ϑ be the extension of ϑ_{0} to $\mathfrak{g}=\mathbb{C} \otimes_{\mathbb{R}} \mathfrak{g}_{0}$; then $(\mathfrak{g}, \vartheta)$ is a symmetric pair and $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$, where $\mathfrak{k}=\mathbb{C} \otimes_{\mathbb{R}} \mathfrak{k}_{0}$ and $\mathfrak{p}=\mathbb{C} \otimes_{\mathbb{R}} \mathfrak{p}_{0}$. If U is a subset of \mathfrak{p}_{0} we denote by U^{\prime} the set of regular semisimple elements in U; thus $U^{\prime}=U \cap \mathfrak{p}^{\prime}=\{u \in U: \zeta(u) \neq 0\}$. Recall that a distribution T on the open subset $U \subset \mathfrak{p}_{0}$ is locally invariant if $\tau(\mathfrak{k}) \cdot T=0$, and is an eigendistribution if there exists a maximal ideal $\mathbf{n} \subset S(\mathfrak{p})^{K}$ such that $\mathbf{n} . T=0$.

Corollary 5.10. Assume that $(\mathfrak{g}, \mathfrak{k})$ is a nice symmetric pair. Let T be a locally invariant eigendistribution on the open subset $U \subset \mathfrak{p}_{0}$ such that $\operatorname{Supp} T \subset U \backslash U^{\prime}$. Then $T=0$.

Proof. (We mimic the proof given in [38, p. 798] in the diagonal case.) Let $\mathbf{n} \subset$ $S(\mathfrak{p})^{K}$ be a maximal ideal such that $\mathbf{n} \cdot T=0$. Recall [7, Lemma 21] that, for all $u \in U$, there exists $s \in \mathbb{N}$ and an open subset $u \in V \subset U$ such that $\zeta^{s} \cdot T_{\mid V}=0$. Let L be the annihilator in $\mathcal{D}(\mathfrak{p})$ of $T_{\mid V}$. Since $T_{\mid V}$ is locally invariant, we see that L contains $\tau(\mathfrak{k}), \mathbf{n}$ and ζ^{s}. Thus $L=\mathcal{D}(\mathfrak{p})$ by Corollary 5.9 and therefore $T_{\mid V}=0$. Hence $T=0$.

Remark. Let $0 \neq \phi \in \mathcal{O}(\mathfrak{p})^{K}$ and set $U_{\phi}=\{u \in U: \phi(u) \neq 0\}$. Replacing ζ by ϕ in the previous proof shows that there exists no non-zero locally invariant eigendistribution supported on $U \backslash U_{\phi}$. However, the case $\phi=\zeta$ readily implies the more general result, since any locally invariant eigendistribution is a real analytic function on U^{\prime}, see [32, Theorem 5.3].

Now suppose that $X \subsetneq \mathfrak{p}$ is an algebraic K-subvariety defined by an ideal $0 \neq I \subset$ $\mathcal{O}(\mathfrak{p})$. Since the generic K-orbit in \mathfrak{p} is closed, one easily sees that $I^{K} \neq 0$. We can therefore also conclude that there is no non-zero locally invariant eigendistribution supported on $U \cap X$.

6. The rank one case

In the case when $(\mathfrak{g}, \mathfrak{k})$ has rank one it is easy to calculate $\mathcal{K}(\mathfrak{p})$ and $R(\mathfrak{p})=$ $\mathcal{D}(\mathfrak{p})^{G} / \mathcal{K}(\mathfrak{p})^{G}$. We do so in this section, since it shows that the main results of this paper can fail for symmetric pairs that are not nice. Curiously, these computations also show how one may be able to modify those theorems so that they hold for all symmetric pairs.

Thus, throughout this section, we will assume that \mathfrak{g} is semisimple and that $(\mathfrak{g}, \mathfrak{k})$ is a symmetric pair of rank one, unless we explicitly say otherwise (the one exception will be in Theorem 6.4 and the comments immediately preceding it).

Recall from $\S 3$ that the K-invariant elements $\sum_{i=1}^{n} \partial_{x_{i}}^{2}, \sum_{i=1}^{n} x_{i}^{2}$ and $\mathrm{E}+\frac{n}{2}$ generate a Lie algebra $\mathfrak{u} \cong \mathfrak{s l}(2, \mathbb{C})$ inside $\mathcal{D}(\mathfrak{p})$. In order to work with highest weight modules, we slightly change our notation and set

$$
e=\frac{1}{2} \sum_{i=1}^{n} \partial_{x_{i}}^{2}, \quad f=-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}, \quad h=-\mathrm{E}-\frac{n}{2} .
$$

(These elements still satisfy $[e, f]=h,[h, e]=2 e,[h, f]=-2 f$.) Since the $\operatorname{ad}(\mathfrak{u})-$ action is locally finite on $\mathcal{D}(\mathfrak{p})$, it induces an action of the group $\mathrm{SL}(2, \mathbb{C})$ by algebra automorphisms on $\mathcal{D}(\mathfrak{p})$ and $\mathcal{D}(\mathfrak{p})^{K}$. Since $\exp (\xi) . d=\exp (\operatorname{ad}(\xi)) . d$, for all $\xi \in \mathfrak{u}$, and $d \in \mathcal{D}(\mathfrak{p})$, it is then easily checked that $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}(2, \mathbb{C})$ acts by the formulas:

$$
g . \partial_{x_{i}}=a \partial_{x_{i}}+c x_{i}, \quad g \cdot x_{i}=b \partial_{x_{i}}+d x_{i} .
$$

In particular, the element $\varepsilon=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$ acts by $\varepsilon . e=-f, \varepsilon . f=-e$ and $\varepsilon . h=-h$.
Recall the definition of the radial component map: The Chevalley isomorphism $S\left(\mathfrak{p}^{*}\right)^{K} \simeq S\left(\mathfrak{a}^{*}\right)^{W}$ induces an isomorphism $\mathcal{D}(\mathfrak{p} / / K) \simeq \mathcal{D}(\mathfrak{a} / W)$; by composing this isomorphism with the natural restriction map $\mathcal{D}(\mathfrak{p})^{K} \rightarrow \mathcal{D}(\mathfrak{p} / / K)$, we obtain
the radial component map rad : $\mathcal{D}(\mathfrak{p})^{K} \longrightarrow \mathcal{D}(\mathfrak{a} / W)$. Note that Ker rad $=\mathcal{I}(\mathfrak{p})$ and $R(\mathfrak{p})$ is isomorphic to $R=\operatorname{Im} \mathrm{rad}$. Set

$$
\bar{e}=\operatorname{rad}(e), \quad \bar{f}=\operatorname{rad}(f), \quad \bar{h}=\operatorname{rad}(h) .
$$

Since rad is an algebra map, the adjoint action of the Lie algebra $\operatorname{rad}(\mathfrak{u})$ on R is locally finite, and therefore induces an action of $\operatorname{SL}(2, \mathbb{C})$ on R such that $\operatorname{rad}(g . d)=$ $g . \operatorname{rad}(d)$ for all $g \in \operatorname{SL}(2, \mathbb{C}), d \in \mathcal{D}(\mathfrak{p})^{K}$. In particular, $\varepsilon \cdot \bar{e}=-\bar{f}, \varepsilon \cdot \bar{f}=-\bar{e}$ and $\varepsilon . \bar{h}=-\bar{h}$.

Choose the coordinate system $\left\{x_{i}, \partial_{x_{i}}\right\}_{i}$ of $\mathcal{D}(\mathfrak{p})$ such that $t=x_{1}$ is the coordinate function on \mathfrak{a}, and x_{2}, \ldots, x_{n} are coordinate functions on a κ-orthogonal complement of \mathfrak{a} in \mathfrak{p}. Then the Weyl group $W=\{ \pm 1\}$ acts on $S\left(\mathfrak{a}^{*}\right)=\mathbb{C}[t]$ by $t \mapsto-t$ and $S\left(\mathfrak{a}^{*}\right)^{W}=\mathbb{C}[z]$, where $z=t^{2}$. Furthermore, $\operatorname{rad}\left(\sum_{i=1}^{n} x_{i}^{2}\right)=z$, $\operatorname{rad}\left(\sum_{i=1}^{n} \partial_{x_{i}}^{2}\right)=4 z \partial_{z}^{2}+2 n \partial_{z}$, and $\operatorname{rad}(\mathrm{E})=2 z \partial_{z}$. Hence,

$$
\begin{equation*}
\bar{e}=2 z \partial_{z}^{2}+n \partial_{z}, \quad \bar{f}=-\frac{1}{2} z, \quad \bar{h}=-2 z \partial_{z}-\frac{n}{2} . \tag{6.1}
\end{equation*}
$$

Lemma 6.1. Set $U=\mathbb{C}\langle\bar{e}, \bar{f}, \bar{h}\rangle$. Then,

$$
R=U \cong U(\mathfrak{s l}(2, \mathbb{C})) /\left(\omega-\frac{n(n-4)}{4}\right)
$$

where $\omega=h^{2}+2 h+4 f e$ is the Casimir element of the enveloping algebra $U(\mathfrak{s l}(2, \mathbb{C}))$.
Proof. Obviously, $U \neq \mathbb{C}$ and U is a factor of $U(\mathfrak{s l}(2, \mathbb{C}))$. Since $\mathcal{D}(\mathfrak{a} / W)$ is a domain, $U \cong U(\mathfrak{s l}(2, \mathbb{C})) /(\omega-c)$ for some $c \in \mathbb{C}$. Consider the $\mathcal{D}(\mathfrak{a} / W)$-module $S\left(\mathfrak{a}^{*}\right)^{W}=\mathbb{C}[z]$ as an U-module. Then $\bar{e} .1=0, \bar{f} .1=-\frac{1}{2} z$, and $\bar{h} .1=-\frac{n}{2}$; hence $\mathbb{C}[z]$ is a highest weight $\mathfrak{s l}(2, \mathbb{C})$-module with highest weight $-\frac{n}{2}$. Thus, $c=\frac{n(n-4)}{4}$.

The element $\bar{f}=-\frac{1}{2} z$ acts locally ad-nilpotently on U, R and $\mathcal{D}(\mathfrak{a} / W)$. We may therefore localize at the Ore set $\left\{z^{k}: k \in \mathbb{N}\right\}$ to obtain

$$
U\left[\bar{f}^{-1}\right]=U\left[z^{-1}\right] \subset R\left[z^{-1}\right] \subset \mathcal{D}(\mathfrak{a} / W)\left[z^{-1}\right]
$$

Now, (6.1) shows that $U\left[z^{-1}\right]=\mathbb{C}\left[z^{ \pm 1}, \partial_{z}\right]$, while $\mathcal{D}(\mathfrak{a} / W)\left[z^{-1}\right]=\mathbb{C}\left[z^{ \pm 1}, \partial_{z}\right]$. Thus, $U\left[\bar{f}^{-1}\right]=R\left[\bar{f}^{-1}\right]$. Recall that the element $\varepsilon \in \operatorname{SL}(2, \mathbb{C})$ interchanges \bar{f} and $-\bar{e}$, from which it follows that $U\left[\bar{e}^{-1}\right]=R\left[\bar{e}^{-1}\right]$. Thus, $R \subset U\left[\bar{e}^{-1}\right] \cap U\left[\bar{f}^{-1}\right]$. However, it is well known that $U=U\left[\bar{e}^{-1}\right] \cap U\left[\bar{f}^{-1}\right]$; thus $R=U$.

Lemma 6.2. Assume that $n=2 r \geqslant 4$. Then, $V=\mathbb{C}[z] z^{1-r} / \mathbb{C}[z]$ is a finite dimensional simple R-module. Indeed, $V \cong R /\left(R \bar{f}^{r-1}+R(\bar{h}-r+2)+R \bar{e}\right)$

Proof. This is a routine computation.
Recall that, when $n \geqslant 4$, the rank one symmetric pair is not nice (see Theorem 2.5). The following result shows that Theorem 3.8 fails for such a pair and, consequently, that the proof of Theorem 4.5 will also not work in this situation. See, however, the first remark following Theorem 3.8. This result is related to the computation of the "minimal extension" $\mathcal{L}(\mathbf{N}(\mathfrak{p}), \mathfrak{p})$, see [25, pp. 220-221].
Proposition 6.3. Assume that $n=2 r \geqslant 4$ and set $L=\mathcal{D}(\mathfrak{p}) f^{r-1}+\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})+$ $\mathcal{D}(\mathfrak{p}) e$. Then, $M=\mathcal{D}(\mathfrak{p}) / L$ is a non-zero module that satisfies (3.5).
Proof. Here, $\mathbf{N}(\mathfrak{p})$ is the variety of zeroes, in \mathfrak{p}, of the polynomial f and $S(\mathfrak{p})^{K}=$ $\mathbb{C}[e]$. Thus M does have the form of (3.5). Consider the R-module V of Lemma 6.2 as an $A(\mathfrak{p})$-module. By the final assertion of that lemma, V is a factor of $V^{\prime}=$ $A(\mathfrak{p}) /\left(A(\mathfrak{p}) f^{r-1}+A(\mathfrak{p}) e\right)$. Now, $M=\mathcal{N} \otimes_{A(\mathfrak{p})} V^{\prime}=\mathcal{D}(\mathfrak{p}) / L$ and, since $M^{K}=V^{\prime} \neq$ 0 , we have $M \neq 0$.

In order to describe the left ideal $\mathcal{K}(\mathfrak{p})$ in the rank one case, we need to introduce a Lie subalgebra of $\operatorname{End}_{\mathbb{C}}(\mathfrak{p})$. Since the definition can be made in the general case, we return to the situation where $(\mathfrak{g}, \mathfrak{k})$ is a symmetric pair of arbitrary rank.

Recall that any $a \in \operatorname{End}_{\mathbb{C}}(\mathfrak{p})$ defines a vector field $\tilde{\tau}(a) \in \Theta(\mathfrak{p})$ by the formula $(\tilde{\tau}(a) \cdot \varphi)(v)=\left.\frac{d}{d t}\right|_{t=0} \varphi(v-t a . v)$, for all $\varphi \in \mathcal{O}(\mathfrak{p}), v \in \mathfrak{p}$. Since $\tau(a)=\tilde{\tau}(\operatorname{ad}(a))$ for all $a \in \mathfrak{k}$ we may, without confusion, write $\tau(a)=\tilde{\tau}(a)$ for $a \in \operatorname{End}_{\mathbb{C}}(\mathfrak{p})$. Following $[17, \S 4]$, we define a Lie subalgebra of $\operatorname{End}_{\mathbb{C}}(\mathfrak{p})$ by

$$
\begin{equation*}
\tilde{\mathfrak{k}}=\left\{a \in \operatorname{End}_{\mathbb{C}}(\mathfrak{p}): \tau(a) \cdot \varphi=0 \text { for all } \varphi \in \mathcal{O}(\mathfrak{p})^{K}\right\} \tag{6.2}
\end{equation*}
$$

We want to study the inclusions $\operatorname{ad}(\mathfrak{k}) \subset \tilde{\mathfrak{k}}$ and $\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k}) \subset \mathcal{D}(\mathfrak{p}) \tau(\tilde{\mathfrak{k}}) \subset \mathcal{K}(\mathfrak{p})$. Obviously, we only need to work in the case where \mathfrak{g} is semisimple, which we now assume. In the rank one case, $\mathcal{O}(\mathfrak{p})^{K}=\mathbb{C}[f]$, where f is the quadratic form $\sum_{i} x_{i}^{2}$, and the Lie algebra $\tilde{\mathfrak{k}}$ is isomorphic to $\mathfrak{s o}(n)$. (We drop the base field \mathbb{C} in the sequel.) We have the the following general result, which depends upon a case by case analysis.

Theorem 6.4. ([21]) Assume that \mathfrak{g} is a semisimple Lie algebra and let $(\mathfrak{g}, \mathfrak{k})$ be a symmetric pair (of any rank). Then, $\operatorname{ad}(\mathfrak{k})=\tilde{\mathfrak{k}}$ if and only if each irreducible, rank one factor of $(\mathfrak{g}, \mathfrak{k})$ is of type $(\mathfrak{s o}(n+1), \mathfrak{s o}(n))$.

This says, in particular, that if $(\mathfrak{g}, \mathfrak{k})$ is irreducible of rank bigger than one, then $\tilde{\mathfrak{k}}=\operatorname{ad}(\mathfrak{k})$. Conversely, if $\ell=1$, then $\operatorname{ad}(\mathfrak{k}) \neq \tilde{\mathfrak{k}}$ except when $(\mathfrak{g}, \mathfrak{k})=(\mathfrak{s o}(n+$ 1), $\mathfrak{s o}(n))$.

We now look to the inclusion $\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k}) \subset \mathcal{D}(\mathfrak{p}) \tau(\tilde{\mathfrak{k}})$ when $(\mathfrak{g}, \mathfrak{k})$ is of rank one. In the notation of [11, Chap. X, Table V], there are four possible cases:
(BDI) $(\mathfrak{s o}(n+1), \mathfrak{s o}(n)), n \geqslant 2$
(AIII) $(\mathfrak{s l}(m+1), \mathfrak{g l}(m)), m \geqslant 2$
(CII) $(\mathfrak{s p}(m+1), \mathfrak{s p}(m) \oplus \mathfrak{s p}(1)), m \geqslant 1$
(FII) $\left(\mathfrak{f}_{4}, \mathfrak{s o}(9)\right)$
For the first three cases, H. Ochiai has determined the relationship between $\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$ and $\mathcal{D}(\mathfrak{p}) \tau(\tilde{\mathfrak{k}})$:

Theorem 6.5. ([26]) Let $(\mathfrak{g}, \mathfrak{k})$ be a symmetric pair of rank one.
(1) $\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})=\mathcal{D}(\mathfrak{p}) \tau(\tilde{\mathfrak{k}})$ in cases $(\mathbf{B D I})$, (AIII) $(m \geqslant 3)$, (CII).
(2) $\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k}) \subsetneq \mathcal{D}(\mathfrak{p}) \tau(\tilde{\mathfrak{k}})$ in case $(\mathbf{A I I I I})(m=2)$.

The description of $\mathcal{K}(\mathfrak{p})$ in the rank one case is given by:
Theorem 6.6. Let $(\mathfrak{g}, \mathfrak{k})$ be any symmetric pair of rank one with \mathfrak{g} semisimple. Then, $\mathcal{K}(\mathfrak{p})=\mathcal{D}(\mathfrak{p}) \tau(\tilde{\mathfrak{k}})$ and, consequently, $\mathcal{I}(\mathfrak{p})=(\mathcal{D}(\mathfrak{p}) \tau(\tilde{\mathfrak{k}}))^{K}$.

Proof. Suppose, first, that $(\mathfrak{g}, \mathfrak{k})=(\mathfrak{s o}(n+1), \mathfrak{s o}(n))$. Then $\tilde{\mathfrak{k}}=\operatorname{ad}(\mathfrak{k}) \cong \mathfrak{s o}(n)$ and $\mathfrak{p}=\mathbb{C}^{n}$ with the standard $\mathrm{SO}(n)$-action. In the coordinate system $\left\{x_{i}, \partial_{x_{i}}\right\}_{i}$ the Lie algebra $\tau(\mathfrak{k})$ has basis $\left\{\tau\left(e_{i j}\right): 1 \leqslant i<j \leqslant n\right\}$ where $\tau\left(e_{i j}\right)=x_{i} \partial_{x_{j}}-x_{j} \partial_{x_{i}}$. Let $y_{j}=\sigma\left(\partial_{x_{j}}\right) \in \mathcal{O}\left(T^{*} \mathfrak{p}\right)$ be the principal symbol of $\partial_{x_{j}}$. Then, $\mathcal{O}\left(T^{*} \mathfrak{p}\right)=\mathbb{C}\left[x_{i}, y_{i} ; 1 \leqslant\right.$ $i \leqslant n]$ and the ideal generated by the $\sigma(a), a \in \mathfrak{k}$, is $\mathbf{a}=\left(x_{i} y_{j}-x_{j} y_{i} ; 1 \leqslant i<j \leqslant n\right)$. It is easy to see that $\mathcal{C}(\mathfrak{p})=\mathcal{V}(\mathbf{a})$. Moreover, it is well known that a is a prime ideal (for instance, by classical invariant theory [39], $\mathbb{C}\left[x_{i}, y_{j}\right] / \mathbf{a} \cong \mathbb{C}\left[u_{1}, u_{2} ; v_{i}, 1 \leqslant\right.$ $i \leqslant n]^{\mathbb{G}}$, where $\mathbb{G}=\mathbb{C}^{*}$ acts by $\left.\lambda \cdot u_{i}=\lambda u_{i}, \lambda \cdot v_{i}=\lambda^{-1} v_{i}\right)$. It then follows from Proposition 4.10 that $\mathcal{K}(\mathfrak{p})=\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$.

Now consider the general case. Notice that the $\tilde{\mathfrak{k}}$-module \mathfrak{p} identifies with the standard $\mathfrak{s o}(n)$-module \mathbb{C}^{n}. Consider the symmetric pair $(\tilde{\mathfrak{g}}, \tilde{\mathfrak{k}})=(\mathfrak{s o}(n+1), \mathfrak{s o}(n))$ where $\tilde{\mathfrak{p}}=\mathbb{C}^{n}$ with standard action of $\tilde{K}=\operatorname{SO}(n)$. We may identify the $\tilde{\mathfrak{k}}$-modules \mathfrak{p}
and $\tilde{\mathfrak{p}}$ and we have $\mathcal{O}(\mathfrak{p})^{K}=\mathcal{O}(\mathfrak{p})^{\tilde{K}}=\mathcal{O}(\tilde{\mathfrak{p}})^{\tilde{K}}=\mathbb{C}[f]$. Therefore, since $\mathcal{D}(\mathfrak{p})=\mathcal{D}(\tilde{\mathfrak{p}})$,

$$
\begin{aligned}
\mathcal{K}_{K}(\mathfrak{p}) & =\left\{d \in \mathcal{D}(\tilde{\mathfrak{p}}): d\left(\mathcal{O}(\tilde{\mathfrak{p}})^{\tilde{K}}\right)=0\right\} \\
& =\mathcal{K}_{\tilde{K}}(\tilde{\mathfrak{p}})=\mathcal{D}(\tilde{\mathfrak{p}}) \tau(\tilde{\mathfrak{k}}) \quad \text { (by the first case) } \\
& =\mathcal{D}(\mathfrak{p}) \tau(\tilde{\mathfrak{k}})
\end{aligned}
$$

Hence the result.
Corollary 6.7. Suppose that $(\mathfrak{g}, \mathfrak{k})=(\mathfrak{s l}(3), \mathfrak{g l}(2))$. Then, $\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})$ is strictly contained in $\mathcal{K}(\mathfrak{p})=\mathcal{D}(\mathfrak{p}) \tau(\tilde{\mathfrak{k}})$. In contrast, $\mathcal{I}(\mathfrak{p})=(\mathcal{D}(\mathfrak{p}) \tau(\tilde{\mathfrak{k}}))^{K}=(\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k}))^{K}$.

Proof. The first assertion follows from Theorems 6.5(2) and 6.6. The final claim can be proved using [26, Theorem 2].

7. Questions

Theorem 4.5 and Theorem 6.6 provide the only known cases where the ideal $\mathcal{K}(\mathfrak{p})$ has been described. We have seen that in these cases $\mathcal{K}(\mathfrak{p})=\mathcal{D}(\mathfrak{p}) \tau(\tilde{\mathfrak{k}})$. Recall from $\S 3$ and Lemma 4.9 that $\operatorname{Ch} \mathcal{N} \subset \mathcal{C}(\mathfrak{p})$ with $\operatorname{dim} \operatorname{Ch} \mathcal{N}=\operatorname{dim} \mathcal{C}(\mathfrak{p})$. Set $\tilde{\mathcal{N}}=\mathcal{D}(\mathfrak{p}) / \mathcal{D}(\mathfrak{p}) \tau(\tilde{\mathfrak{k}})$. We then have $\operatorname{Ch} \tilde{\mathcal{N}} \subset \operatorname{Ch} \mathcal{N} \subset \mathcal{C}(\mathfrak{p})$ and $\operatorname{dim} \tilde{\mathcal{N}}=\operatorname{dim} \mathcal{C}(\mathfrak{p})$. In view of these observations, of Proposition 2.1 and of Corollary 6.7, we make the following conjectures.
Conjectures. Let ($\mathfrak{g}, \mathfrak{k}$) be a symmetric pair (with \mathfrak{g} reductive) and let $\tilde{\mathfrak{k}}$ be the Lie algebra defined in (6.2). Then:
(C.1) $\mathcal{K}(\mathfrak{p})=\mathcal{D}(\mathfrak{p}) \tau(\tilde{\mathfrak{k}})$
(C.2) $\mathcal{I}(\mathfrak{p})=(\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k}))^{K}$
(C.3) $\operatorname{Ch} \tilde{\mathcal{N}}=\mathcal{R}=\overline{K .(\mathfrak{a} \times \mathfrak{a})}$; thus Ch $\tilde{\mathcal{N}}$ is an irreducible component of $\mathcal{C}(\mathfrak{p})$.

Let $\lambda \in \mathfrak{a}^{*}$ and denote by $\mathbf{n}_{\lambda} \subset S(\mathfrak{p})^{K}$ the maximal ideal $\left(q-q(\lambda) ; q \in S(\mathfrak{p})^{K}\right)$.
Set $\mathcal{N}_{\lambda}=\mathcal{D}(\mathfrak{p}) /\left(\mathcal{D}(\mathfrak{p}) \tau(\mathfrak{k})+\mathcal{D}(\mathfrak{p}) \mathbf{n}_{\lambda}\right)$.
Conjectures. Assume that the pair ($\mathfrak{g}, \mathfrak{k}$) is nice. Then:
(C.4) \mathcal{N}_{λ} is a semisimple $\mathcal{D}(\mathfrak{p})$-module
(C.5) \mathcal{N}_{λ} has no ζ-torsion.

By [20], conjectures (C.4) and (C.5) are true in the diagonal case. One significance of (C.5) is that, if true, it ought to provide a method for proving [32, Conjecture 7.2].

The question of describing $\mathcal{K}(\mathfrak{p})$ is a particular case of the more general problem of determining the left ideals $\mathcal{K}_{K}(V)$ (cf. §4) where $(K: V)$ is any finite dimensional representation of a reductive group K, see [29, 30]. In this general setting one can still define, as in (6.2), a Lie subalgebra

$$
\tilde{\mathfrak{k}}=\left\{a \in \operatorname{End}_{\mathbb{C}}(V): a \cdot \varphi=0 \text { for all } \varphi \in \mathcal{O}(V)^{K}\right\}
$$

and one again has $\mathcal{D}(V) \tau_{V}(\mathfrak{k}) \subset \mathcal{D}(V) \tau_{V}(\tilde{\mathfrak{k}}) \subset \mathcal{K}_{K}(V)$. The representations ($K: \mathfrak{p}$) are particular cases of the so-called θ-groups [37] or, more generally, of orthogonal polar representations, see [4] and [28, 8.6] (in these cases one still has a Cartan subspace). One may generalize the previous conjectures to this wider class of representations and the following questions arise:
Questions. Suppose that $(K: V)$ is a θ-group, or an orthogonal polar representation.
(Q.1) Is $\mathcal{K}_{K}(V)=\mathcal{D}(V) \tau_{V}(\tilde{\mathfrak{k}})$?
(Q.2) Is $\mathcal{I}_{K}(V)=\left(\mathcal{D}(V) \tau_{V}(\mathfrak{k})\right)^{K}$?
(Q.3) Do we have $\operatorname{Ch} \mathcal{D}(V) / \mathcal{D}(V) \tau_{V}(\tilde{\mathfrak{k}})=\overline{K .(\mathfrak{c} \times \mathfrak{c})}$, where $\mathfrak{c} \subset V$ is a Cartan subspace?

Acknowledgment

This research was partially conducted while the first author was visiting the University of Michigan and supported by the NSF. He would like to thank both institutions.

References

[1] M. F. Atiyah, Characters of semi-simple Lie groups, (Lectures given in Oxford), Mathematical Institute, Oxford, 1976.
[2] D. Barbasch and D. A. Vogan, The Local Structure of Characters, J. Funct. Anal., 37 (1980), 27-55.
[3] A. Borel et al., Algebraic D-modules, Academic Press, Boston, 1987.
[4] J. Dadok, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc., 288 (1985), 125-137.
[5] O. Gabber, The integrability of the characteristic variety, Amer. J. Math, 103 (1981), 445468.
[6] A. Grothendieck, Éléments de Géométrie Algébrique, Chapitre IV, Inst. Hautes Etudes Sci. Publ. Math., 32 (1967).
[7] Harish-Chandra, Invariant distributions on Lie algebras, Amer. J. Math., 86 (1964), 271309.
[8]_, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math., 86 (1964), 534-564.
[9] , Invariant eigendistributions on a semisimple Lie algebra, Inst. Hautes Etudes Sci. Publ. Math., 27 (1965), 5-54.
[10] R. Hartshorne, Algebraic geometry, Graduate Texts in Math., Vol. 52, Springer-Verlag, Berlin/New York, 1977.
[11] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978.
[12] \qquad , Groups and Geometric Analysis, Academic press, 1984.
[13] R. Hotta, Introduction to \mathcal{D}-modules, (Lectures at the Inst. Math. Sci., Madras), Math. Institute, Tohoku University, Sendai, 1986.
[14] R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Invent. Math., 75 (1984), 327-358.
[15] A. Joseph, Quantum groups and their primitive ideals, Springer-Verlag, Berlin/New York, 1995.
[16] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math., 93 (1971), 753-809.
[17] A. Kowata, Spherical hyperfunctions on the tangent space of symmetric spaces, Hiroshima Math. J., 21 (1991), 401-418.
[18] T. Levasseur and J. T. Stafford, Invariant differential operators and an homomorphism of Harish-Chandra, J. Amer. Math. Soc., 8 (1995), 365-372.
[19] , The kernel of an homomorphism of Harish-Chandra, Ann. Scient. Éc. Norm. Sup., 29 (1996), 385-397.
[20] , Semi-simplicity of invariant holonomic systems on a reductive Lie algebra, Amer. J. Math., 119 (1997), 1095-1117.
[21] T. Levasseur and R. Ushirobira, Adjoint vector fields on the tangent space of semisimple symmetric spaces, preprint.
[22] M. Lorenz, Gelfand-Kirillov dimension and Poincaré series, Cuadernos de Algebra 7, Universidad de Grenada, 1988.
[23] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley, Chichester, 1987.
[24] J. C. McConnell and J. T. Stafford, Gelfand-Kirillov dimension and associated graded modules, J. Algebra, 125 (1989), 197-214.
[25] M. Noumi, Regular Holonomic Systems and their Minimal Extensions I, in "Group Representations and Systems of Differential Equations", Advanced Studies in Pure Mathematics, 4 (1984), 209-221.
[26] H. Ochiai, Invariant functions on the tangent space of a rank one semisimple symmetric space, J. Fac. Sci. Univ. Tokyo, 39 (1992), 17-31.
[27] D. I. Panyushev, The Jacobian modules of a representation of a Lie algebra and geometry of commuting varieties, Compositio Math., 94 (1994), 181-199.
[28] V. L. Popov and E. B. Vinberg, Invariant Theory, in "Algebraic Geometry IV", (Eds: A. N. Parshin and I. R. Shafarevich), Springer-Verlag, Berlin/Heidelberg/New York, 1991.
[29] G. W. Schwarz, Differential operators on quotients of simple groups, J. Algebra, 169 (1994), 248-273.
[30] \qquad , Lifting differential operators from orbit spaces, Ann. Sci. École Norm. Sup., 28 (1995), 253-306.
[31] J. Sekiguchi, The Nilpotent Subvariety of the Vector Space Associated to a Symmetric Pair, Publ. RIMS, Kyoto Univ., 20 (1984), 155-212.
[32] \qquad , Invariant Spherical Hyperfunctions on the Tangent Space of a Symmetric Space, in "Algebraic Groups and Related Topics", Advanced Studies in Pure Mathematics, 6 (1985), 83-126.
[33] P. Slodowy, Simple singularities and Simple Algebraic Groups, Lecture Notes in Mathematics 815, Springer-Verlag, Berlin/New York, 1980.
[34] M. Van den Bergh, Some rings of differential operators for Sl_{2}-invariants are simple, J. Pure and Applied Algebra, 107 (1996), 309-335.
[35] \quad, Some generalities on G-equivariant quasi-coherent \mathcal{O}_{X} and \mathcal{D}_{X}-modules, Preprint Université Louis Pasteur, Strasbourg, (1994).
[36] V. S. Varadarajan, Harmonic Analysis on Real Reductive Groups, Part I, Lecture Notes in Mathematics 576, Springer-Verlag, Berlin/New York, 1977.
[37] E. B. Vinberg, The Weyl group of a graded Lie algebra, Math. USSR Izvestija, 10 (1976), 463-495.
[38] N. Wallach, Invariant differential operators on a reductive Lie algebra and Weyl group representations, J. Amer. Math. Soc., 6 (1993), 779-816.
[39] H. Weyl, The Classical Groups, Princeton University Press, Princeton, 1939.
Département de Mathématiques, Université de Poitiers, 86022 Poitiers, France.
Current address: Département de Mathématiques, Université de Brest, 29238 Brest cedex 3, France.

E-mail address: thierry.levasseur@univ-brest.fr
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA.

E-mail address: jts@umich.edu

[^0]: 1991 Mathematics Subject Classification. 14L30, 16S32, 17B20, 22E46.
 Key words and phrases. Symmetric spaces, reductive Lie algebras, invariant differential operators, invariant eigendistributions.

 The research of both authors was supported in part by an NSF grant.

