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Abstract. Let g be a complex, semisimple Lie algebra, with an involutive
automorphism ϑ and set k = Ker(ϑ−I), p = Ker(ϑ+I). We consider the differ-
ential operators, D(p)K , on p that are invariant under the action of the adjoint
group K of k. Write τ : k → DerO(p) for the differential of this action. Then
we prove, for the class of symmetric pairs (g, k) considered by Sekiguchi [33],
that

{
d ∈ D(p) : d

(
O(p)K

)
= 0

}
= D(p)τ(k).

An immediate consequence of this equality is the following result of Seki-
guchi: Let (g0, k0) be a real form of one of these symmetric pairs (g, k), and
suppose that T is a K0-invariant eigendistribution on p0 that is supported on
the singular set. Then, T = 0. In the diagonal case (g, k) = (g′ ⊕ g′, g′) this is
a well-known result due to Harish-Chandra.

1. Introduction

To begin with, assume that G is a connected, complex reductive algebraic group
with Lie algebra g and fix a Cartan subalgebra h of g with Weyl group W . Thus,
G acts on g via the adjoint action and this induces an action of G on the ring of
regular functions, O(g) ∼= S(g∗), and hence on D(g), the ring of differential operators
with coefficients in O(g). Let τ : g → DerO(g) ⊂ D(g) denote the differential of
the adjoint action of G on g. In [8] Harish-Chandra defines a ring homomorphism
δ : D(g)G → D(h)W , with kernel I(g) =

{
d ∈ D(g)G : d(f) = 0 for all f ∈ O(g)G

}
.

The main results of [17, 18] show that δ is surjective, with kernel

(1.1) I(g) = D(g)τ(g) ∩ D(g)G.

One significance of these results is that they easily imply two fundamental theorems
of Harish-Chandra: Let g0 be a real form of g, with adjoint group G0 and write g′0
for the regular semisimple elements of g0. Then:

(1.2) If T is G0-invariant distribution on g0, then I(g) · T = 0;

(1.3) The only G0-invariant eigendistribution supported on g0 \ g′0 is T = 0.

In [33], Sekiguchi generalized (1.3) to a class of “nice” symmetric spaces and it is
therefore natural to ask whether the results from [17, 18] can also be generalized to
these spaces. Despite the fact that there is no analogue of Harish-Chandra’s map
δ, these generalizations do exist, and the purpose of this paper is to describe them.
Before we can state the results formally, we need some notation.

Fix a non-degenerate, G-invariant symmetric bilinear form κ on the reductive Lie
algebra g such that κ is the Killing form on the semisimple Lie algebra [g, g]. Fix an
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involutive automorphism ϑ of g preserving κ and set k = Ker(ϑ− I), p = Ker(ϑ+ I).
Then, g = k⊕p and the pair (g, k), or (g, ϑ), is called a symmetric pair. Recall that k
and p are orthogonal with respect to κ and that k is a reductive Lie subalgebra of g.
Denote by K the connected reductive subgroup of G with Lie algebra k. The group
K acts on p via the adjoint action and the differential of this action induces a Lie
algebra homomorphism τ : k→ DerS(p∗) defined by (τ(a).f)(v) = d

dt |t=0
f(e−ta.v),

for a ∈ k, f ∈ S(p∗) and v ∈ p.
Let D(p) denote the algebra of differential operators on p with coefficients in

O(p) = S(p∗). Notice that K has an induced action on S(p), O(p) and D(p). Set

K(p) =
{
d ∈ D(p) : d(f) = 0 for all f ∈ O(p)K

}
and I(p) = K(p) ∩ D(p)K . Clearly, K(p) is a K-stable left ideal of D(p) containing
D(p)τ(k).

Consider the special case when one is in the diagonal case where G = G1 × G1

with ϑ(x, y) = (y, x) for some reductive group G1; thus (g, k) = (g1 ⊕ g1, g1). Then
K = G1 with its adjoint action on p = g1, and a slightly stronger version of (1.1),
see [18, Theorem 1.1], asserts that the equality K(p) = D(p)τ(k) holds in this case.
The first main aim of this paper is to generalize this result to a class of symmetric
pairs introduced by J. Sekiguchi [33]. If g is semisimple, these are defined as follows:
Let Σ be the restricted root system associated to a Cartan subspace a ⊂ p. Then,
(g, k) is nice if dim gα+dim g2α 6 2 for all α ∈ Σ. If g is reductive, then (g, k) is nice
provided that ([g, g], k ∩ [g, g]) is nice. The reader is referred to Section 2 and [33]
for further details and for a classification of nice pairs. Observe that the diagonal
case is obviously nice.

Theorem A. (See Theorem 4.2.) Let (g, k) a nice symmetric pair. Then K(p) =
D(p)τ(k) and, therefore, I(p) = (D(p)τ(k))K .

The key step in the proof of Theorem A is Theorem 3.8, which forms a mild
generalization of [18, Theorem 5.2]. This, in turn, is an interpretation in terms of
D-modules of the theorem of Harish-Chandra that asserts that non-zero G0-invariant
eigendistributions on g0 cannot have nilpotent support. We take this opportunity
to provide a complete algebraic proof of our generalization of this result (rather
than modifying Harish-Chandra’s analytic proof) for two reasons: First, it applies
to all modules rather than just distributions and secondly this different approach
may prove useful in other, similar problems. The reason for restricting ourselves to
nice symmetric pairs in Theorem A is that Theorem 3.8 does not hold in general;
indeed in §6 we show that it fails when (g, k) has rank one and dim p = 2r > 4.

As an immediate corollary of Theorem A one obtains a generalization of a fun-
damental result of Harish-Chandra (see [9, Theorem 4] or (1.2)) from the diagonal
case to nice symmetric pairs:

Corollary B. (See Corollary 4.3.) Assume that the symmetric pair (g, k) is nice and
is the complexification of a real symmetric pair (g0, k0). Write K0 for the connected
Lie group satisfying Lie(K0) = k0. Let U ⊂ p0 be a K0-stable open subset and T be
a K0-invariant distribution on U . Then I(p) · T = 0.

With a little extra work we are able to generalize a second result of Harish-
Chandra (see [8, Theorem 3] or (1.3)) to nice symmetric pairs:

Corollary C. (See Corollary 5.8.) Assume that the pair (g, k) is nice and is the
complexification of a real symmetric pair (g0, k0). Let U be an open subset of p0 and
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write U ′ for the set of regular semisimple elements in U . Let T be a locally invariant
eigendistribution on U such that T is supported on U \ U ′. Then T = 0.

Actually, this result was proved by Sekiguchi in [33] where he was even able to
prove it for invariant eigenhyperfunctions T . Our (algebraic) proof of Corollary C
does not permit us to prove this stronger result, but it is conjectured [33, Conjec-
ture 7.1] that such a hyperfunction is already a distribution.

The proof that (1.1) implies (1.3) in [18] uses the fact that Harish-Chandra’s map
δ is surjective. Since there is no analogue of that map for general symmetric pairs,
more work is needed to deduce Corollary C from Theorem A. The required extra
facts are provided by the following result, in which the Gelfand-Kirillov dimension
of a module M is denoted by GKdimM . One should note that, in the diagonal
case, Im δ = D(h)W is a fixed ring of the Weyl algebra by a finite group and so the
conclusion of this theorem is well-known.

Theorem D. (See Theorems 5.5 and 5.6.) Let (g, k) be a nice symmetric pair and
set R(p) = D(p)K

/
I(p). Let a be a Cartan subspace of p. Then:

(1) R(p) is a simple ring with GKdimR(p) = 2 dim a;
(2) GKdimM > dim a for every non-zero finitely generated R(p)-module M .

The importance of the algebra R(p) also lies in the fact that it identifies with the
algebra of radial components of K-invariant differential operators on p. Indeed, let
W = NK(a)/ZK(a) be the Weyl group associated to a. By composing the restriction
to K-invariant functions with the Chevalley isomorphism one gets a homomorphism,
the radial component map,

rad : D(p)K −→ D(p//K) ∼−−→D(a/W )

such that Ker rad = I(p). Thus R(p) ∼= Im rad although, except in some trivial
cases, this does not equal D(a/W ). Once again, Theorem D does not hold for
general symmetric pairs; indeed, in Section 6, we give an example where R(p) has
non-zero finite dimensional modules.

The examples mentioned above are consequences of a detailed study of invariant
differential operators of rank one symmetric pairs given in Section 6. One further
consequence of this study is that there are some feasible ways in which one may be
able to generalize the results of this paper to arbitrary symmetric pairs, and to more
general representations of K. The precise conjectures are given in Section 7.

2. Orbit theory

We continue with the notation of §1. We collect here various definitions and
results needed in the subsequent sections.

If x, y ∈ g and g ∈ G, set ad(x).y = [x, y] and g.x = Ad(g).x. If x ∈ g and V ⊂ g,
let V x denote the subset of elements of V which commute with x. Recall that x
is called semisimple if ad(x) is semisimple and is called nilpotent if x ∈ [g, g] and
ad(x) is nilpotent. Following [33, 1.11] a nilpotent element 0 6= x ∈ p is called p-
distinguished, or simply distinguished, if px does not contain any non-zero semisimple
element.

Let X be an affine algebraic K-variety with structural sheaf OX . The algebraic
quotient SpecO(X)K is denoted by X//K and $X : X � X//K is the associated
surjective morphism. Recall that the algebraic variety X//K identifies with the set
of closed orbits in X. When X = p, and if there is no possible ambiguity, we will
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write $p = $. Define the nilpotent cone of p by N(p) = $−1($(0)); recall that
N(p) is the set of nilpotent elements in p and is a finite union of K-orbits [15,
Propositions 10 & 11, Theorem 2].

Recall [15, 37] the following properties of the action (K : p). It is stable (there
exists a dense open subset of closed orbits) and visible (each fibre of $ is a finite
union of K-orbits). Let ` be the rank of the symmetric pair (g, k); that is, ` = dim a
where a ⊂ p is a Cartan subspace. If W = NK(a)/ZK(a) is the associated Weyl
group, the Chevalley restriction theorem gives an isomorphism S(p∗)K ∼−→S(a∗)W ,
and these algebras are polynomial rings in ` indeterminates. Define the commuting
variety of p by

C(p) = {(x, y) ∈ p× p : [x, y] = 0} .
One has dimC(p) = `+ dim p, see [27, Proof of (3.7)].

Let b ∈ p be semisimple. Then [15, I.6] the decomposition gb = kb ⊕ pb defines a
symmetric pair (of the same rank); furthermore, N(pb) = N(p) ∩ pb and a ∈ pb is
semisimple in gb if and only if a is semisimple in g. Suppose that g is semisimple
and set g′ = [gb, gb], p′ = p ∩ g′, k′ = k ∩ g′. Then (g′, k′) is a symmetric pair with g′

semisimple. Such a pair is called a sub-symmetric pair of (g, k) [33].

Proposition 2.1. There exists an isomorphism p//K ∼=
(
C(p) ∩ (p × N(p))

)
//K,

induced by the map a 7→ (a, 0) from p to C(p). Under this isomorphism,
(
C(p) ∩

(N(p)×N(p))
)
//K identifies with {$(0)}.

Proof. Let (x, y) ∈ C(p) and x = xs +xn, y = ys + yn be the Jordan decompositions
of x and y. Then it is standard that (xs, ys) lies in the closure of K.(x, y), see, for
example, [29, Theorem 5.2]. Therefore, if K.(x, y) ∈

(
C(p) ∩ (p × N(p))

)
//K is a

closed orbit with y ∈ N(p), then y is also semisimple and so y = 0. Hence, the map
ı : p//K →

(
C(p) ∩ (p ×N(p))

)
//K, defined by K.x 7→ K.(x, 0), is a bijection. It is

easily seen that its inverse is induced by the restriction C(p) � p of the projection
η1 : p×p� p onto the first component. Thus ı is an isomorphism. The identification
of
(
C(p) ∩ (N(p)×N(p))

)
//K with {$(0)} follows easily. �

Lemma 2.2. Let F and T be two closed K-stable subsets of p such that F is a
finite union of K-orbits. Let X ⊂ C(p)∩ (F ×T ) be closed, irreducible and K-stable.
Then:

(i) dimX ≤ dim p.
(ii) Let η1 : p × p � p be the projection onto the first component. Assume that

T ⊂ N(p) and that η1(X) = K.u, where u ∈ η1(X) is nilpotent but not distinguished.
Then, dimX < dim p.

Proof. (i) Set Y = η1(X) and consider η = η1|X : X → Y . Let U be a dense open
subset of Y such that

∀ v ∈ U, dimX − dimY = dim η−1(v).

Since η is K-equivariant, Y is a K-stable closed irreducible subset of F . Therefore,
Y = K.u for some u ∈ U . Let v ∈ U ∩K.u. Identify the variety C(p) ∩ η−1

1 (v) with
pv through the second projection; then, η−1(v) = X ∩ η−1

1 (v) is a closed subset of
pv. Recall [15, Proposition 5] that dim pv − dim kv = dim p− dim k. Hence,

(?) dimX = dimK.v + dim η−1(v) ≤ dim k− dim kv + dim pv = dim p.

(ii) By hypothesis, the element v in the proof of (i) is not distinguished and
so there exists a non-zero semisimple element s ∈ pv. Since T ⊂ N(p), one has
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(v, s) ∈ (C(p) ∩ η−1
1 (v)) \ η−1(v). Thus dim η−1(v) < dim pv and hence, as in (?), it

follows that dimX < dim p. �

Let 0 6= x ∈ N(p). Then [15] there exist y ∈ p, z ∈ k such that [x, y] = z,
[z, x] = 2x, [z, y] = −2y. The triple (z, x, y) is called a normal S-triple containing
x. Set s = Cx⊕ Cy ⊕ Cz; thus s ∼= sl(2,C). The s-module g then decomposes as
g = ⊕s

j=1E(λj), where E(λj) is a simple s-module of highest weight λj ∈ N. We
can set py = ⊕m

i=1Cvi with ad(z).vi = −λivi, and we have:

(2.1) p = [x, k] ⊕ py

It is well known ([32, Lemma 1.21], [34, III.5.1, III.7.4]) that x+py is a transversal
slice, in p, to the orbit K.x. Let ψ : K × py → p be the K-equivariant morphism
given by ψ((g, v)) = g.(x + v). Thus ψ is smooth on K × py (and therefore is an
open morphism).

The following result is well known in the analytic case, see [36, Chapter 5, Lem-
ma 22], and we leave it to the reader to check that that argument can be easily
modified to work in the algebraic setting.

Proposition 2.3. There exists an affine open neighborhood U of 0 in py such that:
(1) ψ is smooth on Y = K ×U , and Ω = ψ(Y ) = K.(x+U) is a K-stable open

subset of p;
(2) Ω ∩K.x = K.x and K.x ∩ {x+ U} = {x}. �

Assume that g is semisimple. Let (z, x, y) be a normal S-triple containing x ∈
N(p). With the previous notation, we set:

(2.2) λp(x) =

m∑
j=1

(λj + 2)− dim p

Remark 2.4. The integer λp(x) is denoted by δ̃p(x) in [33, 6.1]. Let us illustrate
this number in the special case when ` = 1 and x ∈ N(p) is a regular nilpotent
element; that is, dimK.x = dim p− 1. Then x is distinguished [33, (1.9)]. However
as dimK.x = dim p − 1, [15, Proposition 5] implies that m = 1 and, since λ1 = 2,
λp(x) = 4− dim p. Thus λp(x) > 0 if, and only if, dim p < 4.

We will be interested in symmetric pairs (g, k) such that, for all sub-symmetric
pairs (g′, k′) of (g, k), one has λp′(x) > 0 for each p′-distinguished nilpotent ele-
ment x ∈ p′. The following theorem, proved in [33, §6], provides examples of such
symmetric pairs.

Theorem 2.5. (J. Sekiguchi) Assume that g is semisimple and let (g, k) be a sym-
metric pair. Let Σ be the restricted root system associated to a Cartan subspace
a ⊂ p. Consider the following condition:

(†) dim gα + dim g2α ≤ 2 for all α ∈ Σ,

(1) The pair (g, k) satisfies (†) if and only if each of its irreducible factors is
isomorphic to one of the following pairs:

(O) (g1 ⊕ g1, g1), g1 simple Lie algebra (the diagonal case)
(I) (sl(m,C), so(m,C))

(II) (sl(2m,C), sl(m,C)⊕ sl(m,C)⊕ C)
(III) (sp(m,C), sl(m,C)⊕ C)
(IV) (so(2m+ k,C), so(m+ k,C)⊕ so(m,C)), k = 0, 1, 2
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(V) (e6, sp(4,C))
(VI) (e6, sl(6,C)⊕ sl(2,C))

(VII) (e7, sl(8,C))
(VIII) (e8, so(16,C))

(IX) (f4, sp(3,C)⊕ sl(2,C))
(X) (g2, sl(2,C)⊕ sl(2,C))

(2) Assume that (g, k) satisfies (†) and let (g′, k′) be a sub-symmetric pair of (g, k).
Then, (g′, k′) satisfies (†) and λp′(x) > 0 for each p′-distinguished nilpotent element
x ∈ p′. �

Definition 2.6. The symmetric pair (g, k) is said to be nice if the semisimple, sub-
symmetric pair ([g, g], k ∩ [g, g]) satisfies condition (†) of Theorem 2.5.

Remark 2.7. Let (g, k) be a symmetric pair with g semisimple. Then, (g, k) is of
maximal rank (that is, ` = rk g) if and only if, in the notation of Theorem 2.5, each
irreducible factor of (g, k) is of type

(I), (III), (IV) (k = 0, 1), (V), (VII), (VIII), (IX) or (X)

3. Equivariant D-modules with nilpotent support

Let X be a smooth algebraic variety with structural sheaf OX and cotangent
bundle T ∗X. Denote by ΘX the OX -module of vector fields and by DX the sheaf of
differential operators on X. The notation related to algebraic D-modules will be as
in [3] or [12]. In particular, if M is a DX -module we denote its characteristic variety
by ChM ⊂ T ∗X and its support by SuppM ⊂ X.

Assume that a reductive algebraic group K acts regularly on X and denote by
τX : k→ ΘX the differential of the K-action on X. One can develop a theory of K-
equivariant DX -modules; for these notions, and related definitions, we will refer to
[3] and [35, §6]. We simply recall here the definition of a K-equivariant coherent DX -
module in the case where X is affine: IfM is a finitely generated D(X)-module, then
M is said to be a K-equivariant DX-module if it satisfies the following conditions:

(i) M is endowed with a compatible action of K; that is, K acts rationally on
M and g.(dv) = (g.d)(g.v) for all g ∈ K, d ∈ D(X) and v ∈M ;

(ii) d
dt |t=0

(exp(ta).v) = τ(a)v for all a ∈ k, v ∈M .

Let g be a reductive Lie algebra and (g, k) be a symmetric pair. Recall that the K-
invariant form κ is non-degenerate on p. Let n = dim p > 0 and fix a κ-orthonormal
basis of p. Let {xi ∈ p∗, ∂xi

∈ Θ(p)}16i6n be the associated coordinate system.
Let e ∈ S2(p∗)K be defined by e(x) = κ(x, x) and write ∂(e) ∈ S2(p)K for the
corresponding differential operator with constant coefficients. Thus, in coordinates,
e =

∑n
i=1 x

2
i and ∂(e) =

∑n
i=1 ∂

2
xi
. Let E =

∑n
i=1 xi∂xi

be the Euler vector field and
set

f = − 1
4∂(e), h = E + n

2 .

Then u = Ce⊕ Cf ⊕ Ch is a Lie algebra isomorphic to sl(2,C). By construction,
u ⊂ D(p)K .

Let (z, x, y) be a normal S-triple containing the nilpotent element 0 6= x ∈ N(p)
and adopt the notation of §2. If py = ⊕m

i=1Cvi with ad(z).vi = −λivi, let {yi =
v∗i , ∂yi}16i6m denote the associated coordinate system. Let U be the affine open
neighborhood of 0 in py found in Proposition 2.3 and ψ# : Op → OY be the comor-
phism of the dominant K-equivariant morphism ψ : Y = K × U → p. Since ψ is
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smooth, we have a surjective map of OY -modules

(3.1) ΘY → OY ⊗Op
Θp → 0

Let θ ∈ Θ(p) and identify θ with 1 ⊗ θ ∈ O(Y ) ⊗O(p) Θ(p). Then, by (3.1),
there exists a lift ψ#(θ) ∈ Θ(Y ) of θ; such a lift satisfies ψ#(θ).ψ#(f) = ψ#(θ.f)
for all f ∈ O(p). It is easily checked that K acts on each term of (3.1), and that
(3.1) is an exact sequence of K-equivariant OY -modules. It follows that we have a
surjective morphism ΘK

Y � (OY ⊗Op
Θp)K . In particular, if θ ∈ Θ(p)K there exists

a lift ψ#(θ) ∈ Θ(Y )K .
Write Ra for the left invariant vector field on K defined by a ∈ k; thus, for

all f ∈ O(K) and g ∈ K one has (Ra.f)(g) = d
dt |t=0

f(geta). The enveloping
algebra U(k) then identifies with C〈Ra ; a ∈ k〉. Thus, since K and U are affine,
we obtain that: D(K) = O(K) ⊗C U(k), D(U) = C〈O(U) ; ∂yi , 1 6 i 6 m〉, and
D(Y ) = D(K) � D(U). The group K acts on D(Y ) via left translation on D(K),
and so

D(Y )K = D(K)K �D(U) = U(k)�D(U) = (C�D(U)) ⊕ (U+(k)�D(U))

where U+(k) = kU(k). Therefore, if θ ∈ Θ(p)K , we can write

(3.2) ψ#(θ) = 1�∆(θ) +
∑
jRaj � ϕj

for some aj ∈ k and ϕj ∈ O(U). We call ∆(θ) ∈ Θ(U) a radial component of θ.

Lemma 3.1. The vector field
∑m
j=1( 1

2λj + 1)yj∂yj + 1
2Rz is an invariant lift of the

Euler vector field E, and ∆(E) =
∑m
j=1( 1

2λj + 1)yj∂yj is a radial component of E.

Proof. See [7, Lemma 30] or [36, Lemma 24, p. 93]. �

If M is a coherent Dp-module, denote by

M = DY→p⊗Lψ−1Dp
ψ−1M

its inverse image in the D-module sense; thus M = ψ!M [dimY − dim p] (see, for
example, [3, VI.4.2]). Since ψ is smooth the DY -module M is, as an OY -module,
the usual inverse image ψ∗M = OY ⊗Op

M [12, Proposition II.4.2(i)].

Lemma 3.2. Assume that M is a K-equivariant coherent Dp-module such that
SuppM = K.x, for some 0 6= x ∈ N(p). Then:

(1) The group K acts onM by g.(b⊗Op
v) = g.b⊗Op

g.v,M is a K-equivariant
DY -module, and the canonical mapM →M, v 7→ 1⊗Op

v, is K-equivariant.
(2) Suppose that M = Dp.v. Then,M = DY .(1⊗Op

v) andM 6= 0.
(3) There exists k ∈ N such thatM∼= (OK �Hm

[0](OU ))⊕k.
(4) MK ∼= C�Hm

[0](OU )⊕k as a (U(k)�DU )-module.
(5) Hm

[0](OU ) = ⊕α∈NmC∂α, where ∂α =
∏m
i=1 ∂

αi
yi .

Proof. The proofs of parts (1) and (2) are standard and are left to the reader.
We first compute SuppM. Since M = OY ⊗Op

M as OY -modules, SuppM ⊂
ψ−1(SuppM). Let a = (g, u) ∈ SuppM; then, Proposition 2.3(2) implies that
ψ(a) = g.(x + u) ∈ SuppM ∩ ψ(Y ) = K.x ∩ Ω = K.x. Thus x + u ∈ K.x, forcing
u = 0 by Proposition 2.3(2), again. Therefore ∅ 6= SuppM ⊂ Φ = K × {0}. Since
M is K-equivariant it follows that SuppM = Φ.

Now consider theK-equivariant closed embedding  : Φ ↪→ Y . Since SuppM = Φ,
Kashiwara’s equivalence [3, VI.7.11] yieldsM = +

!M. Since the DΦ-module !M
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is K-equivariant and Φ ∼= K, !M is a finite direct sum of copies of OΦ [3, Proof of
VII.12.11]. Setting !M = (OΦ)⊕k we obtain

M = (+OΦ)⊕k = Hm
[Φ](OY )⊕k = (OK �Hm

[0](OU ))⊕k

by [3, VI §7] or [12, I §4.2]. Observe that K acts on M via left translation on
OK . Thus MK = C � Hm

[0](OU )⊕k. To finish the proof, recall that Hm
[0](OU ) ∼=

D(U)
/(∑m

i=1D(U)yi
)
; see, for example, [12, Corollary I.5.2]. �

Lemma 3.3. Let M be as in Lemma 3.2. Let θ ∈ Θ(p)K and v ∈ MK . Then
1⊗ v ∈MK . If ψ# is defined by (3.2), then

ψ#(θ).(1⊗ v) = 1⊗ θ.v = (1�∆(θ)).(1⊗ v).

Proof. The claim follows from the definition of ψ#(θ) and Lemma 3.2(4). �

Lemma 3.4. Let M be as in Lemma 3.2. Assume that M = D(p).s with s ∈ MK

such that E.s = µs, for some µ ∈ C. Then, there exists α ∈ Nm such that µ =
− 1

2 (λp(x) + dim p)− 1
2

∑m
i=1(λi + 2)αi.

Proof. Let (z, x, y) be a normal S-triple containing x and adopt the notation of
Lemma 3.2. Set H = Hm

[0](OU ). If v ∈ MK we write v∗ = 1⊗Op
v = 1� ρ(v) with

ρ(v) = ⊕ki=1ρi(v) ∈ H⊕k. Recall from Lemma 3.2 thatM = DY .s∗ = (OK �H)⊕k;
this implies in particular that ρi(s) 6= 0 for all i.

The element s∗ = 1⊗ s is a non-zero element ofMK . Therefore, by Lemma 3.3,
1⊗ E.s = µs∗ = (1�∆(E)).s∗ and so ∆(E).ρ(s) = µρ(s). Thus each ρi(s) ∈ H is an
eigenvector of ∆(E) with eigenvalue µ. Now, by Lemma 3.1 and Lemma 3.2,

∆(E).∂β = −
(∑

i(
1
2λi + 1)(βi + 1)

)
∂β

for all ∂β =
∏
∂βi
yi ∈ H. Therefore the eigenvalues of ∆(E) on H are of the form

−
∑m
i=1( 1

2λi + 1)(βi + 1) = − 1
2 (λp(x) + n)− 1

2

∑m
i=1(λi + 2)βi.

The existence of α = (αi)i follows. �

Remarks. (1) In the notation of Lemma 3.4, assume that µ = − 1
2 (λp(x) + dim p).

Then it is not difficult to prove that:
(i) M∼= OK �Hm

[0](OU );
(ii) if v ∈ MK is an eigenvector of E for µ, SuppD(p).(v − cs) ( SuppM for

some c ∈ C.
(2) Suppose that we are in the diagonal case (g, k) = (g1 ⊕ g1, g1), where g1 is

the Lie algebra of a semisimple group G1. Then, p ∼= g1 and a module M satisfying
the hypotheses of Lemma 3.2 can be considered as a G1-equivariant coherent Dg1-
module for which SuppM = G1.x, and O = G1.x ⊂ g1 is a nilpotent orbit. As in
[13, §7], set:

λO = 1
2 dimO− dim g1 = − 1

2 (dim g1 + dim gx1)

It is easily seen that λp(x) = dim gx1 and Lemma 3.4 implies that, if s is a G1-
invariant generator of M and E.s = µs, then µ 6 λO. Moreover, if µ = λO the
previous remark yields that the eigenspace for λO has dimension one. See [38,
Lemma 6.2] for a variant of this result.

In the sequel we will identify the cotangent bundle T ∗p = p × p∗ with p × p
through the isomorphism p ∼= p∗ induced by the form κ. We endow D(p) with the
filtration {Dk(p)}k by order of differential operators, and use the induced filtration
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on its subalgebras and factors. The associated graded algebra gr(D(p)) of D(p)
identifies with O(T ∗p). We denote by σ(a) ∈ O(T ∗p) the principal symbol of the
vector field τ(a), a ∈ k. Thus, σ(a)(b, c) = κ(a, [c, b]) for all (b, c) ∈ p × p. Let
a be the ideal of O(T ∗p) generated by {σ(a), a ∈ k}, write q for the radical ideal
defining C(p) and set b = gr(D(p)τ(k)). Write N = D(p)/D(p)τ(k). One obviously
has a ⊂ b, with

√
a = q, and so ChN ⊂ C(p). Similarly, gr(D(p)K) identifies with

O(T ∗p)K = O((T ∗p)//K) and for any finitely generated D(p)K-module Q one sets
ChQ = V(ann gr(Q)), which is the variety of zeroes, in (T ∗p)//K, of the annihilator
of the module gr(Q).

Lemma 3.5. Let M = D(p)/L be such that L ⊃ D(p)F + D(p)τ(k) where F is a
power of S+(p∗)K . Then, ChM ⊂ C(p)∩ (N(p)× p) and any subquotient of M is a
K-equivariant holonomic Dp-module.

Proof. Since F ⊂ L and τ(k) ⊂ L, we see that ChM ⊂ (N(p)×p)∩C(p) and it follows
from Lemma 2.2 that M is holonomic. Since L ⊃ D(p)τ(k), [35, Lemma 6.2.6(4)]
yields the equivariance ofM . If Q is a subquotient ofM , then it follows immediately
that Q is holonomic while the K-equivariance of Q follows from [35, Theorem 6.2.4]
(see also [19, Lemma 6.1]). �

Remark 3.6. LetM be as in Lemma 3.5 and set λ(M) = min{λp(x) : x ∈ SuppM}.
Then it can be easily deduced from Lemma 3.4 that any eigenvalue of E on MK is
less or equal to − 1

2 (λ(M)+dim p). In the diagonal case, this result can be compared
with [2, Corollary 3.9].

We now consider modules of the following form:

(3.3) M = D(p)/L such that L ⊃ D(p)F +D(p)τ(k) +D(p)F ′

where F ′ ⊂ S(p)K is an ideal of finite codimension and F is a power of S+(p∗)K .
Note that, since D(p)K contains the Lie algebra u = Ce+ Cf + Ch, both M and

MK do have a natural u-module structure.

Lemma 3.7. Let M = D(p)/L be defined by (3.3). Then:
(1) ChM ⊂ C(p) ∩ (N(p)×N(p));
(2) the action of u on M is locally finite.

Proof. (1) Observe that, since F ′ ⊂ S(p)K has finite codimension, gr(F ′) contains
a power of the augmentation ideal S+(p)K ; thus ChM ⊂ p×N(p). The claim then
follows from Lemma 3.5.

(2) If v ∈ D(p), write v̄ ∈ M for its class modulo L. By hypothesis, there exist
l ∈ N and a non-zero polynomial a ∈ C[T ] such that el.1̄ = a(f).1̄ = 0. Recall
that the elements of S(p∗) and S(p) act ad-nilpotently on D(p). Therefore, for
all d ∈ D(p), there exists ` ∈ N and 0 6= b ∈ C[T ] such that e`.d̄ = b(f).d̄ = 0.
It is then a classical result that U(u).d̄ is a finite dimensional u-module (see [14,
Corollary 2.4.11, Remark 2.5.2] for a more general result). �

We can now prove the main result of this section.

Theorem 3.8. Let g be a semisimple Lie algebra and (g, k) be a symmetric pair
(such that n = dim p > 0). Assume that λp(x) > 0 for all distinguished nilpotent
elements x ∈ p. If M is defined by (3.3) then M = 0.
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Proof. Suppose that M 6= 0. By taking a simple quotient we may assume that M
is simple; note that 0 6= 1̄ ∈ MK . Then SuppM ⊂ N(p) is irreducible, closed
and K-stable. Hence SuppM = K.x is the closure of a single nilpotent orbit.
As already observed, gr(L) contains a power of S+(p)K ; it follows that ChM ⊂
C(p) ∩ (K.x×N(p)).

Suppose that x is not distinguished (this includes the possibility that x = 0).
Since SuppM contains x, there exists an irreducible component X of ChM such
that (x, ξ) ∈ X for some ξ ∈ p. Since X is K-stable, it follows, in the notation
of Lemma 2.2, that η1(X) = K.x. Thus dimX < n = dim p by Lemma 2.2(ii).
But, by Lemma 3.5, M is a non-zero holonomic Dp-module, and so each irreducible
component of ChM has dimension n (see [6], for example). Hence a contradiction.

Thus, x is distinguished. By Lemma 3.7, the action of u is locally finite on the
non-zero module MK . Therefore, we can pick 0 6= s ∈ MK which is a highest
weight vector for u. Let ν ∈ N be the weight of s; thus h.s = νs, or, equivalently,
E.s = (ν − n/2)s. By Lemma 3.5, M is a K-equivariant, coherent Dp-module and
so we may apply Lemma 3.4 to conclude that

ν = − 1
2λp(x)− 1

2

∑m
i=1(λi + 2)αi

for some α ∈ Nm. The hypothesis on λp(x) gives ν < 0 and a contradiction. �

Remarks. (1) The proof of Theorem 3.8 can be applied in a few further cases. For
example, assume that ` = 1 and that either n = 2 or n = 2r + 1 is odd; this forces
(g, k) = (so(3,C), so(2,C)) respectively (so(2r+ 2,C), so(2r+ 1,C)). Then the proof
of the theorem can be used to show that any D(p)-module M that satisfies (3.3) is
actually zero. Indeed, in the notation of the proof, m = 1 and λ1 = 2 and the final
displayed equation then forces n = 2ν+4(α+1) for some α ∈ N, giving the required
contradiction.

(2) The theorem is, however, false without some restriction. For example, consider
the real symmetric pair (g0, k0) = (so(1, q + 1), so(1, q)) where q > 3 is odd. Then
the complexified pair (so(q + 2,C), so(q + 1,C)) is not nice and there exists a non-
zero D(p)-module M = D(p)/L satisfying the hypotheses (3.3). Specifically, if u
is the hyperfunction defined in [33, (6.2)], then M = D(p).u 6= 0 has the required
properties (see also [1, §4]). We will examine this phenomenon in greater detail
in §6.

Return, now, to the case of a general, reductive, symmetric pair (g, k). Set

(3.4) A(p) = D(p)
K/

(D(p)τ(k))K .

Notice that gr(A(p)) = (gr(D(p))/b)K is a factor of (gr(D(p))/a)K = (O(T ∗p)/a)K

and so we can identify ChA(p) = Spec gr(A(p)) with the closed subvariety ChN//K
of C(p)//K = V(aK). Set g1 = [g, g], k1 = k ∩ g1, and p1 = p ∩ g1. Let K1 be the
semisimple (connected) subgroup of K such that Lie(K1) = k1 and write z for the
centre of g. Then, p = p1 ⊕ (p ∩ z), k = k1 ⊕ (z ∩ k) and (g1, k1) is a symmetric pair.
We retain this notation in the next corollary.

Corollary 3.9. Let (g, k) be a symmetric pair such that p1 6= 0. Assume that
λp1(x) > 0 for all p1-distinguished nilpotent elements x ∈ p1.

(1) Let M = D(p)/(D(p)F1 + D(p)τ(k) + D(p)F ′1), where F1 is a power of
S+(p∗1)K1 and F ′1 ⊂ S(p1)K1 is an ideal of finite codimension. Then, M = 0.

(2) Let F be a (D(p), A(p))-bimodule such that F has finite length as a left
D(p)-module. Then F = 0.
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Proof. (1) Set p0 = z ∩ p. Observe that D(p) = D(p0) ⊗C D(p1) and τ(k) = τ(k1).
Thus, M ∼= D(p0) ⊗C M1, where M1 = D(p1)/(D(p1)F1 + D(p1)τ(k1) + D(p1)F ′1).
The hypotheses ensure that we can apply Theorem 3.8 to the D(p1)-module M1.
Hence M1 = 0 and, therefore, M = 0.

(2) Recall that the Euler vector field E ∈ D(p)K defines a grading D(p) =
⊕j∈ZD(p)j where D(p)j = {D ∈ D(p) : [E, D] = jD}. Since the action of K on
p is linear, the rings D(p)K , S(p∗)K and S(p)K are all graded subalgebras of D(p).
Moreover, the induced grading on S(p∗)K , or S(p)K , is the natural one given by
the degree of polynomials. Notice also that any ideal of D(p)K is graded (see [35,
Lemma 2.3]).

Set k = EndD(p)(F) and let I be the annihilator of the right D(p)K-module
F . Note that, since F has finite length as a left D(p)-module, Dixmier’s Lemma
implies that k is a finite dimensional C-algebra. As F is a right A(p)-module, I
contains (D(p)τ(k))K and D(p)K/I is a subalgebra of k via right multiplication on
F . Thus I has finite codimension in D(p)K , which implies that F = I ∩ S(p∗)K

and F ′ = I ∩ S(p)K are ideals of S(p∗)K , respectively S(p)K , of finite codimension.
From the last paragraph we know that I, F and F ′ are graded, hence F contains
a power of S+(p∗)K and F ′ contains a power of S+(p)K . Now consider the D(p)-
module M = D(p)

/
(D(p)F + D(p)τ(k) + D(p)F ′). Since K is reductive we have

MK = A(p)
/

(A(p)F + A(p)F ′); therefore, by construction, D(p)K/I is a factor of
the D(p)K-module MK . However, part (1) implies that M = 0; hence MK = 0,
I = D(p)K and F = 0. �

4. Proof of Theorem A

The idea of the proof of Theorem A is similar to that of [18, Theorem 5.5];
the main step is to show that the module L = K(p)/D(p)τ(k) is supported on the
nilpotent cone N(p), after which the result follows easily from Corollary 3.9. In
order to fix the notation, and for the convenience of the reader, we first recall a few
facts from [18, §4].

We begin with the relevant notation. For simplicity we will assume that smooth
varieties are irreducible. Assume that G is an arbitrary reductive algebraic group
and that X is an affine G-variety. Set g = Lie(G) and let τX : g → D(X) be, as
usual, the Lie algebra homomorphism induced by the G-action. Set

KG(X) = {d ∈ D(X) : ∀f ∈ O(X)G, d(f) = 0}.

Notice that D(X)τX(g) ⊂ KG(X) and that KK(p) is the ideal K(p) of the intro-
duction. Given a reductive subgroup M ⊂ G and an affine M -variety Y , define
G×M Y = (G× Y )//M , under the M -action m.(g, y) = (gm−1,m.y). If φ ∈ O(X),
write Xφ for the principal open subset {x ∈ X : φ(x) 6= 0}. If F is a D(X)-module,
we denote by Fφ the localization of F at the Ore set {φk : k ∈ N}. Note that
D(Xφ) = D(X)φ.

Part (1) of the next lemma is a standard application of Luna’s slice theorem. We
give the proof, since it illustrates the technique that will be used several times in the
paper. For basic facts about the Slice Theorem and excellent morphisms the reader
is referred to [28, §6] or [31].

Lemma 4.1. Let X be a finite dimensional rational G-module.
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(1) Assume that XG = {0} and that KM (N) = D(N)τN (m) for all slice represen-
tations (N,M) at non-zero closed orbits in X. Write N(X) = $−1

X ($X(0)) for the
null-cone in X and let L(X) = KG(X)/D(X)τX(g). Then SuppL(X) ⊂ N(X).

(2) Let X = E ⊕ F be a G-stable decomposition of X such that E ⊂ XG. Then,
KG(X) = D(X)KG(F ).

Proof. (1) Observe that L(X) is a rational G-module; thus SuppL(X) is a closed G-
stable subset of X. Suppose that there exists x ∈ SuppL(X) with x /∈ N(X). Then,
by definition of the null-cone, the unique closed orbit contained in G.x ⊂ SuppL(X)
is of the form G.b for some b 6= 0. Set M = Gb and let (N,M) be the slice
representation at the point b. By [18, Proposition 4.4] there exists φ ∈ O(X)G

such that φ(b) 6= 0 and L(X)φ = 0. Thus b /∈ SuppL(X), giving the required
contradiction.

(2) This is routine. �

We are now ready to prove Theorem A from the introduction. Thus, in the
notation given there, we want to prove the following result.

Theorem 4.2. Let g be a reductive Lie algebra and (g, k) be a nice symmetric pair.
Then K(p) = D(p)τ(k).

Proof. By Lemma 4.1 we may assume that g is semisimple. We argue by induction
on dim g, with the case dim g = 0 being obvious. (The theorem is also immediate if
p = 0; that is, if ϑ = I.)

Recall that L = K(p)/D(p)τ(k). If 0 6= b ∈ p is semisimple, then p = pb ⊕ [k, b]
and (pb,Kb) is the slice representation at the point b. Thus, by Lemma 4.1(1) and
induction, SuppL ⊂ N(p). Since L is a submodule of N = D(p)/D(p)τ(k), we have
ChL ⊂ C(p); hence ChL ⊂ C(p) ∩ (N(p) × p) and L is holonomic by Lemma 2.2.
As L is clearly a (D(p), A(p))-bimodule, Corollary 3.9 yields L = 0. �

As an immediate corollary of Theorem 4.2 one obtains the following generalization
of a fundamental result of Harish-Chandra (see [9, Theorem 4] or (1.2)) from the
diagonal case to nice symmetric pairs:

Corollary 4.3. Assume that the symmetric pair (g, k) is nice and is the complexi-
fication of a real symmetric pair (g0, k0). Write K0 for the connected Lie group
satisfying Lie(K0) = k0. Let U ⊂ p0 be a K0-stable open subset and T be a K0-
invariant distribution on U . Then I(p) · T = 0. �

As observed in Remark 2.7, many of the nice irreducible symmetric pairs are of
maximal rank. We give in Proposition 4.6 another sufficient condition to ensure that
K(p) = D(p)τ(k). This result will be used in the proof of Theorem 6.4 and it also
gives a simpler proof of Theorem 4.2 when (g, k) has maximal rank.

Let x ∈ p. If mx ⊂ O(p) is the maximal ideal corresponding to x, we denote by
Mx the localization of an O(p)-moduleM with respect to O(p)\mx. This applies to
any D(p)-module and, whenM = D(p), D(p)x is the algebra of differential operators
on the local ring O(p)x.

The Gelfand-Kirillov dimension of a module M , over some C-algebra, is denoted
by GKdimM ; see [22] for details. Recall, see [23] for example, that if M is a
finitely generated module over D(p) or D(p)K , then GKdimM is the dimension of
the characteristic variety ChM ⊂ p×p, or ChM ⊂ (p×p)//K. The following lemma
will be used several times. It is implicit in [4] and proved in [21, Theorem I.(3.2)].
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Lemma 4.4. Let Ξ be a multiplicatively closed set of commuting, regular, locally ad-
nilpotent elements of an algebra D. Then, Ξ is an Ore set in D and GKdimMΞ−1 6
GKdimM , for any right D-moduleM . IfM has no Ξ-torsion, then GKdimMΞ−1 =
GKdimM . �

We remark that, whenever we apply this lemma, D will be (close to being) a ring
of differential operators D(V ) with Ξ ⊂ O(V ), in which case the elements of Ξ will
automatically be locally ad-nilpotent and commuting.

We define the set of generic elements by p′ = {x ∈ p : x regular and semisimple}.
Recall [11, Proposition III.4.9] that there exists ζ ∈ O(p)K , called the discriminant
of (g, k), such that p′ = pζ = {x ∈ p : ζ(x) 6= 0}.

Lemma 4.5. The module N = D(p)/D(p)τ(k) satisfies GKdimN = dimC(p) =
n+ `.

Proof. Recall that ChN ⊂ C(p) and hence that GKdimN 6 dimC(p). Let v ∈
p′. It is easily seen that there exists a basis {∂1, . . . , ∂n} of the O(p)v-module
Θ(p)v such that D(p)vτ(k) = K(p)v =

∑n
i=`+1D(p)v∂i (similar results are proved

in [19, Lemma 6.7]). Hence, Nv = D(p)v
/∑n

i=`+1D(p)v∂i, which implies that
GKdimNv = 2n − (n − `) = n + ` = dimC(p). However, Lemma 4.4 implies that
GKdimNv 6 GKdimN . Thus GKdimN = dimC(p). �

Proposition 4.6. Assume that C(p) is irreducible and q = a, in the notation of
Section 3. Then, K(p) = D(p)τ(k).

Proof. The hypothesis ensures that O(T ∗p)/a is a domain of dimension n + ` =
dimC(p). Since O(T ∗p)/b is a factor of O(T ∗p)/a, Lemma 4.5 shows that b = a.
This implies in particular that GKdimNζ = GKdim(O(T ∗p)/b)ζ = dimC(p). Set
N = D(p)/K(p). Then, Nζ = Nζ and therefore GKdimN > GKdimNζ = dimC(p).
Now, suppose that D(p)τ(p) ( K(p). Then gr(L) 6= 0 while gr(N) = gr(N )/ gr(L).
Since gr(N ) = O(T ∗p)/b is a domain, this forces GKdimN = GKdim gr(N) <
dimC(p), hence a contradiction. �

Corollary 4.7. ([31, Theorem 9.9]) Assume that (g, k) has maximal rank. Then,
K(p) = D(p)τ(k).

Proof. Recall that (g, k) is of maximal rank if and only if the action (K : p) is locally
free; that is, if and only if max{dimK.x : x ∈ p} = dim k. By [27, Theorem 3.2] the
hypotheses of Proposition 4.6 are therefore satisfied. �

Remark. It is not difficult to reduce the proof of Theorem 4.2 to the case where the
symmetric pair is irreducible. The significance of this is that Corollary 4.7 therefore
provides another proof of Theorem 4.2 whenever (g, k) is nice and has no irreducible
factors of type (O), (II), (IV) (k = 2) or (VI) (see Remark 2.7). The details are
left to the interested reader.

5. Applications

The main aim of this section is to prove Theorem D from the introduction and
the basic inductive technique is provided by the Luna Slice Theorem, see [31, The-
orem 1.14].

We begin with some technical lemmas which will enable us to apply the Slice The-
orem in proving Theorem D. The notation is as in the beginning of §4. Furthermore,
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if X is an irreducible affine G-variety (G reductive) we set:

IG(X) = KG(X)G and RG(X) = D(X)G/IG(X)

Observe that RG(X) is a C-algebra and O(X)G ⊂ RG(X). The next lemma is then
easy to prove.

Lemma 5.1. Let X be a smooth affine G-variety.
(1) Let φ ∈ O(X)G. Then, KG(X)φ = KG(Xφ). If KG(X) = D(X)τX(g), then
KG(Xφ) = D(Xφ)τX(g).

(2) Let U ⊂ X be a $X-saturated open affine subset and let b ∈ U such that
G.b is closed. There exists φ ∈ O(X)G such that b ∈ Xφ = Uφ. One has
KG(U) = {d ∈ D(U) : d(O(X)G) = 0}. �

Lemma 5.2. Let ϕ : Z → U be an excellent surjective G-morphism of smooth affine
G-varieties.

(1) O(Z)G ⊗O(U)G RG(U) identifies with RG(Z).
(2) RG(U) is simple if and only if RG(Z) is simple.
(3) Let F be a finitely generated RG(U)-module and set G = RG(Z) ⊗RG(U) F .

Then GKdimG = GKdimF . Conversely if G is a finitely generated RG(Z)-module,
there exists a finitely generated RG(U)-module F such that G = RG(Z)⊗RG(U) F .
Proof. (1) is immediate from the proof of [31, Corollary 4.4].

For simplicity we drop the subscript G in the rest of this proof. Set A = O(U)
and B = O(Z). Notice that by the faithful flatness of BG over AG, R(U) ↪→ R(Z)
via Q 7→ 1⊗AGQ. By the definition of I(Z), R(Z) embeds in D(Z//G) = D(BG). It
follows that we may endow R(Z) with the filtration by ord, the order of differential
operators in D(Z//G).

(2) Suppose that J is a proper, non-zero ideal of R(Z) and pick 0 6= Q ∈ J . If
Q 6∈ BG, there exists b ∈ BG such that [b,Q] 6= 0 and ord [b,Q] < ordQ. Thus,
by induction, we deduce that J ∩ BG 6= 0. Since AG → BG is étale, it follows, for
example from [24, Corollary 3.16], that J ∩AG 6= 0. Therefore J ∩R(U) is a proper
non-zero ideal of R(U).

Conversely, assume that R(Z) is simple and let I ⊂ R(U) be a non-zero ideal. As
in the previous paragraph, I ∩ AG 6= 0. Thus 0 6= R(U)(I ∩ AG)R(U) ⊂ I and we
may as well assume that I = R(U)(I ∩ AG)R(U). Now, we claim that IR(Z) is an
ideal of R(Z). Indeed, we have R(U)IR(Z) ⊂ IR(Z) and

BGIR(Z) = BGR(U)(I ∩AG)R(Z) = R(U)BG(I ∩AG)R(Z)

= R(U)(I ∩AG)BGR(Z) = IR(Z).

Since R(Z) = R(U)BG, this proves the claim.
As R(Z) is simple, this forces IR(Z) = R(Z) = R(U) ⊗AG BG. But, IR(Z) =

I(R(U)⊗AG BG) = I ⊗AG BG and, therefore, I = R(U) by faithful flatness.
(3) Recall [31, Proof of Corollary 4.4] that Dm(Z)G = BG ⊗AG Dm(U)G, since ϕ

is excellent. Thus, when we endow R(U) and R(Z) with the filtrations induced by
{Dm(U)G}m, respectively {Dm(Z)G}m, we obtain gr(R(Z)) = BG ⊗AG gr(R(U)).

Let F be a finitely generated R(U)-module. Choose a good filtration {ΦkF}k
on F ; that is, a filtration such that the associated graded module grΦ(F) is finitely
generated over the affine commutative algebra gr(R(U)) ∼= gr(D(U)G)/ gr(I(U)).
Then, it is not difficult to see that ΦkG = BG ⊗AG ΦkF defines a good filtra-
tion on the R(Z)-module G such that grΦ(G) = BG ⊗AG grΦ(F), as a gr(R(Z))-
module. Since AG → BG is étale, so is gr(R(U)) → gr(R(Z)) = BG ⊗AG gr(R(U))
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(base change for étale morphisms). Recall [23] that GKdimF = Kdim grΦ(F) and
GKdimG = Kdim grΦ(G). Now, grΦ(G) = BG⊗AG grΦ(F). Since AG → BG is étale,
KdimBG BG ⊗AG grΦ(F) = KdimAG grΦ(F) (see, for example, [24, Corollary 3.16]).
Thus, GKdimF = GKdimG.

Conversely, if G is a finitely generated R(Z)-module, write G =
∑s
i=1R(Z)vi and

set F =
∑s
i=1R(U)vi. It is then clear that G = R(Z)⊗R(U) F . �

The following lemma can be deduced, by standard methods, from [18, Proof of
Lemma 4.3] and [31, Corollary 4.5(i)].

Lemma 5.3. Let M be a reductive subgroup of G, fix a smooth affine M -variety Y
and set Z = G×M Y . Then, RM (Y ) ∼= RG(Z). �

The three next results will give a proof of Theorem D from the introduction.
Recall that R(p) = RK(p) = D(p)K/K(p)K .

Lemma 5.4. Let (g, k) be any symmetric pair. Then, GKdimR(p) = 2`.

Proof. Observe that, since O(p)K ⊂ R(p), we can localize R(p) with respect to
any ore set Ξ ⊂ O(p)K and that, by Lemma 4.4, GKdimR(p)Ξ−1 = GKdimR(p).
Notice also that, when p is contained in the centre of g, K acts trivially on p = a
and R(p) = D(p). The claim then follows, by induction on dim g, from the Slice
Theorem [31, Theorem 1.14] and Lemmas 5.2 and 5.3. �

Theorem 5.5. Let (g, k) be a nice symmetric pair. Then, R(p) is a simple ring.

Proof. Set g1 = [g, g], p1 = p∩g1 and let z denote the centre of g. Then Lemma 4.1(2)
implies that R(p) = D(p ∩ z) ⊗C R(p1). It follows that we may restrict to the case
when g is semisimple. We argue by induction on dim g, with the case dim g = 0
being obvious.

Let 0 6= b ∈ p be semisimple; thus (pb,Kb) is the slice representation of the K-
action on p at the point b. Then, by the Slice Theorem, Lemma 5.1 and induction,
there exists φ ∈ O(p)K such that φ(b) 6= 0 and RK(p)φ is simple. Let J̄ = J/I(p) be
a non-zero ideal of R(p), for some J ⊂ D(p)K . Then, since J̄φ 6= 0 (φ is a non-zero
divisor in R(p)), we obtain that J̄φ = RK(p)φ. In other words, there exists s ∈ N
such that φs ∈ J .

Now, consider the D(p)-module F = D(p)/(D(p)J + D(p)τ(k)). Then F is a
compatible K-module and, by the previous paragraph, SuppF is a closed K-stable
subset of p which does not contain any non-zero semisimple element. This forces
SuppF ⊂ N(p) and therefore ChF ⊂ C(p) ∩ (N(p) × p). Thus, by Lemma 2.2, F
is holonomic, and therefore of finite length as a left D(p)-module. By Theorem 4.2,
K(p) = D(p)τ(k), and so R(p) = A(p), in the notation of (3.4). Moreover, as
J ⊂ D(p)K , F is a (D(p), A(p))-bimodule. Thus, by Corollary 3.9, F = 0 and hence
R(p)/J̄ = FK = 0. �

Theorem 5.6. Let (g, k) be a nice symmetric pair and let Q be a non-zero finitely
generated R(p)-module. Then GKdimQ > `.

Proof. As before, write p1 = p ∩ [g, g]. If p1 = 0, then p is contained in the centre z
of g. Thus, R(p) = D(p), ` = dim p, and the result is nothing but the Bernstein in-
equality. We may therefore assume that p1 6= 0. We prove the theorem by induction
on dim g and we adopt the notation developed prior to Corollary 3.9.

Observe that p//K = p1//K1 × z and that the points $p(b), where b ∈ p \ z
is semisimple can be identified with the points ($p1(a), c) ∈ p1//K1 × z such that
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$p1(a) 6= $p1(0). Suppose that Q is a non-zero finitely generated R(p)-module with
GKdimQ < `. Then, using the Slice Theorem, Lemmas 4.4, 5.2 and 5.3, one can
prove that the support of the O(p//K)-module Q is contained in {$p1

(0)}× z. Since
{$p1

(0)}× z is the variety of zeroes of S+(p∗1)K1 , we obtain that, for all v ∈ Q, there
exists a power of S+(p∗1)K1 , say F1, such that F1.v = 0.

Now, recall that the restriction of the form κ to p induces a K-equivariant
isomorphism κ : p ∼−→ p∗ such that κ(p1) = p∗1. It is well known that one can
extend κ to a K-equivariant automorphism κ : D(p) ∼−→D(p) (the Fourier trans-
form, see [19, §7]) which satisfies: κ(τ(a)) = τ(a) for a ∈ k, κ(S(p)K) = S(p∗)K

and κ(S(p1)K1) = S(p∗1)K1 . Since D(p)τ(k) = K(p) by Theorem 4.2, we have
κ(I(p)) = I(p) and κ induces an automorphism of R(p). Return to the module Q
and define the R(p)-module Qκ to be the abelian group Q with action a∗v = κ(a).v,
for a ∈ R(p), v ∈ Q. One clearly has GKdimQκ = GKdimQ < `. Hence each ele-
ment of Qκ is killed by a power of S+(p∗1)K1 . In other words, each v ∈ Q is killed
by a power, say F ′1, of S+(p1)K1 .

Thus, by the last two paragraphs, R(p).v is a factor of M1 = R(p)/(R(p)F1 +
R(p)F ′1). Set

M = D(p)/(D(p)F1 +D(p)τ(k) +D(p)F ′1).

By Corollary 3.9, M = 0. On the other hand, MK = M1, whence v = 0 and Q = 0,
as desired. �

Corollary 5.7. Let (g, k) be a nice symmetric pair, n ⊂ S(p)K be a maximal ideal
and 0 6= φ ∈ O(p)K . Then, D(p) = D(p)φ+D(p)τ(k) +D(p)n.

Proof. Set M = D(p)/(D(p)φ+D(p)τ(k) +D(p)n). It suffices to prove that MK =
R(p)/(R(p)φ+R(p)n) = 0, or, by Theorem 5.6, that GKdimMK < `. Recall from §3
that the filtration {Dk(p)}k on D(p) induces a filtration on A(p) = R(p) such that
Spec gr(R(p)) = ChN//K ⊂ C(p)//K. Now, since gr(n) = S+(p)K , we have

ChM ⊂ X = C(p) ∩ (p×N(p)) ∩ ({φ = 0} × p)

It follows from Proposition 2.1 that X//K identifies with the subvariety {φ = 0}
of p//K. Since p//K is an irreducible variety of dimension `, this implies that
GKdimMK = dim ChM//K 6 dimX//K < `. �

We now prove Corollary C from the introduction. Let g0 be a real reductive Lie
algebra and (g0, ϑ0) be a symmetric pair with associated decomposition g0 = k0⊕p0.
Let ϑ be the extension of ϑ0 to g = C ⊗R g0; then (g, ϑ) is a symmetric pair and
g = k⊕ p, where k = C⊗R k0 and p = C⊗R p0. If U is a subset of p0 we denote by
U ′ the set of regular semisimple elements in U ; thus U ′ = U ∩ p′ = {u ∈ U : ζ(u) 6=
0}. Recall that a distribution T on the open subset U ⊂ p0 is locally invariant if
τ(k).T = 0, and is an eigendistribution if there exists a maximal ideal n ⊂ S(p)K

such that n.T = 0.

Corollary 5.8. Assume that (g, k) is a nice symmetric pair. Let T be a locally
invariant eigendistribution on the open subset U ⊂ p0 such that SuppT ⊂ U \ U ′.
Then T = 0.

Proof. (We mimic the proof given in [38, p. 798] in the diagonal case.) Let n ⊂ S(p)K

be a maximal ideal such that n.T = 0. Recall [7, Lemma 21] that, for all u ∈ U ,
there exists s ∈ N and an open subset u ∈ V ⊂ U such that ζs.T|V = 0. Let L be
the annihilator in D(p) of T|V . Since T|V is locally invariant, we see that L contains
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τ(k), n and ζs. Thus L = D(p) by Corollary 5.7 and therefore T|V = 0. Hence
T = 0. �

Remark. Let 0 6= φ ∈ O(p)K and set Uφ = {u ∈ U : φ(u) 6= 0}. Replacing ζ
by φ in the previous proof shows that there exists no non-zero locally invariant
eigendistribution supported on U \ Uφ. However, the case φ = ζ readily implies the
more general result, since any locally invariant eigendistribution is a real analytic
function on U ′, see [33, Theorem 5.3].

Now suppose that X ( p is an algebraic K-subvariety defined by an ideal 0 6= I ⊂
O(p). Since the generic K-orbit in p is closed, one easily sees that IK 6= 0. We can
therefore also conclude that there is no non-zero locally invariant eigendistribution
supported on U ∩X.

6. The rank one case

In the case when (g, k) has rank one it is easy to calculate K(p) and R(p) =
D(p)K/K(p)K . We do so in this section, since it shows that the main results of this
paper can fail for symmetric pairs that are not nice. Curiously, these computations
also show how one may be able to modify those theorems so that they hold for all
symmetric pairs.

Thus, throughout this section, we will assume that g is semisimple and that (g, k)
is a symmetric pair of rank one, unless we explicitly say otherwise (the one exception
will be in Theorem 6.3 and the comments immediately preceding it).

Recall from §3 that the K-invariant elements
∑n
i=1 ∂

2
xi
,
∑n
i=1 x

2
i and E+n

2 generate
a Lie algebra u ∼= sl(2,C) inside D(p). In order to work with highest weight modules,
we slightly change our notation and set

e = 1
2

∑n
i=1 ∂

2
xi
, f = − 1

2

∑n
i=1 x

2
i , h = −E− n

2 .

(These elements still satisfy [e, f ] = h, [h, e] = 2e, [h, f ] = −2f .) Recall the defini-
tion of the radial component map: The Chevalley isomorphism S(p∗)K ∼−→S(a∗)W

induces an isomorphism D(p//K) ∼−→D(a/W ); by composing this isomorphism with
the natural restriction map D(p)K → D(p//K), we obtain the radial component
map rad : D(p)K −→ D(a/W ). Note that Ker rad = I(p) and R(p) is isomorphic to
R = Im rad . Set

ē = rad(e), f̄ = rad(f), h̄ = rad(h).

Choose the coordinate system {xi, ∂xi}i of D(p) such that t = x1 is the coordinate
function on a, and x2, . . . , xn are coordinate functions on a κ-orthogonal complement
of a in p. Then the Weyl group W = {±1} acts on S(a∗) = C[t] by t 7→ −t and
S(a∗)W = C[z], where z = t2. Furthermore, rad(

∑n
i=1 x

2
i ) = z, rad(

∑n
i=1 ∂

2
xi

) =

4z∂2
z + 2n∂z, and rad(E) = 2z∂z. Hence,

(6.1) ē = 2z∂2
z + n∂z, f̄ = − 1

2z, h̄ = −2z∂z − n
2 .

Lemma 6.1. (1) Set U = C〈ē, f̄ , h̄〉. Then, R = U ∼= U(sl(2,C))
/(
ω − 1

4n(n− 4)
)
,

where ω = h2+2h+4fe is the Casimir element of the enveloping algebra U(sl(2,C)).
(2) Assume that n = 2r > 4. Then, V = C[z]z1−r/C[z] is a finite dimensional

simple R-module. Indeed, V ∼= R/(Rf̄r−1 +R(h̄− r + 2) +Rē).

Proof. Since U is a factor of U(sl(2,C)), the isomorphism in part (1) follows by
computing the character of the U -module C[z]. By construction, U ⊂ R. The
equality U = R then follows easily from the fact that, by (6.1), U [f̄−1] = R[f̄−1]



18 T. LEVASSEUR AND J. T. STAFFORD

and, dually, U [ē−1] = R[ē−1]. This proves (1), while part (2) follows by the obvious
computation. �

Recall that, when n > 4, the rank one symmetric pair is not nice (see Remark 2.4).
The following result shows that Theorem 3.8 fails for such a pair and, consequently,
that the proof of Theorem 4.2 will also not work in this situation. See, however, the
first remark following Theorem 3.8. This result is related to the computation of the
“minimal extension” L(N(p), p), see [25, pp. 220-221].

Proposition 6.2. Assume that n = 2r > 4 and set

L = D(p)fr−1 +D(p)τ(k) +D(p)e.

Then, M = D(p)/L is a non-zero module that satisfies (3.3).

Proof. Here, N(p) is the variety of zeroes, in p, of the polynomial f and S(p)K =
C[e]. Thus M does have the form of (3.3). Consider the R-module V of Lem-
ma 6.1(2) as an A(p)-module. By the final assertion of that lemma, V is a factor
of V ′ = A(p)/(A(p)fr−1 + A(p)e). Recall that N = D(p)/D(p)τ(k). Thus M =
N ⊗A(p) V

′ = D(p)/L and, since MK = V ′ 6= 0, we have M 6= 0. �

In order to describe the left ideal K(p) in the rank one case, we need to introduce
a Lie subalgebra of EndC(p). Since the definition can be made in the general case,
we return to the situation where (g, k) is a symmetric pair of arbitrary rank. Recall
that any a ∈ EndC(p) defines a vector field τ̃(a) ∈ Θ(p) by the formula (τ̃(a).ϕ)(v) =
d
dt |t=0

ϕ(v − ta.v), for all ϕ ∈ O(p), v ∈ p. Since τ(a) = τ̃(ad(a)) for all a ∈ k we
may, without confusion, write τ(a) = τ̃(a) for a ∈ EndC(p). Following [16, §4], we
define a Lie subalgebra of EndC(p) by

(6.2) k̃ =
{
a ∈ EndC(p) : τ(a).ϕ = 0 for all ϕ ∈ O(p)K

}
.

We want to study the inclusions ad(k) ⊂ k̃ and D(p)τ(k) ⊂ D(p)τ(k̃) ⊂ K(p). Obvi-
ously, we only need to work in the case where g is semisimple, which we now assume.
In the rank one case, O(p)K = C[f ], where f is the quadratic form

∑
i x

2
i , and the

Lie algebra k̃ is isomorphic to so(n). (We drop the base field C in the sequel.) We
have the the following general result, which depends upon a case by case analysis.

Theorem 6.3. ([20]) Assume that g is a semisimple Lie algebra and let (g, k) be a
symmetric pair (of any rank). Then, ad(k) = k̃ if and only if each irreducible, rank
one factor of (g, k) is of type (so(n+ 1), so(n)). �

This implies that, if (g, k) is irreducible of rank bigger than one, then k̃ = ad(k).
Conversely, if ` = 1, then ad(k) 6= k̃ except when (g, k) = (so(n+ 1), so(n)).

We now look to the inclusion D(p)τ(k) ⊂ D(p)τ(k̃) when (g, k) is of rank one. In
the notation of [10, Chap. X, Table V], there are four possible cases:

(BDI) (so(n+ 1), so(n)), n > 2
(AIII) (sl(m+ 1), gl(m)), m > 2
(CII) (sp(m+ 1), sp(m)⊕ sp(1)), m > 1
(FII) (f4, so(9))

For the first three cases, the relationship between D(p)τ(k) and D(p)τ(k̃) has been
determined by H. Ochiai [26]: if (g, k) = (sl(3), gl(2)), then D(p)τ(k) ( D(p)τ(k̃),
but otherwise D(p)τ(k) = D(p)τ(k̃). In contrast, there is no exceptional case in the
description of K(p):
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Theorem 6.4. Let (g, k) be any symmetric pair of rank one with g semisimple.
Then, K(p) = D(p)τ(k̃) and, consequently, I(p) = (D(p)τ(k̃))K .

Proof. Suppose, first, that (g, k) = (so(n + 1), so(n)). Then k̃ = ad(k) ∼= so(n) and
p = Cn with the standard SO(n)-action. In the coordinate system {xi, ∂xi}i the Lie
algebra τ(k) has basis {τ(eij) : 1 6 i < j 6 n} where τ(eij) = xi∂xj−xj∂xi . Let yj =
σ(∂xj

) ∈ O(T ∗p) be the principal symbol of ∂xj
. Then, O(T ∗p) = C[xi, yi; 1 6 i 6 n]

and the ideal generated by the σ(a), a ∈ k, is a = (xiyj − xjyi; 1 6 i < j 6 n). It is
easy to see that C(p) = V(a). Moreover, it is well known that a is a prime ideal (for
instance, by classical invariant theory [39], C[xi, yj ]/a ∼= C[u1, u2; vi, 1 6 i 6 n]C

∗
,

where C∗ acts by λ.ui = λui, λ.vi = λ−1vi). It then follows from Proposition 4.6
that K(p) = D(p)τ(k).

Now consider the general case. Notice that the k̃-module p identifies with the
standard so(n)-module Cn. Consider the symmetric pair (g̃, k̃) = (so(n + 1), so(n))

where p̃ = Cn with standard action of K̃ = SO(n). We may identify the k̃-modules p
and p̃ and we have O(p)K = O(p)K̃ = O(p̃)K̃ = C[f ]. Therefore, since D(p) = D(p̃),

KK(p) =
{
d ∈ D(p̃) : d(O(p̃)K̃) = 0

}
= KK̃(p̃) = D(p̃)τ(k̃) (by the first case)

= D(p)τ(k̃).

Hence the result. �

Corollary 6.5. Suppose that (g, k) = (sl(3), gl(2)). Then, D(p)τ(k) is strictly con-
tained in K(p) = D(p)τ(k̃). In contrast, I(p) = (D(p)τ(k̃))K = (D(p)τ(k))K .

Proof. The first assertion follows from Theorem 6.4 and Ochiai’s result [26]. The
final claim can be proved using [26, Theorem 2]. �

7. Questions

Theorem 4.2 and Theorem 6.4 provide the only known cases where the ideal K(p)

has been described. We have seen that in these cases K(p) = D(p)τ(k̃). Recall
from §3 and Lemma 4.5 that ChN ⊂ C(p) with dim ChN = dimC(p). Set Ñ =

D(p)/D(p)τ(k̃). We then have Ch Ñ ⊂ ChN ⊂ C(p) and dim Ch Ñ = dimC(p). In
view of these observations, and Corollary 6.5, we make the following conjectures.

Conjectures. Let (g, k) be a symmetric pair (with g reductive) and let k̃ be the Lie
algebra defined in (6.2). Then:

(C.1) K(p) = D(p)τ(k̃)
(C.2) I(p) = (D(p)τ(k))K

(C.3) Ch Ñ = R = K.(a× a); thus Ch Ñ is an irreducible component of C(p).

Let λ ∈ a∗ and denote by nλ ⊂ S(p)K the maximal ideal
(
q − q(λ); q ∈ S(p)K

)
.

Set Nλ = D(p)
/(
D(p)τ(k) +D(p)nλ

)
.

Conjectures. Assume that the pair (g, k) is nice. Then:
(C.4) Nλ is a semisimple D(p)-module
(C.5) Nλ has no ζ-torsion.

By [19], conjectures (C.4) and (C.5) are true in the diagonal case. One significance
of (C.5) is that, if true, it ought to provide a method for proving [33, Conjecture 7.2].
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The question of describing K(p) is a particular case of the more general problem
of determining the left ideals KK(V ) (cf. §4) where (K : V ) is any finite dimensional
representation of a reductive group K, see [30, 31]. In this general setting one can
still define, as in (6.2), a Lie subalgebra

k̃ =
{
a ∈ EndC(V ) : a.ϕ = 0 for all ϕ ∈ O(V )K

}
and one again has D(V )τV (k) ⊂ D(V )τV (k̃) ⊂ KK(V ). The representations (K : p)
are particular cases of the so-called θ-groups [37] or, more generally, of orthogonal
polar representations, see [5] and [28, 8.6] (in these cases one still has a Cartan
subspace). One may generalize the previous conjectures to this wider class of repre-
sentations and the following questions arise:

Questions. Suppose that (K : V ) is a θ-group, or an orthogonal polar representa-
tion.

(Q.1) Is KK(V ) = D(V )τV (k̃)?
(Q.2) Is IK(V ) = (D(V )τV (k))K?
(Q.3) Do we have ChD(V )/D(V )τV (k̃) = K.(c× c), where c ⊂ V is a Cartan

subspace?
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